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Abstract  69 

Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally 70 

invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. 71 
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To identify genes involved in regulating mitochondrial function, we performed a genome-wide 72 

association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in 73 

Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with 74 

statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of 75 

fine-mapping, variant annotation, and co-localization analyses were used to prioritize genes within each 76 

of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA 77 

depletion syndromes (p = 3.09 x 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 78 

1.43 x 10-8) and mtDNA replication (p = 1.2 x 10-7). A clustering approach leveraged pleiotropy between 79 

mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, 80 

revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA 81 

metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial 82 

function and a variety of blood cell related traits, kidney function, liver function and overall (p = 0.044) 83 

and non-cancer mortality (p = 6.56 x 10-4). 84 

 85 

Introduction   86 

Mitochondria are the cellular organelles primarily responsible for producing the chemical energy 87 

required for metabolism, as well as signaling the apoptotic process, maintaining homeostasis, and 88 

synthesizing several macromolecules such as lipids, heme and iron-sulfur clusters1,2. Mitochondria 89 

possess their own genome (mtDNA); a circular, intron-free, double-stranded, haploid, ~16.6 kb 90 

maternally inherited molecule encoding 37 genes vital for proper mitochondrial function. Due to the 91 

integral role of mitochondria in cellular metabolism, mitochondrial dysfunction is known to play a critical 92 

role in the underlying etiology of several aging-related diseases3–5.  93 

  94 
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Unlike the nuclear genome, a large amount of variation exists in the number of copies of mtDNA present 95 

within cells, tissues, and individuals. The relative copy number of mtDNA (mtDNA-CN) has been shown 96 

to be positively correlated with oxidative stress6, energy reserves, and mitochondrial membrane 97 

potential7. As a minimally invasive proxy measure of mitochondrial dysfunction8, decreased mtDNA-CN 98 

measured in blood has been previously associated with aging-related disease states including frailty9, 99 

cardiovascular disease10–12, chronic kidney disease13, neurodegeneration14,15, and cancer16.   100 

  101 

Although mtDNA-CN measured from whole blood presents itself as an easily accessible and minimally 102 

invasive biomarker, cell type composition has been shown to be an important confounder, complicating 103 

analyses17,18. For example, while platelets generally have fewer mtDNA molecules than leukocytes, the 104 

lack of a platelet nuclear genome drastically skews mtDNA-CN estimates. As a result, not only is 105 

controlling for cell composition extremely vital for accurate mtDNA-CN estimation, interpreting the 106 

results in relation to the impact of cell composition becomes a necessity18–20.  107 

 108 

Although the comprehensive mechanism through which mtDNA-CN is modulated is largely unknown21,22, 109 

twin studies have estimated a broad-sense heritability of ~0.65, consistent with moderate genetic 110 

control23. Several nuclear genes have been shown to directly modulate mtDNA-CN, specifically those 111 

within the mtDNA replication machinery such as the mitochondrial polymerase, POLG and POLG224,25, as 112 

well as the mitochondrial DNA helicase, TWNK, and the mitochondrial single-stranded binding protein, 113 

mtSSB26. Furthermore, nuclear genes which maintain proper mitochondrial nucleotide supply including 114 

DGUOK and TK2 have also been shown to regulate mtDNA-CN27–29. To further elucidate the genetic 115 

control over mtDNA-CN, several genome-wide association studies (GWAS) of mtDNA-CN have been 116 

published30–33, including a study that was published while the current manuscript was in preparation, 117 

analyzing ~300,000 participants from the UK Biobank (UKB), and identifying 50 independent loci33. 118 
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 119 

In the present study, we report mtDNA-CN GWAS results from 465,809 individuals across the Cohorts 120 

for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium34 and the UK Biobank 121 

(UKB)35. Using multiple gene prioritization and functional annotation methods, we assign genes to loci 122 

that reach genome-wide significance. We perform a PHEWAS and group our genome-wide significant 123 

SNPs into 3 clusters that represent distinct functional domains related to mtDNA-CN. Finally, we 124 

leverage mitochondrial SNPs to establish causality between mitochondrial function and mtDNA-CN 125 

associated traits. 126 

 127 

Subjects and Methods  128 

  129 

Study Populations  130 

470,579 individuals participated in this GWAS, 465,809 of whom self-identified as White.  Participants 131 

were derived from 7 population-based cohorts representing the Cohorts for Heart and Aging Research in 132 

Genetic Epidemiology (CHARGE) consortium (Avon Longitudinal Study of Parents and Children [ALSPAC], 133 

Atherosclerosis Risk in Communities [ARIC], Cardiovascular Health Study [CHS], Multi-Ethnic Study of 134 

Atherosclerosis [MESA], Religious Orders Study and Memory and Aging Project [ROSMAP], Study of 135 

Health in Pomerania [SHIP]) and from the UK Biobank (UKB) (Supplemental Table 1). Detailed 136 

descriptions of each participating cohort, their quality control practices, study level analyses, and ethic 137 

statements are available in the Supplemental Methods. All study participants provided written informed 138 

consent and all centers obtained approval from their institutional review boards.  139 

 140 

Methods for Mitochondrial DNA Copy Number Estimation (CHARGE cohorts) 141 

qPCR  142 
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mtDNA-CN was determined using a quantitative PCR assay as previously described32,36. Briefly, the cycle 143 

threshold (Ct) value of a nuclear-specific and mitochondrial-specific probe were measured in triplicate 144 

for each sample. In CHS, a multiplex assay using the mitochondrial ND1 probe and nuclear RPPH1 probe 145 

was used, whereas ALSPAC used a mitochondrial probe targeting the D-Loop and a nuclear probe 146 

targeting B2M. In CHS, we observed plate effects, as well as a linear increase in ΔCt due to the pipetting 147 

order of each replicate. These effects were corrected in the analysis using linear mixed model 148 

regression, with pipetting order included as a fixed effect and plate as a random effect to create a raw 149 

measure of mtDNA-CN. In ALSPAC, run-to-run variability was controlled using 3 calibrator samples 150 

added to every plate, to allow for adjustment by a per-plate calibration factor32.  151 

 152 

Microarray  153 

Microarray probe intensities were used to estimate mtDNA-CN using the Genvisis software package37 as 154 

previously described10,36. Briefly, Genvisis uses the median mitochondrial probe intensity across all 155 

homozygous mitochondrial SNPs as an initial estimate of mtDNA-CN. Technical artifacts such as DNA 156 

input quality, DNA input quantity, and hybridization efficiency were captured through either surrogate 157 

variable (SV) or principal component (PC) analyses. SVs or PCs were adjusted for through stepwise linear 158 

regression by adding successive components until each successive surrogate variable or principal 159 

component no longer significantly improved the model.   160 

 161 

Whole Genome Sequencing (ARIC) 162 

Whole genome sequencing read counts were used to estimate mtDNA-CN as previously described36. 163 

