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Abstract 

Intra-tumour heterogeneity is the molecular hallmark of renal cancer, and the molecular 

tumour composition determines the treatment outcome of renal cancer patients. In renal 

cancer tumourigenesis, in general, different tumour clones evolve over time. We analysed 

intra-tumour heterogeneity and subclonal mutation patterns in 178 tumour samples obtained 

from 89 clear cell renal cell carcinoma patients. In an initial discovery phase, whole-exome 

and transcriptome sequencing data from paired tumour biopsies from 16 ccRCC patients were 

used to design a gene panel for follow-up analysis. In this second phase, 826 selected genes 

were targeted at deep coverage in an extended cohort of 89 patients for a detailed analysis of 

tumour heterogeneity. On average, we found 22 mutations per patient. Pairwise comparison 

of the two biopsies from the same tumour revealed that on average 62% of the mutations in a 

patient were detected in one of the two samples. In addition to commonly mutated genes 

(VHL, PBRM1, SETD2 and BAP1), frequent subclonal mutations with low variant allele 

frequency (<10%) were observed in TP53 and in mucin coding genes MUC6, MUC16, and 

MUC3A. Of the 89 ccRCC tumours, 87 (~98%) harboured private mutations, occurring in only 

one of the paired tumour samples. Clonally exclusive pathway pairs were identified using the 

WES data set from 16 ccRCC patients. Our findings imply that shared and private mutations 

significantly contribute to the complexity of differential gene expression and pathway 

interaction, and might explain clonal evolution of different molecular renal cancer subgroups. 

Multi-regional sequencing is central for the identification of subclones within ccRCC. 
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1. Introduction 

Tumours consist of genetically and phenotypically distinct cancer cell populations that evolve 

over time through a process that involves mutation and selection (1). The presence of intra-

tumour heterogeneity is well founded in renal cell carcinoma (RCC) with multiple subclones in 

both the primary tumour and paired metastasis (2–6). Gerlinger et al. assessed the 

heterogeneity within 10 renal carcinomas applying multi-regional sequencing. A large degree 

of intra-tumour heterogeneity with respect to both somatic mutations and somatic copy number 

variations was observed in all 10 tumours with 75% of driver events found to be subclonal 

(4,7). Martinez et al. further showed in 8 RCC that the diversity within tumours is in some 

cases as high as the diversity between patients (8). Therefore, the number of somatic 

mutations may be undervalued when taking a single biopsy from a solid tumour with only a 

subset of clones being present in the metastasis. This work laid the foundation for the TracerX 

consortiums analysis of 101 RCCs with 1206 multi-regional samples. When assessing the 

metastasis of these tumours it was found that the majority of the diversity accumulated in the 

primary tumour. It is within these primary tumours where metastasis-competent subclones 

undergo selection (9). The identification of subclonal mutations is clinically relevant following 

observations that even low-frequency clones can carry markers of prognosis and drive the 

process of metastasis (4). Independent of genetic heterogeneity, Okegawa et al. suggested 

that intra-tumour heterogeneity also presents itself in the form of metabolic differences 

between tumour cells, further demonstrating the complexity present within renal cancer (10).  

 

Current treatment strategies for RCC include antiangiogenic and immune therapies, the latter 

being effective in only a subset of cases (11–13). Very recently, Motzer et al. performed 

integrative multi-omics analyses of 823 renal carcinomas from a randomised phase III clinical 

trial (IMotion 151) and identified 7 robust molecular subtypes (14). These molecular subgroups 

were associated with differential clinical outcomes following a combination of an 

antiangiogenesis agent (AA; bevacizumab, anti-VEGF) and an immune checkpoint inhibitor 

(ICI; atezolizumab or anti-PD-L1) versus a VEGF receptor tyrosine kinase inhibitor (sunitinib).  

 

Here, we investigate subclonal mutation composition of clear cell renal cell carcinoma in two 

steps (Fig 1). In the initial discovery phase, we analysed two spatially separated biopsies and 

a matched normal sample from each of 16 ccRCC patients to provide an overview of the 

diversity and to inform the selection of genes for the second in-depth follow-up analysis. In the 

second phase, we used the constructed gene panel to sequence 826 genes at high coverage 

in 178 paired tumour samples and 89 matched normal samples from 89 ccRCC patients. We 

found frequent subclonal mutations in TP53 and in mucin coding genes MUC6, MUC16, and 
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MUC3A. Further, we tested for clonal exclusivity to identify combinations of signalling 

pathways that co-exist in the same tumour but in different tumour cell clones. 