Briefly, the total number of reads in a sample were web scraped from the NCBI sequence read archive. 164 

Mitochondrial reads were downloaded directly from dbGaP through Samtools (1.3.1). There was no 165 
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overlap between ARIC microarray and ARIC whole-genome sequencing samples. A ratio of mitochondrial 166 

reads to total aligned reads was used as a raw measure of mtDNA-CN.  167 

 168 

Adjusting for Covariates  169 

Each method described above represents a raw measure of mtDNA-CN, adjusted for technical artifacts; 170 

however, several potential confounding variables (e.g., age, sex, blood cell composition) have been 171 

identified previously18. Raw mtDNA-CN values were adjusted for white blood cell count in ARIC, SHIP and 172 

CHS (which also adjusted for platelet count), depending on available data. Standardized residuals (mean 173 

= 0, standard deviation = 1) of mtDNA-CN were used after adjusting for covariates (Supplemental Table 174 

1).  175 

 176 

Estimation of Mitochondrial DNA Copy Number (UKB) 177 

Due to the availability of more detailed cell count data, as well as a different underlying biochemistry for 178 

the Affymetrix Axiom array compared to the genotyping arrays used in the CHARGE cohorts, mtDNA-CN 179 

in the UKB was estimated differently (Supplemental Methods). Briefly, mtDNA-CN estimates derived 180 

from whole exome sequencing data, available on ~50,000 individuals, were generated first using 181 

customized Perl scripts to aggregate the number of mapped sequencing reads and correct for covariates 182 

through both linear and spline regression models. Concurrently, mitochondrial probe intensities from 183 

the Affymetrix Axiom arrays, available on the full ~500,000 UKB cohort, were adjusted for technical 184 

artifacts through principal components generated from nuclear probe intensities. Probe intensities were 185 

then regressed onto the whole exome sequencing mtDNA-CN metric, and beta estimates from that 186 

regression were used to estimate mtDNA-CN in the full UKB cohort. Finally, we used a 10-fold cross 187 

validation method to select the cell counts to include in the final model (Supplemental Table 2). The 188 
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final UKB mtDNA-CN metric is the standardized residuals (mean = 0, standard deviation = 1) from a 189 

linear model adjusting for covariates (age, sex, cell counts) as described in the Supplemental Methods. 190 

 191 

Genome-Wide Association Study  192 

For each individual cohort, regression analysis was performed with residualized mtDNA-CN as the 193 

dependent variable adjusting for age, sex, and cohort-specific covariates (e.g., principal components, 194 

DNA collection site, family structure, cell composition). Cohorts with multiple mtDNA-CN estimation 195 

platforms were stratified into separate analyses. Ancestry-stratified meta-analyses were performed 196 

using Metasoft software using the Han and Eskin random effects model to control for unobserved 197 

heterogeneity due to differences in mtDNA-CN estimation method38.  Effect size estimates for SNPs 198 

were calculated using a random effect meta-analysis from cohort summary statistics, as the Han and 199 

Eskin model relaxes the assumption under the null hypothesis without modifying the effect size 200 

estimates that occur under the alternative hypothesis38. In total, three complementary analyses were 201 

performed in self-identified White individuals: (1) a meta-analysis using all available studies, (2) a meta-202 

analysis of studies with available data for cell count adjustments, and (3) an analysis of UKB-only data. 203 

As the vast majority of samples are derived from the UKB study, and given the difficulty in interpreting 204 

effect size estimates from a random effects model, further downstream analyses were all performed 205 

using effect size estimates from UKB-only data. We additionally performed X chromosome analyses, 206 

using only UKB data. X-chromosome analyses were stratified by sex (males = 194,151, females = 207 

216,989), and summary statistics were meta-analyzed using METAL39 to obtain the final effect estimates.  208 

 209 

SNP Heritability Estimation 210 

SNP heritability estimates were retrieved from BOLT-LMM40. To verify this metric, we used SumHer41 to 211 

calculate an independent heritability metric using summary statistics. The heritability model used in this 212 
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analysis was the BLD-LDAK model. The tagging file used is the pre-computed UK Biobank GBR version for 213 

the corresponding heritability model. The summary statistics were filtered so that only single-character 214 

reference and alternate alleles are allowed. Chr:BP combination duplicates were removed except the 215 

first appearance. SNP heritability was then calculated and extracted from output files. 216 

 217 

Identification of Independent GWAS Loci 218 

To identify the initial genome-wide significant (lead) SNPs in each locus, the most significant SNP that 219 

passed genome-wide significance (p < 5 x 10-8) within a 1 Mb window was selected. To avoid Type I 220 

error, SNPs were only retained for further analyses if there were either (a) at least two genome-wide 221 

significant SNPs in the 1 Mb window or (b) if the lead SNP was directly genotyped. Conditional analyses 222 

were performed in UKB, where the lead SNPs from the original GWAS were used as additional covariates 223 

in order to identify additional independent associations. 224 

 225 

Comparisons with Hägg et al. 2020 226 

To compare results with Hägg et al. 202033, summary statistics were obtained from their Supplementary 227 

Table 4. Loci were identified as shared between the two GWAS if two lead SNPs were fewer than 228 

500,000 base pairs apart from one another.   229 

 230 

Fine-mapping 231 

The susieR package was used to identify all potential causal variants for each independent locus 232 

associated with mtDNA CN42. UKB imputed genotype data for unrelated White subjects were used and 233 

variants were extracted using a 500 kb window around the lead SNP for each locus with minor allele 234 

frequency (MAF) > 0.001. 95% credible sets (CS) of SNPs, containing a potential causal variant within a 235 

locus, were generated. The minimum absolute correlation within each CS is 0.5 and the scaled prior 236 
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variance is 0.01. When the CS did not include the lead SNP identified from the GWAS, some of the 237 

parameters were slightly relaxed [minimum absolute correlation is 0.2, estimate prior variance is TRUE]. 238 

The SNP with the highest posterior inclusion probability (PIP) within each CS was also identified 239 

(Supplemental Table 3).  With a few exceptions, final lead SNPs were selected by prioritizing initially 240 

identified SNPs unless the SNP with the highest PIP had a PIP greater than 0.2 and was 1.75 times larger 241 

than the SNP with the second highest PIP.   242 

  243 

Functional Annotation and Gene Prioritization 244 

Functional Annotation 245 

ANNOVAR was used for functional annotation of variants identified in the fine-mapping step43. First, 246 

variants were converted to an ANNOVAR-ready format using the dbSNP version 150 database44. Then, 247 

variants were annotated with ANNOVAR using the RefSeq Gene database45. The annotation for each 248 

variant includes the associated gene and region (e.g., exonic, intronic, intergenic). For intergenic 249 

variants, ANNOVAR provides flanking genes and the distance to each gene. For exonic variants, 250 

annotations also include likely functional consequences (e.g., synonymous/nonsynonymous, 251 

insertion/deletion), the gene affected by the variant, and the amino acid sequence change 252 