 

 

Figure 1. Experimental design. The first phase includes 16 clear cell renal cell carcinoma (ccRCC) 

patients of which two spatially separated biopsies from the primary tumour and a matched normal 

sample were collected. Whole-exome sequencing and transcriptome sequencing was performed and 

the detected mutations informed the selection of genes for the panel of the second phase. The second 

phase includes an extended cohort of patients and the selected genes were targeted with higher 

coverage. From a total of 89 patients, we analysed two spatially separated tumour biopsies and a 

matched normal sample per patient. Fourteen of the patients in this panel data set were also among the 

16 from the first phase. 

 

2. Results  

The assessment of whole-exome and transcriptomic sequencing data from paired tumour 

biopsies along with a matched normal biopsy from 16 ccRCC patients revealed an average of 

40% of mutations were private and 31% of genes were differentially expressed in only a single 

biopsy. A gene panel was produced consisting of 826 genes and targeted for sequencing at 

deep coverage in a larger cohort of 89 patients, each with paired tumour biopsies and a 

matched normal biopsy. We find the mutational frequencies of the most commonly aberrated 

genes in ccRCC found in our cohort are comparable to those expected given data from 

previous large cohort studies. With the identification of low-frequency mutations following deep 

sequencing, the average number of private mutations increased to 62%. After the assignment 

of mutations to clones using the tool Cloe, enrichment and pathway-level clonal exclusivity 

analysis was applied to identify clonally exclusive pathway pairs. 
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2.1. Genetic and transcriptomic diversity in 16 ccRCC patients 

The coverage of the whole-exome sequencing (WES) data was on average 85x, and mutation 

calling (see Methods) identified between 29 and 130 single-nucleotide variants (SNVs), 

insertions, and deletions (indels) per patient (Fig. 2A). The fraction of mutations that was only 

detected in one of the two biopsies from the same tumour was on average 40%, which 

indicates high levels of intra-tumour genetic diversity. These mutations are referred to as 

private, whereas mutations detected in both tumour samples of a patient are called shared.  

From the RNA-sequencing (RNA-seq) data, the differentially expressed genes were called by 

comparing each tumour sample to its paired normal using both single and paired-end data 

(see methods). We found an average of 6,364 genes per patient to be upregulated and 6,598 

genes downregulated (Fig. 2B)with an average of 31% of differentially expressed genes being 

detected only in one of the two biopsies. Pathway overrepresentation analysis was performed 

with the set of differentially expressed genes using the Reactome pathway database (15). 

Among the most overrepresented pathways are many pathways related to translation, signal 

transduction and growth factors (Fig. 2C). The signalling pathways involving the growth factors 

PDGF, VEGF, SCF, or the growth factor receptor EGFR are deregulated in many patients. Of 

note, the vascular endothelial growth factor A (VEGFA) important for angiogenesis, cell 

growth, and survival (11) is upregulated in all patients of this data set. The most 

overrepresented pathways related to translation are highly overrepresented in patients 4, 15, 

and 16. They are enriched only privately in one tumour sample of patients 2, 3, 14 and 15 

each, indicating that these deregulated processes are subclonal in these tumours. 

Assessment of the similarity between samples as measured by the Euclidean distance 

showed a clear separation between tumour and normal samples as expected. Within patient 

3, where a large number of differentially expressed genes were identified, and patient 15, 

where multiple privately enriched pathways were found, TU1 and TU2 samples are more 

distant in comparison to the other patients which cluster according to their sequencing method 

(Supplementary Fig. S1 & Additional File 2).  
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Figure 2. Genetic and transcriptomic diversity in 16 patients. (A) Number of shared (orange) and 

private (yellow, blue) mutations in the WES data set. A shared alteration was detected in both samples 

of a patient, whereas a private alteration was only found in one of the two samples. The two biopsies 

of the same tumour are labeled ‘TU1’ and ‘TU2’. (B) Number of differentially expressed genes in the 

RNA-seq data set. (C) The most overrepresented Reactome pathways among the differentially 

expressed genes. The colour indicates the alteration status. 

 

2.2. In-depth sequencing of 826 selected genes in 89 ccRCC patients 

In the second phase, the cohort was extended to 89 ccRCC patients. From each patient, two 

spatially separated biopsies of the primary tumour and a matched normal sample were 

collected. This data set includes 14 patients from the WES data set (two samples were 

removed due to an insufficient amount of material), and 75 additional patients. Utilising our 

customised gene panel, we sequenced the 178 tumour and 89 normal samples at high depth. 

The deep coverage enables detection of low-frequency mutations, and the larger cohort 

provides increased statistical power such that rare subclonal mutation patterns can be 

detected. The sequenced reads contain unique molecular identifiers (UMI), which allows for 

the correction of potential sequencing errors. The coverage of the panel sequencing (panel 

seq) data set was on average 933x, and after UMI consensus building and read filtering it was 

93x. The number of SNVs as well as indels in the panel-seq data set was on average 22 per 

patient (Fig. 3, top panel). Pairwise comparison of the two biopsies from the same tumour 

revealed that on average 62% of the mutations in a patient were private to one of the two 
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samples with 87 of the 89 tumours (98%) containing at least one private mutation. Among the 

most frequently mutated genes, only 10 are mutated in more than 10% of the patients (only 

one in more than 50% of the patients), confirming the long-tail phenomenon commonly seen 

in cancer cohorts (16). 

 

The four most commonly mutated genes in ccRCC, VHL, PBRM1, SETD2 and BAP1 (17), are 

also among the most frequently mutated genes in our data set (Fig. 3, bottom panel). Three 

mucin genes: MUC6 (42%), MUC16 (38%), and MUC3A (18%) are also frequently mutated in 

our cohort. The mutation frequencies of VHL, SETD2, and BAP1 are 54%, 12%, and 13% 

respectively and comparable to the frequencies found in the TCGA cohort. Somewhat lower 

mutation frequencies were seen in TP53 (9%), mTOR (7%), and KDM5C (7%), which were 

also reported in previous ccRCC studies (6,17,18). Interestingly, in 9 patients the VHL 

mutations reside in only one of the two tumour samples. The mutations in VHL are known to 

occur early in tumour development (19,20), which is in line with our observation that in 39 of 

48 (81%) cases, the VHL mutations are shared between both tumour biopsies of a patient. 

Private mutation are seen in all but two tumours, these mutations were observed in one of the 

two tumour samples underlining the strong genetic heterogeneity of ccRCC. 

 

The number of mutations are unequally distributed between the two tumour biospies in each 

case with identified private mutations; this is pronounced in patients 16, 55 and 57. Of the 

most frequently affected genes (Fig. 3), 3 private mutations are found in VHL, PBRML1, and 

SETD2 within TU2 of patient 16, whereas 14 private mutations are identified in TU1. A private 

mutation is also found in each tumour biopsy affecting the same gene: LAMA2. In patient 55 

all 7 private mutation in the most frequently mutated genes occur in TU2 while in patient 57, 

13 private mutations are found in TU2. Like patient 16, two private mutations in each tumour 

sample of patient 57 impact the same gene, however, in patient 57 that gene is LRP2. Only 5 

patients had no mutations in the most frequently affected genes (>7%). In patient 88, the gene 

PBRM1 is hit by different mutations in the two tumour samples demonstrating a pattern of 

convergent phenotypic evolution where a gene is affected by multiple distinct mutations across 

the clones in the tumour. One tumour sample, TU1, has a frameshift deletion and a missense 

mutation, while the other tumour sample, TU2, has a missense mutation at a different locus in 

PBRM1. Both subclonal missense mutations of PBRM1 are predicted to be deleterious 

according to the SIFT annotation (21). Among the most subclonally affected genes in our data 

set were the mucins MUC6, MUC16, and MUC3A. A clonal exclusivity test was applied to the 

cohort of 89 ccRCC patients on the gene level. This test pinpoints the gene pairs that are 

mutated in the same patients but tend to be mutated in different subclones, hence are mutually 
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exclusive on the level of subclones. The most striking gene pair was TP53 and MUC16, which 

is clonally exclusive in patients 5 and 81. (Supplementary Fig. S2, Supplementary Table S1). 

 

 

 

Figure 3. Genetic diversity in the panel seq data of 89 ccRCC patients. Top: Numbers of shared and 

private mutations in the data set. Bottom: The heatmap highlights the mutations that were detected in 

the most frequently mutated genes. The four most frequently altered genes in ccRCC are VHL, PBRM1, 

BAP1, and SETD2 (17) and are highlighted in bold. If a gene was hit by multiple mutations that all have 

the same status (Shared, Private TU1, or Private TU2), the following ordering is applied to prioritise 

which colour is shown in the heatmap, starting with the highest priority: Stop gained, Start gained, 

Frameshift indel, Inframe indel, Missense, Splice site, Five prime UTR, Three prime UTR, Synonymous. 

That means, if a gene has, e.g., a missense and a synonymous mutation, the missense mutation will be 

displayed in the heatmap. The variants were annotated with SnpEff (22) (Supplementary Table S2). 

Mutations in non-coding regions are omitted from the heatmap. 
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2.3. Pathway-level clonal exclusivity in 16 ccRCC patients 

To reconstruct the evolutionary history of the tumours and assign mutations to specific clones 

we use Cloe (23). The WES data from paired tumour biopsies and matched normal samples 

of 16 ccRCC patients enabled us to map the mutated genes to pathways and to detect 

pathway pairs that are affected in several patients. The two most striking clonally exclusive 

pathway pairs i.e. pathways that are aberrated in different clones of the same tumour in a 

mutually exclusive fashion, are [“Major pathway of rRNA processing in the nucleolus and 

cytosol” (referred to as pathway 1), “O-glycosylation of TSR domain-containing proteins” 

(pathway 2)}, and [Pathway 1, “Defective B3GALTL causes Peters-plus syndrome (PpS)” 

(pathway 3)}, which are clonally exclusive in both patients in which they are affected (Fig. 4A, 

4B, Supplementary Table S3), namely, patients 8 and 14 (p < 10‒5). Pathway 1 belongs to the 

category “Metabolism of RNA”, while pathway 2 falls into the class “Metabolism of proteins”, 

and pathway 3 is a disease pathway related to diseases of glycosylation (15). Pathway 1 was 

also significantly enriched among the differentially expressed genes in 13 of 16 patients of this 

cohort.  