(Supplemental Table 4). 253 

Co-localization Analyses 254 

Co-localization analyses were performed using the approximate Bayes factor method in the R package  255 

coloc46. Briefly, coloc utilizes eQTL data and GWAS summary statistics to evaluate the probability that 256 

gene expression and GWAS data share a single causal SNP (colocalize). Coloc returns multiple posterior 257 

probabilities; H0 (no causal variant), H1 (causal variant for gene expression only), H2 (causal variant for 258 

mtDNA-CN only), H3 (two distinct causal variants), and H4 (shared causal variant for gene expression 259 

and mtDNA-CN). In the event of high H4, we designate the gene as causal for the GWAS phenotype of 260 
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interest (mtDNA-CN). eQTL summary statistics were obtained from the eQTLGen database47. Genes with 261 

significant associations with lead SNPs were tested for co-localization using variants within a 500 kb 262 

window of the sentinel SNP.  Occasionally, some of the eQTLGen p-values for certain SNPs were 263 

identical due to R’s (ver 4.0.3) limitation in handling small numbers. To account for this, if the absolute 264 

value for a SNP’s z-score association with a gene was greater than 37.02, z-scores were rescaled so that 265 

the largest z-score would result in a p-value of 5 x 10-300. Additionally, a few clearly co-localized genes 266 

did not result in high H4 PPs due to the strong effect for each phenotype of a single SNP (Supplemental 267 

Figure 1), possibly due to differences in linkage disequilibrium (LD) between the UKB and eQTLGen 268 

populations. To account for this, we summed mtDNA-CN GWAS p-values and eQTLGen p-values for each 269 

SNP and removed the SNP with the lowest combined p-value. Co-localization analyses were then 270 

repeated without the lowest SNP. Genes with H4 greater than 50% were classified as genes with 271 

significant evidence of co-localization. 272 

DEPICT 273 

Gene prioritization was performed with Depict, an integrative tool that incorporates gene co-regulation 274 

and GWAS data to identify the most likely causal gene at a given locus48. Across GWAS SNPs which 275 

overlapped with the DEPICT database, we identified SNPs representing 119 independent loci with LD 276 

pruning defined as p < 5 x 10-8, r2 < 0.05 and > 500 kb from other locus boundaries. Only genes with a 277 

nominal p-value of less than 0.05 were considered for downstream prioritization. 278 

Gene Assignment 279 

To prioritize genes for each identified locus, we utilized functional annotations, eQTL co-localization 280 

analyses, and DEPICT gene prioritization results (Supplemental Figure 2). First, genes with missense 281 

variants within susieR fine-mapped credible sets were assigned to loci. If loci co-localized with a gene’s 282 

expression with a posterior probability (PP) of greater than 0.50 and there were no other co-localized 283 

genes with a PP within 5%, the gene with the highest posterior probability was assigned. If there was still 284 
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no assigned gene, the most significant DEPICT gene was assigned. If there was no co-localization or 285 

DEPICT evidence, the nearest gene was assigned. 286 

 287 

Gene Set Enrichment Analyses 288 

Using the finalized gene list from the prioritization pipeline, GO and KEGG pathway enrichment analyses 289 

were performed using the “goana” and “kegga” functions from the R package limma49, treating all 290 

known genes as the background universe50. Only one gene per locus was used for “goana” and “kegga” 291 

gene set enrichment analysis, prioritizing genes assigned to primary independent hits. If there were 292 

multiple assigned genes, one gene was randomly selected to avoid biasing results through loci with 293 

multiple functionally related genes. To identify an appropriate p-value cutoff, 100 genes were randomly 294 

selected from the genome and run through the same enrichment analysis. This permutation was 295 

repeated 1000 times to generate a null distribution of the smallest p-values from each permutation. For 296 

cluster-specific gene set enrichment analyses, permutation testing used the same number of random 297 

genes as the number of genes in each cluster. To ensure robustness of results, gene set enrichment 298 

analysis was repeated 50 times with random selection of genes at loci with multiple assigned genes. GO 299 

and KEGG terms that passed permutation cutoffs at least 40/50 times were retained.  300 

 301 

Gene-based Association Test 302 

We used metaXcan, which employs gene expression prediction models to evaluate associations 303 

between phenotypes and gene expression51. We obtained pre-calculated expression prediction models 304 

and SNP covariance matrices, computed using whole blood from European ancestry individuals in 305 

version 7 of the Genotype-Tissue expression (GTEx) database52. Using prediction performance p < 0.05, a 306 

total of 6,285 genes were predicted. Of these genes, 74 passed Bonferroni correction of p < 7.95 x 10-6.  307 

Gene set enrichment analyses were performed on Bonferroni-significant genes as previously described. 308 
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REVIGO53 was used on the “medium” setting (allowed similarity = 0.7) to visualize significantly enriched 309 

GO terms.  310 

  311 

We used a one-sided Fisher’s exact test to test for enrichment of genes that have been previously 312 

identified as causal for mtDNA depletion syndromes54–56.  313 

 314 

PHEWAS-based SNP Clustering 315 

mtDNA-CN Phenome-wide Association Study (PHEWAS)  316 

We used the PHEnome Scan ANalysis Tool (PHESANT)57 to identify mtDNA-CN associated quantitative 317 

traits in the UKB. Briefly, we tested for the association of mtDNA-CN with 869 quantitative traits 318 

(Supplemental Table 5), limiting analyses to 365,781 White, unrelated individuals 319 

(used.in.pca.calculation=1). As extreme cell count measurements could indicate individuals with active 320 

infections or cancers, they were excluded from analysis (see Supplemental Methods). Analyses were 321 

adjusted for age, sex, and assessment center.  322 

 323 

SNP-Phenotype Associations 324 

SNP genotypes were regressed on mtDNA-associated quantitative phenotypic traits using linear 325 

regression, adjusted for sex, age with a natural spline (df = 2), assessment center, genotyping array, and 326 

40 genotyping principal components (provided as part of the UKB data download). 327 

 328 

SNP Clustering 329 

To identify distinct clusters of mtDNA-CN GWS SNPs based on phenotypic associations, beta estimates 330 

from the SNP-phenotype associations were first divided by the beta estimate of the mtDNA-CN SNP-331 

mtDNA-CN association, so that all SNP-phenotype associations are relative to the mtDNA-CN increasing 332 
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allele and scaled to the effect of the SNP on mtDNA-CN. The adjusted beta estimates were subjected to 333 

a dimensionality reduction method, Uniform Manifold and Approximation Projection (UMAP), as 334 

implemented in the R package umap58 (random_state=123, n_neighbors=10, min_dist=0.001, 335 

n_components=2, n_epochs=200). SNPs were assigned to clusters using Density Based Clustering of 336 

Applications with Noise (DBSCAN) as implemented in the R package dbscan59 (minPts=10). Robustness of 337 

cluster assignment was established by varying n_neighors, min_dist, and random_state parameters. 338 