 

Aside from inferring the mutation-to-clone assignment, the Cloe software also estimates the 

fractions of the clones in each sample (Fig. 4C). This is important in order to interpret possible 

changes on the transcriptomic level in the bulk samples. Pathway 1 was mapped to clones 1 

and 2 in patient 8 (Fig. 4B), which together have a clonal faction of 47.5% and 30.7% in 

samples TU1, and TU2, respectively (Fig. 4C). Pathway enrichment analysis shows that 

pathway 1 is also highly overrepresented in these two samples on the transcriptomic level 

(Fig. 4D). Pathways 2 and 3 were assigned to clone 3 which is, with 16.6%, the most abundant 

in sample TU2 of patient 8 (Fig. 4C). Pathway 2 is also enriched among the differentially 

expressed genes in this sample, but pathway 3 is not suggesting that the underlying mutations 

seem to alter the expression of pathway 2 (Fig. 4D). Pertaining to patient 14, no enrichment 

of pathway 1 can be found in either sample (Fig. 4D). Pathway 1 was assigned to clone 2, 

which was estimated to have a clonal fraction of only 8.6% and 0.2% in samples TU1 and 

TU2, respectively (Fig. 4C), which may explain why there is no signal detectable in the bulk 

transcriptome samples for this pathway. Pathways 2 and 3, however, were assigned to clone 

3 (Fig. 4B), which has an estimated clonal fraction of 0.5% and 12.8% in samples TU1 and 

TU2, respectively. In both bulk RNA samples, pathways 2 and 3 are enriched in the second 

tumour sample. 
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Figure 4. The two most striking clonally exclusive pathway pairs from the clonal exclusivity test when 

performed on the pathway level of the WES data set from 16 ccRCC patients. The pathway pairs are 

affected in patients 8 and 14 and in each patient, a different subset of genes is mutated. Hence this 

clonal exclusivity pattern is only detectable on the pathway level. (A) The table displays the genes that 

are mutated in these pathways. (B) The heatmaps illustrate in which clones the genes in these 

pathways are mutated. (C) The proportion of cells from the clones in each of the two samples from the 

two patients. The label ‘N’ represents the fraction of normal cells in the biopsy. (D) The data set also 

includes RNA-seq data from each sample. Among the differentially expressed genes in each sample, 

the pathways are significantly overrepresented in some of the samples. 

3. Discussion 

We analysed intra-tumour heterogeneity using two ccRCC patient cohorts. In the first phase, 

the investigation of the WES and RNA-seq data of 16 ccRCC patients revealed that intra-

tumour heterogeneity is very pronounced on the genetic level with an average of 40% of 

mutations found to be private. We also found that 31% of differentially expressed genes were 

detected in only one of the two patient tumour biopsies. In the second phase, the extended 

cohort of 178 tumour biopsies and the deep sequencing coverage enabled us to detect not 

only rare subclonal mutations, especially in TP53 and mucin coding genes MUC6, MUC16, 

and MUC3A, but also early genomic alterations like PBRM1 and VHL with enough statistical 

power. 

 

Intra-tumour heterogeneity has been reported previously by Gerlinger et al. in 2012. Following 

the extraction of 30 samples from 4 tumours, those authors observed up to 69% of somatic 

mutations not to be present within all samples (2). In the same year, the analysis of 25 single 

cells from one ccRCC patient revealed the large extent of genetic heterogeneity between 
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different tumour cells (24). These studies of intra-tumour heterogeneity in ccRCC reported 

patterns of convergent phenotypic evolution in several genes including VHL, BAP1, SETD2, 

PBRM1, PIK3CA, PTEN, and KDM5C (2,4), which were also among the most frequently 

mutated genes in our cohort. ccRCC development is largely driven by the loss of one gene, 

VHL. Tumourigenesis typically starts with a large deletion on chromosome 3p, followed by 

mutational VHL inactivation. In addition to VHL, the 3p deletion also removes one copy of 

PBRM1, BAP1, and SETD2. Since VHL inactivation alone is insufficient (25), mutations in 

PBRM1 and BAP1 are necessary for ccRCC development. Importantly, these mutations tend 

to be mutually exclusive (19). Interestingly, we have seen VHL mutations in only one of the 

two tumour samples in 9 out of 89 patients. This implies that these alterations would have 

been missed if the other tumour piece was analysed alone, with the consequence that these 

tumours would have been considered as VHL wild-type ccRCC. While VHL mutations are 

considered truncal, we hypothesize that in these 9 samples the mutated allele was lost in the 

respective subclone (26–28).   

 

In addition, some of the genes were affected by multiple distinct mutations across the clones 

in the tumour. This is comparable to some of our previous findings in the VHL gene (3). PBRM1 

mutations occur in 19% of the patients in our cohort, which is less than the frequency reported 

from TCGA (17,18). We found a pattern of convergent phenotypic evolution in PBRM1: the 

gene was hit by two different deleterious missense mutations in each of the two biopsies of 

one patient.  

 

We identified frequent sublonal mutations in MUC6, MUC16, and MUC3A, indicating that 

alterations of these mucin genes may also be critical in ccRCC development. In the TCGA 

data set, the mucins MUC4, and MUC16 were also among the seven most frequently mutated 

genes (17), but our mutation frequencies of MUC6, MUC16, and MUC3A are 42%, 38%, and 

18%, higher than those reported in TCGA (17). In previous ccRCC studies, MUC16 was 

reported to be among the most recurrently mutated genes (18,29). Our analysis of the 

mutation distribution within the MUC16 (also termed CA125) amino acid sequence revealed 

that non-silent mutations seem to be clustering at the end of the sequence in the SEA domains 

(Supplementary Fig. S3) whose precise function is not known. These extracellular SEA 

domains can be extensively O-glycosylated and it was suggested that they can bind nucleic 

acids or sugars, or be released through cleavage (30). In this context, it is of note that several 

RCC studies reported an association between increased levels of MUC16, poor prognosis and 

advanced tumour stage, suggesting the potential use of MUC16 as a serum biomarker in RCC 

(31–33). Although MUC16 had one of the highest mutation frequencies, our 

immunohistochemistry analysis showed no expression of MUC16 in the ccRCC samples (data 
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not shown, see methods for IHC protocol). How mutations in SEA domains affect MUC16’s 

function and contribute to its release in the serum in ccRCC patients remains to be evaluated. 

It was shown that in lung cancer MUC16 mutations can lead to its oncogenic upregulation (34) 

and the overexpression of MUC16 is associated with increased tumour cell growth, cancer 

cell migration, and resistance to cytotoxic drugs (35). Recent studies also discovered frequent 

non-silent MUC16 mutations in breast cancer (36,37), another cancer type in which MUC16 

was observed to be overexpressed (38). Furthermore, MUC16 mutations have been 

implicated as cancer-driving in a pan-cancer analysis that assessed the functional impact of 

mutations on differential gene expression profiles (39).  

 

The majority of mucin gene mutations found in our cohort has a low variant allele frequency 

(VAF). Specifically, more than 75% of the mutations in MUC6, MUC16, and MUC3A have a 

VAF below 10%, and almost half below 5%. Given the mostly low VAFs of mutated mucin 

genes in our study, the analysis of the effect of mutations on mucin protein expression and its 

prognostic value would be very challenging. MUC6 and MUC16 protein expression is hardly 

detectable in ccRCC and MUC3A show weak to moderate expression in all ccRCC analysed 

(Human Protein Atlas and own data (MUC16), not shown). Despite of the difficult interpretation 

of varying positivity of MUC3A an increased expression of this mucin was correlated with poor 

prognosis in localised ccRCC (40).  

 

Besides MUC6, MUC16 and MUC3A, additional mucins may play an important role in ccRCC, 

as their expression level was shown to be predictive of clinical outcome. Decreased 

expression of Mucin 4 and Mucin 18 predicted poor prognosis (41,42) whereas high Mucin 7, 

Mucin 5A, and Mucin 13 expression was found to be associated with worse patient outcome 

(43–45). 

 

TP53, a well-known tumour suppressor, was found to be mutated in less than 10% of ccRCC 

(17,18,46,47), which is confirmed in the cohort analysed here (9%). TP53 mutations were 

associated with reduced survival of renal cancer patients (48,49). Of note, a previous study of 

the intra-tumour diversity in ten ccRCC cases revealed that mutation in TP53 were one of the 

most extreme examples of gene mutations being detected more often when sequencing 

multiple biopsies per tumour instead of a single one (4). We confirmed this finding as 4 of 8 

mutations were detected in only one of the two tumour samples. This observation suggests 

that TP53 mutations may be a crucial subclonal event in ccRCC and explains the low 

prevalence of TP53 mutations in earlier studies. Motzer et al. have evaluated somatic 

alterations across different histological subtypes and reported a lower prevalence of PBRM1 

mutations in ccRCC with sarcomatoid differentiation, whereas TP53 mutations had an 
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increased prevalence in non-ccRCC with sarcomatoid differentiation. Sarcomatoid RCC 

exhibited a highly proliferative phenotype with high immune presence and PD-L1 expression, 

explaining increased sensitivity to therapeutic intervention with atezolizumab+bevacizumab 

versus sunitinib (50,51). Similar to non-ccRCC with sarcomatoid differentiation, subclonal 