Clusters represent groups of SNPs with similar phenotypic associations.  339 

 340 

Phenotype Enrichment and Permutation Testing 341 

To test for enrichment of individual phenotypes within clusters, we compared the median mtDNA-CN 342 

scaled phenotype beta estimates within the cluster to the median beta estimates for all SNPs not in the 343 

cluster, with significance determined using 20,000 permutations in which cluster assignment was 344 

permuted. For multi-test correction across all phenotypes, we performed 300 permutations of the initial 345 

cluster assignment, followed by the comparison of median beta estimates as described above. We 346 

retained only the most significant result from across all phenotypes and clusters from each of the 300 347 

permutations, and then selected the 15th most significant value as the study-wide threshold for multi-348 

test corrected significance of p < 0.05.  349 

 350 

mtDNA Variant Association Analyses   351 

Mitochondrial Variant Phasing and Imputation 352 

Shapeit4 and Impute5 were used for UK Biobank mtDNA genotype phasing and imputation60,61. Phasing 353 

and imputation were performed separately for each genotyping array (UKBB, UKBL), and restricted to 354 

self-identified White individuals. The reference panel used for imputation analysis was the 1000 355 

Genomes Project phase 3 mtDNA variants62. UK Biobank genotypes were coded to match the reference 356 
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panel allele. All genotype files, including the reference panel, were phased using Shapeit4 to fill in any 357 

missing genotypes using the phasing iteration sequence “10b,1p,1b,1p,1b,1p,1b,1p,10m”, where b is 358 

burn-in iteration, p is pruning iteration, and m is main iteration. The –sequencing option was also used 359 

due to the presence of multiple mtDNA variants in a very small region, analogous to sequencing data.  360 

Phased UK Biobank genotypes were then imputed with the reference panel using Impute5 with 361 

the following parameters: –pbwt-depth 8; –pbwt-cm 0.005; –no-threshold. All imputed variants were 362 

functionally annotated using MSeqDR mvTools63.  363 

 364 

mtSNP Association Tests 365 

Linear regressions stratified by genotyping array (UKBB, UKBL) were performed for each mtDNA SNP on 366 

the 41 traits and mtDNA-CN, including the following covariates: age, age2, sex, center, first 20 367 

genotyping PCs. Only SNPs with MAF > 0.005 and imputation INFO score > 0.80 were included (UKBB, 368 

n=223; UKBL, n=190; both, n=149). Results were then meta-analyzed using inverse variance weighting. 369 

For association analyses between mitochondrial SNPs/haplotypes and mtDNA-CN, the mtDNA-CN metric 370 

used was derived only from WES data, as mtDNA genotypes can subtly influence the estimates from 371 

genotype array intensities.  372 

 373 

Identification of Independent Genetic Effects 374 

Single SNP study-wide significance was established by generating 300 normally distributed dummy 375 

traits, and running single SNP tests using the UKBB data. The minimum SNP p-value for each dummy 376 

trait was then selected, and the 15th most significant p-value from the 300 analyses was divided by 42 377 

(41 real traits + mtDNA-CN), resulting in study-wide p-value threshold of p < 9.5x10-6. To identify a 378 

subset of traits to perform credible set identification using SusieR (see above, Fine Mapping), SNPs were 379 

first filtered based on the study-wide p-value threshold, and then then most significantly associated trait 380 
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was identified for each SNP. SusieR, (parameters: L=10, estimate_residual_variance=TRUE, 381 

estimate_prior_variance=TRUE, check_z = FALSE) was then run for each of these traits using the UKBB 382 

imputed data and summary association test statistics. A total of 7 credible sets were identified across 383 

the 4 traits, two of which co-localized, resulting in 6 credible sets. Independence across the 6 credible 384 

sets was tested using multivariate regression models, and requiring p < 0.0005 for at least one trait for a 385 

SNP to remain in the model. SNPs MT73A_G and MT 7028C_T were in moderate high LD (r2=0.67), but 386 

based on conditional regression analyses as described in the main results, capture independent effects 387 

and are associated with different traits.   388 

 389 

Haplotype Generation and Analysis 390 

Haplotype were constructed by concatenating SNPs across the 6 credible sets using SNPs directly 391 

genotyped on both genotyping arrays. This required selecting a SNP with a lower PIP for 2 of the 6 392 

credible sets (MT12612A_G replaced MT462C_T, r2 = 0.81; MT10238T_C replaced MT4529A_T, r2 = 393 

0.89). Haplotypes with MAF < 0.005 were set to missing (n = 1607), resulting in 8 haplotypes, with the 394 

most common haplotype set as reference. Significance for haplotype associations with each trait were 395 

generated by an anova between regression models with and without the haplotypes. Covariates 396 

included age, age2, sex, center, first 40 genotyping PCs, and genotyping array.  397 

Mortality analyses were run using Cox proportional hazards models, with covariates as above. 398 

Individuals with external causes of death (ICD 10 Death Code categories V, W, X, Y) were censored at 399 

time of death. Additionally, for non-cancer mortality analyses, cancer death (ICD 10 Death Code 400 

categories C00-D48) were censored. For cancer mortality analyses, all death due to non-cancer cases 401 

were censored at time of death. 402 

 403 
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Clustering for visualization was performed using the R package ‘heatmaply’, with default setting and 404 

hclust_method=”ward.D2”.    405 

 406 

All statistical analyses were performed using R version 4.0.3. 407 

 408 

Results  409 

Sample Characteristics  410 

The current study included 465,809 White individuals (53.9% female) with an average age of 56.6 yrs (sd 411 

= 8.2 yrs) (Supplemental Table 1). Follow-up validation analyses were performed in 4,770 Blacks (60.2% 412 

female) with an average age of 61.2 yrs (sd = 7.4 yrs). The majority of the data originated from the UKB 413 

(93%). The bulk of the DNA used for mtDNA-CN estimation was derived from buffy coat (95.5%) while 414 

the rest was derived from peripheral leukocytes (2.2%), whole blood (2.3%), or brain (< 0.2%). mtDNA-415 

CN estimated from Affymetrix genotyping arrays consisted of 97.9% of the data while the remainder 416 

was derived from qPCR (1.8%) and WGS (0.3%).  417 

  418 

GWAS  419 

Previous work has demonstrated that the method used to measure mtDNA-CN can impact the strength 420 

of association36. To account for potential differences across studies due to the different mtDNA-CN 421 

measurements used, as well as the inclusion of blood cell counts as covariates in only a subset of the 422 

cohorts, we took two approaches. First, we used a random effects model to perform meta-analyses, 423 

allowing for different genetic effect size estimates across cohorts. Second, we 424 

performed three complementary analyses in individuals who self-identified as White: 1) meta-analysis of 425 

all available studies (n = 465,809); 2) meta-analysis of studies with available data for cell count 426 

adjustment (n = 456,151); and 3) GWAS of UKB only (n = 440,266) (Figure 1). 77 loci were significant in 427 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.01.25.428086doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428086
http://creativecommons.org/licenses/by/4.0/


all three meta-analyses, and we identified 93 independent loci that were significant in at least one of the 428 

analyses. In the meta-analysis of UKB-only data, 92 of the total 93 loci were identified (Supplemental 429 