TP53 mutations could also be a first molecular step into development of an aggressive 

phenotype of ccRCC leading to sarcomatoid differentiation. Motzer et al. have recently 

identified 7 ccRCC subtypes with specific angiogenesis, immune, metabolic, stromal, and cell-

cycle profiles showing differential clinical outcomes to VEGF blockade alone or in combination 

with anti-PD-L1 (14). These molecular clades have a differential prevalence of TP53, PBRM1, 

KDM5C, and CDKN2A/2B alterations. Our observation of subclonal TP53 mutations suggests 

that primarily tissue samples with sarcomatoid differentiation may display high levels of intra-

tumour heterogeneity. 

 

87 tumours (98%) had private mutations and were detectable in only one of two tumour 

samples. Given the relatively large tumour volumes of ccRCC with pT1 and pT2 tumours 

having diameters of up to 7 and 11 cm, respectively, spatial heterogeneity represents a 

tremendous challenge to individual therapy. Underrating the mutational burden due to spatial 

heterogeneity of gene alterations is thus a common problem in cancer research as well as in 

molecular tumour diagnostics. Single cell analysis and appropriate bioinformatics tools may 

help to overcome this bottleneck particularly if only single little tumour biopsies are available. 

 

Within a subset of patients, we see a large difference in mutational counts between the two 

biopsies. These differences could arise due to differences in tumour purity or perhaps 

aberrations affecting genes needed for DNA damage repair resulting in an accumulation of 

mutations (52). We control for tumour purity with our requirement of at least 70% tumour cells 

and so explored the potential aberrations in genes involved in DNA repair obtained from 

MutSigDB (53). Missense mutations are found in both ERCC1 and POLR2A in TU1 of patient 

16. ERCC1, together with XPF, forms a nuclease essential for nucleotide excision repair with 

ERCC1 required for DNA binding (54,55). POLR2A encodes the largest subunit of RNA 

Polymerase II (RNAPII). RNAPII initiates the recruitment of transcription-coupled nucleotide 

excision repair factors such as CSB when stalling at DNA lesions blocking translation (56). 

Dysfunction in just one of these proteins may lead to an increase in the number of mutations 

as seen in TU1 of patient 16. In TU2 of patient 55, we identified downstream intron variants of 

XPC that produce a protein of the same name functioning to recognise DNA damage during 

the global genome-nucleotide excision repair pathway (57). Although these XPC variants have 

not been classed as altering XPC function, given the large difference seen between TU1 and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 26, 2021. ; https://doi.org/10.1101/305623doi: bioRxiv preprint 

https://doi.org/10.1101/305623


TU2 in patient 55 these variants may be a cause of the accumulation of mutations observed 

in the second biopsy. 

 

In an attempt to identify co-existing clones with affected pathways related to the metabolism 

of proteins and RNA we applied a clonal exclusivity test to 16 ccRCC patients on the pathway 

level. This test allows the identification of pathways that are perturbed in different clones of 

the same tumour in a mutually exclusive fashion. These pathway alterations occurred in clones 

that evolved in parallel along different branches of the tumour phylogeny. The two most striking 

pathway pairs include “Major pathway of rRNA processing in the nucleolus and cytosol” 

(pathway 1), which is clonally exclusive with “O-glycosylation of TSR domain-containing 

proteins” (pathway 2) and “Defective B3GALTL causes Peters-plus syndrome (PpS)” 

(pathway 3) (Fig. 4A). The pathway pairs {1, 2} and {1, 3} are affected in the two patients 

through a different subset of genes (Fig. 4A), namely WDR18 and THSD4 in patient 8, and 

DDX49 and ADAMTS14 in patient 14. ADAMTS14 belongs to the ADAMTS protein family, 

which are secreted zinc metalloproteases that play a role in the extracellular matrix related to 

angiogenesis and cancer (58). THSD4 is also referred to as ADAMTS-like protein 6 and is 

also secreted to the extracellular matrix (59). Both, ADAMTS14 and THSD4 contain the 

thrombospondin type 1 repeat (TSR) domain (60). The proteins with TSR domains can 

undergo O-fucosylation, a protein modification that plays a role in angiogenesis and Notch 

signalling (60–62). To conclude, the pathways detected as clonally exclusive (pathways 1, 2, 

3) are also enriched among the differentially expressed genes in some of the samples. 

Pathways 2 and 3 are functionally deregulated in only one of the two biopsies, showing that 

this deregulation is subclonal. The deregulation may arise due to the mutations in THSD4 and 

ADAMTS14, which are members of these pathways. Whilst being of interest, the exclusivity 

pattern was observed in two patients and therefore validation of these findings in a larger 

cohort would be beneficial.   