Figure 3).  Given that >90% of the samples come from the UKB study, and the challenge of interpreting 430 

effect size estimates from a random effects model, downstream analyses all use effect size estimates 431 

from the UKB only analyses (Supplemental Table 6), which showed no evidence for population 432 

substructure inflating test statistics, with a genomic inflation factor of 1.09 (Supplemental Figure 4). SNP 433 

heritability estimated from BOLT-LMM40 for mtDNA-CN adjusted for age and sex was 10.5% while 434 

heritability for mtDNA-CN adjusted for age, sex, and cell counts was 7.4%, implying that some of the 435 

mtDNA-CN heritability observed in previous studies could be due to heritability of cell type composition. 436 

We also used SumHer41 as an alternative approach to calculating SNP heritability, which returned a 437 

comparable estimate of 7.0% for the cell-count corrected mtDNA-CN metric. 438 

The most significant SNP associated with mtDNA-CN was a missense mutation in LONP1 (p = 439 

3.00x10-141), a gene that encodes a mitochondrial protease that can directly bind mtDNA, and has been 440 

shown to regulate TFAM, a transcription factor involved in mtDNA replication and repair (for review see 441 

Gibellini et al.)64.  442 

Meta-analysis of the sex-stratified X chromosome results identified four loci significantly 443 

associated with mtDNA-CN, with directionality consistent across the male and female stratified analyses 444 

(Supplemental Table 7).  445 

 446 

Fine-mapping and Secondary Hits 447 

To identify additional independent SNPs within novel loci whose effects were masked by the original 448 

significant SNP, as well as identify additional loci, we took two approaches. First, a conditional analysis 449 

adjusting for the top 93 SNPs from the initial (primary) GWAS run revealed 3 novel loci and 19 additional 450 

independent significant SNPs within existing loci. We also performed fine-mapping with susieR42 and 451 
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discovered an additional 14 independent SNPs within existing loci. The majority of loci had only one 95% 452 

credible set of SNPs; further, twenty of the credible sets contained only one SNP. However, many of the 453 

credible sets contained greater than 50 SNPs after fine-mapping, and 12 of the 122 credible sets had a 454 

missense SNP as the SNP with the highest PIP in the set. Using these two methods, we identified in total 455 

129 independent SNPs across 96 autosomal loci (Supplemental Figure 5), while susieR fine-mapping and 456 

conditional analyses for the X-chromosome loci did not reveal any additional secondary signals. 457 

 458 

 Comparisons with Hägg et al. 2020 459 

Out of the 50 loci reported in Hägg et al. 202033, we replicate 38 loci in our cell-count adjusted analyses 460 

(Supplemental Table 8). As the two GWASs both use UK Biobank data, this replication is unsurprising. 461 

Out of the 12 loci that were not genome-wide significant in our cell-count adjusted analyses, 11 were 462 

significant when we did not adjust our mtDNA-CN metric for cell counts, suggesting that cell-type 463 

composition may be driving these signals. The current manuscript also reports 62 additional loci that are 464 

not in the Hägg et al. 2020 study. This is likely due to increased power, as the sample size used for the 465 

current analyses is nearly twice as large. 466 

 467 

Associations in Black Populations  468 

Examining the 129 autosomal SNPs from the Whites-only analysis, 99 were available in the Blacks-469 

only meta-analysis (n = 4770). After multiple testing correction, one of these SNPs was significant 470 

(rs73349121, p = 0.0001), 9 were nominally significant (p < 0.05, with 5 expected), and 58/99 had a 471 

direction of effect that was consistent with the Whites-only analyses (one-sided p = 0.04, Figure 472 

2). Despite being under-powered, these results in the Blacks-only analyses provide evidence for similar 473 

genetic effects in a different ancestry group.    474 

 475 
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Gene Prioritization and Enrichment of mtDNA Depletion Syndrome Genes 476 

We integrated results from three different gene prioritization and functional annotation methods 477 

(ANNOVAR43, COLOC46 , and DEPICT48) so that loci with nonsynonymous variants in gene exons were 478 

prioritized first, with eQTL co-localization results considered second (Supplemental Table 9), and those 479 

from DEPICT (Supplemental Table 10) were considered last (Supplemental Figure 2). For 20 loci, multiple 480 

genes were assigned as analyses could not identify a single priority gene (Supplemental Table 11). As 481 

eQTLGen did not evaluate X chromosome variants, three of the four X-chromosome loci were assigned 482 

to the nearest gene. SLC25A5 was assigned to rs392020, as the second highest PIP SNP was an exonic 483 

nonsynonymous variant.  484 

We noted the identification of a number of mtDNA depletion syndrome genes in the priority list 485 

and tested for enrichment of these known causal genes using a one-sided Fisher’s exact test. For this 486 

analysis, all genes for loci assigned to multiple genes were used, and genes for all primary and secondary 487 

loci were considered. Our gene prioritization approach identified 7 of 16 mtDNA depletion genes 488 

(Supplemental Table 12), consistent with a highly significant enrichment (one-sided p = 3.09 x 10-15). 489 

 490 

Gene Set Enrichment Analyses 491 

To avoid bias from a single locus with multiple functionally related genes contributing to a false-positive 492 

signal, only one gene per unique locus was used, prioritizing genes assigned to primary loci. For loci with 493 

multiple assigned genes, one gene was randomly selected for testing. To test for robustness of gene set 494 

enrichment results, random selection was repeated 50 times, and only gene sets that were significantly 495 

enriched for at least 40 iterations were retained. In all, a total of 100 genes were utilized for GO term 496 

and KEGG pathway enrichment analyses. Using a Bonferroni-corrected p-value cutoff, 12 gene sets were 497 

significantly enriched for all 50 iterations, including mitochondrial nucleoid, mitochondrial DNA 498 
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replication, and amyloid-beta clearance (Supplemental Table 13). No KEGG terms were significant across 499 

multiple iterations. 500 

 501 

MetaXcan Gene Expression Analysis 502 

As a complementary approach to single-SNP analyses, we explored the associations between mtDNA-CN 503 

and predicted gene expression using MetaXcan51 MetaXcan incorporates multiple SNPs within a locus 504 

along with a reference eQTL dataset to generate predicted gene expression levels. As our study 505 

estimated mtDNA-CN derived from blood, we used whole blood gene expression eQTLs from the Gene-506 

Tissue Expression (GTEx) consortium65 to predict gene expression in the UKB dataset. We identified 507 