4. Materials and Methods 

4.1. Experimental design 

The analysis of intra-tumour heterogeneity and subclonal mutation patterns was comprised of 

two phases (Fig. 1). In an initial discovery phase, whole-exome and transcriptome sequencing 

data from paired tumour biopsies from 16 ccRCC patients plus one matched normal sample 

per patient were analysed to obtain an overview of the diversity in these samples. In this first 

exploratory step, the detected mutations informed the design of our gene panel for the second 

phase. Furthermore, frequently mutated ccRCC genes from the publicly available data sets 

provided by The Cancer Genome Atlas Research Network (TCGA) (17) were considered for 
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the selection of genes in the panel. During the second phase a total of 826 selected genes 

were then targeted at deep coverage in an extended cohort of 89 patients for a detailed 

analysis of tumour heterogeneity.  

4.2. Patient material 

Two cohorts of 16 and 89 ccRCC patients with no prior treatment were chosen for the 

sequence analyses. The tumours of these ccRCC patients have been classified according to 

the 2016 WHO classification (63) and reviewed by H.M. From each patient, two tumour 

samples and one matched normal tissue were selected. From each frozen and FFPE tissue 

block haematoxylin & eosin stained sections were prepared and reviewed by a pathologist (H. 

M.) to ensure tissue integrity. Only tumours with at least 70% tumour cells were included in 

our cohort. For whole exome and RNA sequencing of 48 (16x3) tissue samples, 5-10 frozen 

sections (10 μm) were used for DNA and RNA extraction. For in depth sequencing, 3 punches 

(0.6 mm diameter) were taken from 267 (89x3) formalin-fixed, paraffin-embedded tissue 

blocks. All tissue samples were anonymised.  

4.3. Whole exome sequencing 

The first data set encompasses two spatially separated primary tumour biopsies and one 

matched normal sample from each of the sixteen clear cell renal cell carcinoma (ccRCC) 

patients. The whole exome was sequenced using the Illumina HiSeq 2000 system to obtain 

101-bp paired-end reads. The computational pipeline to analyse the data was a customised 

version of the NGS-pipe framework (64) that included the following steps: Adapter clipping 

and trimming of low-quality bases with Trimmomatic (65), alignment of the reads to the human 

reference genome version hg19 using bwa (66), and read processing with SAMtools (67), 

Picard tools (68), and bam-readcount. Reads were realigned locally around indels, and base 

qualities were recalibrated with the Genome Analysis Toolkit (GATK) (69). Single-nucleotide 

variants (SNVs) were called using the rank-combination (70) of deepSNV (3), JointSNVMix2 

(71), MuTect (72), SiNVICT (73), Strelka (74), and VarScan2 (75). The rank-combination is a 

method that combines the results of different variant callers by integrating the ranked lists of 

variants to generate a combined ranking (70). P-values of deepSNV were corrected for 

multiple testing with the R package IHW (76). Indels were called using SiNVICT (73), Strelka 

(74), VarDict (77), and VarScan2 (75), and combining them with the rank-combination (70). 

For copy number variant detection, the tool Sequenza (78) was employed. Mutations in copy 

number neutral regions were selected as input for Cloe (23) in order to reconstruct the 

evolutionary history of a tumour and to assign the mutations to different clones. In order to 

account for the uncertainty in the phylogenetic tree inference, Cloe was run 20 times with 

different seeds.  
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4.4. Transcriptomic data generation and analysis 

Paired-end and single-end RNA-sequencing was performed on the Illumina HiSeq 2000 

system to generate 101-bp paired-end reads, and 51-bp single-end reads for the 48 samples 

from the initial 16 patients. For the computational analysis, the NGS-pipe framework was 

adapted (64). Reads were clipped and trimmed using Trimmomatic (65), and alignment was 

performed with STAR (79). Read counts for the genes were obtained with the program 

featureCounts (80). Differential gene expression analysis was done using DESeq2 (81) 

comparing each tumour sample to its paired normal sample using both single and paired-end 

data (i.e. a 2 vs 2 design). Genes with a q-value less than 0.01 were considered differentially 

expressed. The R package WebGestaltR (82) was applied to perform enrichment analysis 

using all differentially expressed genes (up- and downregulated) together. As a background 

gene list for the enrichment analysis, only expressed genes were included. More precisely, in 

each comparison of a patients tumour samples to the matched normal samples, the expressed 

genes were included in the background gene list if they had at least a count of 10 fragments 

across the tumour and normal samples. 