6,285 genes that had a predicted performance p < 0.05 (i.e., they had sufficient data to generate robust 508 

gene expression levels) and were tested for association with mtDNA-CN. Of these genes, 74 were 509 

significantly associated with mtDNA-CN (p < 7.95 x 10-6) (Figure 3, Supplemental Table 14), including 8 510 

that were not identified through single-SNP analyses. Many of the significant genes have known 511 

mitochondrial functions, notably the mtDNA transcription factor TFAM (p = 1.09 x 10-29) and 512 

mitochondrial exonuclease MGME1 (p = 5.87 x 10-23), genes known as causal for mtDNA depletion 513 

syndromes54,55. Additionally, LONP1, MRPL43, and BAK1, are all genes with known mitochondrial 514 

functions66–68. Bonferroni significant MetaXcan genes were used for gene enrichment analysis, finding 515 

enrichment for “nucleobase metabolic process” (p = 1.47 x 10-4) and “mitochondrial fusion” (p = 1.86 x 516 

10-4) (Supplemental Figure 6). 517 

 518 

PHEWAS-based SNP Clustering and Gene Set Enrichment 519 

mtDNA-CN is associated with numerous quantitative and qualitative phenotypes, many of which are  520 

relevant to aging-related disease3–5,9,10,13–16. We hypothesized that this pleiotropy may reflect different 521 

underlying functional domains captured by mtDNA-CN, and may be reflected in GWAS-identified SNPs 522 
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and their likely causal genes. To test this hypothesis, we used the UKB data to identify quantitative traits 523 

associated with mtDNA-CN and selected 41 highly significant, non-redundant traits to test for 524 

association with the mtDNA-CN GWAS SNPs (Supplemental Table 5, in PHEWAS = 1). We clustered SNPs 525 

using the trait effect size (beta) divided by the mtDNA-CN effect size estimate, so that all effects are 526 

standardized to the effect of the mtDNA-CN increasing allele for each locus. We identified 3 clusters of 527 

SNPs (Supplemental Table 15, Figure 4A), with cluster 1 containing SNPs in which the mtDNA-CN 528 

increasing allele is associated with decreased platelet count (PLT) (Figure 4B), increased mean platelet 529 

volume (MPV) (Figure 4C), and platelet distribution width (PDW) (Figure 4D), consistent with a role in 530 

platelet activation69. Cluster 2 is most strongly enriched for SNPs in which the mtDNA-CN increasing 531 

allele is associated with increased PLT, plateletcrit (PCT, a measure of total platelet mass), serum 532 

calcium (Figure 4E), serum phosphate, as well as decreased mean corpuscular volume (MCV) and mean 533 

spherical cellular volume (Figure 4F) (Supplemental Table 16). The cluster 2 phenotypes implicate 534 

megakaryocyte proliferation and proplatelet formation in addition to apoptosis and autophagy, and are 535 

supported by the genes identified for this cluster (megakaryocyte proliferation and proplatelet 536 

formation: MYB, JAK270, apoptosis and autophagy: BAK1, BCL2, TYMP)71. Gene set enrichment analysis 537 

confirmed this, as cluster 2 genes are significantly enriched for extrinsic apoptosis signaling pathways in 538 

the absence of ligand (Supplemental Table 17). Cluster 3 did not yield any specific trait enrichment (all 539 

significant results reflected the strong enrichment observed in clusters 1-2); however, gene set 540 

enrichment for this cluster identified multiple mtDNA-related gene ontology terms, including 541 

mitochondrial DNA replication, gamma DNA polymerase complex, and mitochondrial nucleoid 542 

(Supplemental Table 18).  543 

 544 

Determination of causal associations between mitochondrial function and mtDNA-CN associated traits 545 
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The extensive pleiotropy and limited variance explained of nuclear DNA SNPs associated with mtDNA-CN 546 

(<1% of the variance in mtDNA-CN explained by GWS loci when predicted into the ARIC cohort) 547 

precludes the use of traditional Mendelian randomization (MR) approaches to establish causality 548 

between mtDNA-CN and the 41 identified mtDNA-CN associated traits. As alternative approach, we 549 

examined the association of mitochondrial SNPs with mtDNA-CN and the 41 traits, under the 550 

assumption that these SNPs can only act through alteration of mitochondrial function, and thus a 551 

significant association implies causality. Imputation and analyses of mitochondrial SNPs were run 552 

stratified by genotyping array (see Methods), and then meta-analyzed using inverse-variance weighting. 553 

After multi-test correction (p < 9.5x10-6), we identified 45 SNPs associated with 1 or more of the traits, 554 

ranging from 1 to 6 traits per SNP (Supplementary Table 19). To identify independent effects, we first 555 

identified the most significantly associated trait for each SNP, highlighting 4 traits (aspartate 556 

aminotransferase, creatinine, MCV, PCT) in which to run susieR to identify independent credible sets. 557 

We identified 6 independent effects across the four traits, with MCV credible set 4 and platelet credible 558 

set 1 representing the same effect. We note that 2 of the SNPs are in moderately high LD (MT73A_G and 559 

MT7028C_T, r2=0.67), however, conditional analyses demonstrate that MT73A_G is associated with 560 

creatinine, and not MCV, and the reverse is seen for MT7028C_T (Supplemental Table 20). Leveraging 561 

the haploid nature of the mitochondrial genome, we selected the directly genotyped SNP with the 562 

highest PIP from each credible set (Supplemental Table 21), and identified 8 haplotypes with MAF > 563 

0.005 (Supplemental Table 22).  Comparing linear regression models with and without the haplotypes in 564 

the model, we identify 14 traits nominally associated, and 9 traits significantly associated after 565 

Bonferroni correction, with mtDNA genetic variation (Supplemental Table 23, Figure 5). These results 566 

causally implicate mitochondrial function in a variety of cell related traits (MCV, MSCV, MPV, PCT, 567 

Platelet), kidney function (creatinine), liver function (aspartate and alanine aminotransferases) and 568 

mtDNA-CN.     569 
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 570 

Association of mitochondrial function with mortality 571 

We have previously shown that mtDNA-CN is associated with overall mortality9. As above, we 572 

collectively tested the mitochondrial haplotypes for association with mortality not due to external 573 

causes (e.g., no accidents, falls, see Methods ; n = 24,622, median follow-up time = 4318 days), and 574 

found a nominally significant association with overall mortality (p = 0.044, Figure 6). Given the 575 

conflicting reports between increased mitochondrial function and both increased and decreased cancer 576 

risk16,72,73, we looked separately at cancer (n = 13,231) and non-cancer mortality (n = 11,391). While 577 

there was no association with cancer mortality (p = 0.74), we saw a highly significant association with 578 

non-cancer mortality (p = 6.56x10-4). 579 

 580 

Discussion 581 

We conducted a GWAS for mtDNA-CN using 465,809 individuals from the CHARGE consortium and the 582 

UKB. We report 133 independent signals originating from 100 loci, the majority of which were not 583 

identified in previous studies. Examining our GWS SNPs in a Black population, we observed a concordant 584 

signal, suggesting that the genetic etiology of mtDNA-CN may be broadly similar across populations. 585 

Using several functional follow-up methods, genes were assigned for each identified independent hit 586 

and significant enrichment was observed for genes involved in mitochondrial DNA metabolism, 587 

homeostasis, cell activation, and amyloid-beta clearance. In total, we assigned 128 unique genes to 588 

independent GWAS signals associated with mtDNA-CN. We also identified 8 additional genes whose 589 

predicted gene expression is associated with mtDNA-CN that could not be mapped back to GWS loci. 590 

Finally, using a clustering approach based on SNP associations with various mtDNA-CN associated 591 

phenotypes, we were able to functionally categorize SNPs, providing insight into biological pathways 592 

that impact mtDNA-CN.  593 
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We note that during the preparation of this manuscript, a GWAS for mtDNA-CN performed in 594 

295,150 unrelated individuals from the UK Biobank was published, which reported 50 genome-wide 595 

significant regions33. Within our GWAS, we replicate 38 of these 50 genome-wide significant loci in our 596 

cell count corrected analyses. An additional 11 out of the remaining 12 loci are genome-wide significant 597 

when we do not adjust mtDNA-CN for cell count. While Hagg et. al adjust for cell type composition, this 598 

difference suggests that their adjustment may not be fully capturing the effects of cell counts.  599 

Additionally, our analyses report 59 additional loci that are not observed in the previous paper, largely 600 

due to the increased power of our study.  601 

We were able to identify a substantial proportion of the genes involved in mtDNA depletion 602 

syndromes (7/16, p = 3.09 x 10-15 for enrichment), including TWNK, TFAM, DGUOK, MGME1, RRM2B, 603 

TYMP, and POLG. mtDNA depletion syndromes can be broken down into 5 subtypes based on their 604 

constellation of phenotypes74 , and with the exception of cardiomyopathic subtypes (associated with 605 

mutations in AGK and SLC25A4), we were able to identify at least 1 gene from the other 4 subtypes, 606 

suggesting that our mtDNA-CN measurement in blood-derived DNA can identify genes widely relevant 607 

to non-blood phenotypes. This finding is consistent with a large body of work showing that mtDNA-CN 608 

measured in blood is associated with numerous aging-related phenotypes for which the primary tissue 609 

of interest is not blood (e.g. chronic kidney disease13, heart failure11, and diabetes75). Also consistent 610 

with this finding is recent work demonstrating that mtDNA-CN measured in blood is associated with 611 

mtRNA expression across numerous non-blood tissues, suggesting a link between mitochondrial 612 

function measured in blood and other tissues76. 613 

In addition to identifying the mtDNA depletion syndrome genes directly linked to mitochondrial 614 

DNA metabolic processes, DNA replication, and genome maintenance, we also identify genes which play 615 

a role in mitochondrial function. The top GWAS hit is a missense mutation in LONP1, which encodes a 616 

mitochondrial protease that has been shown to cause mitochondrial cytopathy and reduced respiratory 617 
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chain activity77,78. Interestingly, this missense mutation was recently found to be associated with 618 

mitochondrial tRNA methylation levels79. Additional genes known to impact mitochondrial function 619 

include MFN1, which encodes a mediator of mitochondrial fusion80,81, STMP1, which plays a role in 620 

mitochondrial respiration82, and MRPS35, which encodes a ribosomal protein involved in protein 621 

synthesis in the mitochondrion83,84. 622 

Using a combination of gene-based tests and gene prioritization using functional annotation, 623 

pathway analyses reveal enrichment for numerous mitochondrial related pathways, as well as those 624 

involved in regulation of cell differentiation (p < 1.08 x 10-5), homeostatic processes (p < 3.77 x 10-6), and 625 

cellular response to stress (p < 3.49 x 10-6) (Supplemental Table 13). These results provide additional 626 

evidence for the broad role played by mitochondria in numerous aspects of cellular function. Of 627 

particular interest, the GO term for amyloid beta is significantly enriched, reinforcing a link between 628 

mtDNA-CN and neurodegenerative disease85–87. Previous work from our lab using the UKB has shown 629 

that increased mtDNA-CN is associated with lower rates of prevalent neurodegenerative disease, and is 630 

predictive for decreased risk of incident neurodegenerative disease76. mtDNA-CN is also known to be 631 

decreased in the frontal cortex of Alzheimer’s disease (AD) patients88. Interestingly, the four GWAS-632 

identified genes driving the enrichment for amyloid-beta clearance are all related to regulation of lipid 633 

levels, and lipid homeostasis within the brain is known to play an important role in Alzheimer’s 634 

disease89. APOE, one of the most well-known risk genes for Alzheimer’s disease, is a cholesterol carrier 635 

involved in lipid transport, and the ApoE-ɛ4 isoform involved in AD pathogenesis is associated with 636 

mitochondrial dysfunction and oxidative distress in the human brain90; CD36 is a platelet glycoprotein 637 

which mediates the response to amyloid-beta accumulation91; LDLR is a low-density lipoprotein receptor 638 

associated with AD92; and ABCA7 is a phospholipid transporter93. ABCA7 loss of function variants are 639 

enriched in both AD and Parkinson’s disease (PD) patients94, suggesting a broad role across 640 

neurodegenerative diseases. 641 
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Given the integral role of mitochondria in cellular function, from ATP formation and energy 642 

production, signaling through reactive oxygen species, and apoptosis mediation, there is a strong basis 643 

to a priori assume that genetic variants associated with mtDNA-CN are likely to be highly pleiotropic. 644 

Indeed, mtDNA-CN itself is associated with numerous phenotypes (Supplemental Table 5). Through our 645 

PHEWAS-based clustering approach using 41 mtDNA-CN associated phenotypes, we uncovered 646 

phenotypic associations between three distinct clusters of GWS mtDNA-CN associated SNPs. Cluster 1 647 

was characterized by increased MPV, PDW, and decreased PLT (note that measured MPV and PLT are 648 

generally inversely correlated to maintain hemostasis), which are the hallmarks of platelet activation69. 649 

The link between platelets and mtDNA-CN has typically revolved around platelet count, as platelets have 650 

functional mitochondria, but do not have a nucleus. Given that the mtDNA-CN measurement is the ratio 651 

between mtDNA and nuclear DNA, increased platelets, all else being equal, would directly equate with 652 

increased mtDNA-CN. We note that the mtDNA-CN metric used in this GWAS was adjusted for platelet 653 

count, likely increasing the ability to detect variants that impact mtDNA-CN through increased platelet 654 

activation. Examining the genes within this cluster suggests roles for actin formation and regulation 655 

(TPM4, PACSIN2)95,96 and vesicular transport and endocytic trafficking (DNM3, EHD3)97,98 in platelet 656 

activation.  657 

Cluster 2 is most strongly enriched for SNPs in which the mtDNA-CN increasing allele is 658 

associated with increased PLT/PCT and serum calcium/phosphate. Examining the genes assigned to the 659 

cluster, we implicate megakaryocyte proliferation and proplatelet formation (MYB, JAK2)70, and 660 

apoptosis and autophagy (BAK1, BCL2, TYMP)71. Megakaryocytes are used to form proplatelets, and the 661 

process includes an important role for both intra- and extracellular calcium levels99. A role for apoptosis, 662 

and specifically BCL2, in proplatelet formation and platelet release has been suggested100,101, however 663 

work in mice has suggested that apoptosis does not play a direct role in these processes102. 664 

Nevertheless, apoptosis is important for platelet lifespan103.      665 
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Cluster 3 was particularly challenging to interpret, given that no particular phenotype was 666 

enriched relative to the non-cluster 3 SNPs. We note that this cluster appeared to be enriched for the 667 

mtDNA depletion syndrome genes, containing 6/7 genes identified in the GWAS, and significantly 668 

enriched for GO Terms related mitochondrial DNA. Additionally, genes in cluster 3 were significantly 669 

enriched for low-density lipoprotein particle binding, suggesting a role for lipid homeostasis. Closer 670 

inspection of cluster 3 genes reveals a number of genes known to be associated with lipid levels (LIPC, 671 

CETP, LDLR, APOE). While lipids play a role in both energy metabolism (largely through fatty acids) and 672 

cellular membrane formation, a link to mtDNA-CN and/or mitochondrial function is not well-established.  673 

A strong rationale for the study of mtDNA-CN is the underlying assumption that it reflects 674 

mitochondrial function and is readily measured, often from existing data. A serious complication to the 675 

interpretation of the role of mitochondrial function in various traits has been use of blood-derived 676 

measurements, which can be confounded by differences in cell counts across individuals. Mendelian 677 

randomization has been widely used to infer causality between traits (e.g. LDL and CAD)104, but is only 678 

robust under conditions of little to no pleiotropy105 and its power is a function of variance explained. For 679 

mtDNA-CN, the extensive pleiotropy and small amount of variance explained of GWS variants (<1%) 680 

prevents the use of traditional MR approaches. As an alternative approach, we analyzed associations 681 

between mitochondrial DNA variants and mtDNA-CN associated phenotypes. Presumably, variants 682 

located on the mitochondrial genome are only able to modify phenotypes through modulating 683 

mitochondrial function, allowing for causal inference. Our analyses revealed significant relationships 684 

between mitochondrial variants and creatinine, aspartate aminotransferase, MCV, and PCT. Creatinine 685 

and aspartate aminotransferase are markers of kidney and liver function respectively, and supporting 686 

these findings, mtDNA-CN has been linked to both chronic kidney disease13 and non-alcoholic fatty liver 687 

disease106. We also find a highly significant association between mitochondrial variation and non-cancer 688 
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mortality, adding evidence for a causal relationship to previous findings showing mtDNA-CN is 689 

associated with all-cause mortality9. 690 

Several limitations should be noted. First, despite the large sample size and numerous loci 691 

identified, we are likely missing a great deal of the true signal, as our SNP heritability estimates through 692 

SumHer and BOLT-LMM were 7.0% and 7.4% respectively, while previous studies have estimated 693 

mtDNA-CN heritability to be 65%23. Finally, while we have adjusted our mtDNA-CN metric for a variety of 694 

confounders, it is important to note that mtDNA-CN can be influenced by a variety of environmental 695 

factors including smoking107  and drugs, which have not been adjusted for in these analyses.  696 

In summary, we performed the largest-to-date GWAS for mtDNA-CN, including almost 500,000 697 

individuals. We identified three distinct groups of SNPs associated with mtDNA-CN that are related to 698 

platelet activation, megakaryocyte formation and apoptotic processes, and showed clear enrichment for 699 

genes involved in mtDNA depletion and nucleotide regulation. Additionally, we find that mitochondrial 700 

variants are significantly associated with creatinine, aspartate aminotransferase, MCV, and PCT, 701 

implying a causal relationship between mitochondrial function and these phenotypes. Finally, we 702 

provide strong evidence that mitochondrial function is causal for non-cancer mortality. Given the role of 703 

mtDNA-CN, and, by proxy, mitochondrial function in aging-related disease, this work begins to unravel 704 

the many varied underlying mechanisms through which mitochondrial function impacts human health. 705 

 706 
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Figures 1075 

Figure 1. Manhattan plot of GWS loci from UKB-only analyses. 1076 

 1077 

 1078 

Manhattan plot showing genome-wide significant loci for the UK Biobank-only analyses. 1079 
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Figure 2. Scatterplot displaying effect size estimates between Whites and Blacks GWAS results for the 1081 
129 autosomal SNPs identified in the Whites analyses.  1082 

 1083 

Scatterplot showing comparison between effect size estimates for White and Black individuals.  Color 1084 
represents significance of effect for each locus in Blacks GWAS analyses. 1085 
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Figure 3. Volcano plot of genes whose predicted gene expression is significantly associated with 1088 
mtDNA-CN.  1089 

 1090 

Volcano plot showing genes whose predicted gene expression is significantly associated with mtDNA-CN. 1091 
Red indicates positive associations, blue indicates negative associations. Three genes (ARRDC1, EHMT1, 1092 
PNPLA7) had extreme effect size estimates greater than 0.3 but were non-significant and removed from 1093 
the plot for readability. 1094 
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Figure 4. PHEWAS-based clustering of mtDNA-CN associated SNPs.  1096 

 1097 
  1098 
UMAP clusters created from PHEWAS associations for mtDNA-CN associated SNPs. (A) Three clusters 1099 
were identified as labeled in the panel; orange indicates no cluster. (B-F) SNPs are colored based on 1100 
their effect estimate size, standardized to the effect on mtDNA-CN (red = positive, blue = negative 1101 
estimates), for (B) platelet count, (C) mean platelet volume, (D) platelet distribution width, (E) serum 1102 
calcium levels, (F) mean spherical cellular volume.    1103 
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Figure 5. Associations between mtDNA-CN associated phenotypes and mitochondrial haplotypes. 1105 

  1106 
Mitochondrial haplotypes are significantly associated with mtDNA-CN associated traits, implying 1107 
causal relationships between mitochondrial function and traits of interest. Haplotypes are notated in 1108 
the following format: MT73_MT12612_MT7028_MT10238_MT13617_MT15257. 1109 
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Figure 6. Associations between mitochondrial DNA haplotypes and morbidity (overall, cancer, and 1112 
noncancer) 1113 

 1114 
Mitochondrial haplotypes are significantly associated with overall morbidity, in particular, non-cancer 1115 
mortality. Haplotypes are notated in the following format: MT73_ MT7028_MT10238_ 1116 
MT12612_MT13617_MT15257. 1117 
 1118 
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