4.5. Panel Sequencing  

The second data set is a panel sequencing data set. It comprises an extended cohort of 

patients from which a selected set of genes was sequenced at higher depth. The selection of 

826 genes was informed by the mutated genes detected in the WES data set, as well as from 

the frequently mutated ccRCC genes in TCGA (17) (see Additional Files 3 & 4 for the 826 

gene list and bed file). We generated panel-seq data from 89 ccRCC patients, including two 

spatially separated primary tumour biopsies, and a matched normal sample per patient. This 

data set comprises 14 of the patients from the WES data set, and 75 additional patients. The 

data was sequenced using the Illumina HiSeq 2500 system. The sequenced reads contain 

unique molecular identifiers (UMI), and this allows for the correction of potential sequencing 

errors. Reads with identical UMIs, which are mapped to the same genomic position, come 

from the same DNA molecule, and therefore, the consensus sequence can be built, and the 

variants can be called with higher confidence.  

 

The pipeline for analysing the sequencing data was again a customised version of the NGS-

pipe framework (64) including the following steps: Raw reads were clipped and trimmed using 

the tool SeqPurge (83). Reads were aligned to the human reference genome version hg19 

with the aligner bwa (66). Reads were further processed using SAMtools (67), Picard tools 

(68) and bam-readcount. Local realignment around indels was done with GATK (69). We used 

the software UMI-tools (84) to group reads with identical UMI and identical mapping position 

together, and an in-house tool to build the consensus sequence and thereby correct 
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sequencing errors. Our in-house tool takes the grouped reads with identical UMI and identical 

mapping position and attempts to generate the consensus sequence from these grouped 

reads. If the reads contain contradicting bases at a nucleotide position, it is masked with the 

base ‘N’. The SNV and indel calling was similar as for the WES data set. Some of our samples 

are from formalin-fixed paraffin-embedded (FFPE) material. FFPE samples are known to 

harbor artificial C>T and G>A alterations (85,86). They occur mostly at lower frequencies in 

the range between 1-10% variant allele frequency (VAF), since the DNA damage occurs at 

different genomic positions in different cells (85,87). To remove potential FFPE artifacts, we 

filtered out C>T and G>A mutations that had a VAF < 10%. The tool Cloe (23) used for the 

tree inference requires as input mutations in copy number-neutral regions. In order to filter out 

mutations that are in potential copy number variant regions, mutations that are within 4000 

bps of an imbalanced heterozygous germline SNP were filtered out. An imbalanced 

heterozygous germline SNP is a SNP that has VAF between 40-60% in the normal sample, 

but in the tumour sample the VAF is out of these bounds, indicating a potential copy number 

change. Finally, in order to perform quality control we used Qualimap (88) and FastQC (89) in 

the WES and panel sequencing data sets.   

4.6. Testing for pathway-level clonal exclusivity 

The mutations detected in the WES data set were assigned to clones with Cloe (23), mapped 

to genes, and subsequently, the genes were mapped to pathways using the Reactome 

pathway database (15). This procedure resulted in a total of 877 affected pathways.  

 

For functional annotation of the variants, SnpSift (90) and SnpEff (22) as well as the data 

bases COSMIC (47) version 80, and dbSNP (91) version 138 were used. In order to identify 

pathways that are altered in a clonally exclusive fashion, we employed the statistical test 

implemented in GeneAccord (92). We kept only genes with a potential impact for this analysis. 

While mutations such as synonymous or intronic variants are informative for the tree inference, 

they were not of interest for the clonal exclusivity test. Non-silent mutations are more likely to 

change the phenotype of the clones and therefore these mutations are potential candidates 

for inducing clonal interactions. For the estimation of background rates of clonal exclusivity 

and co-occurrence, it is therefore important to focus on non-silent mutations in order to have 

accurate estimates of their clonally exclusive background distribution. To filter out silent 

mutations, we used the annotation program SnpEff, which classifies variants into four 

categories based on the potential impact of the mutation (22). These are, in descending order 

of importance, the categories ‘HIGH’, ‘MODERATE’, ‘LOW’, and ‘MODIFIER’. Examples of 

the category ‘HIGH’ would be frameshift indels. Missense mutations and inframe indels are 

classified as ‘MODERATE’. The category ‘LOW’ includes synonymous and splice region 
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mutations. Variants that are annotated as ‘upstream’, ‘intronic’, or ‘UTR region’ fall into the 

class ‘MODIFIER’. For the GeneAccord-based clonal exclusivity analysis, we keep mutations 

that are in the category ‘HIGH’, ‘MODERATE', and from the class ‘LOW’ we keep all variants 

with the exception of: synonymous variants, or mutations that are annotated as the case where 

a start codon mutates into another start codon, or analogous for stop codon. To sum up, we 

keep variants such as missense, frameshift or inframe indel or variants in splice regions, but 

filter out variants that are synonymous, intronic or in the UTR regions.  

4.7. Statistical analysis 

For the data analysis in R (93) as well as for visualising results, several R packages were used 

including biomaRt (94,95), caTools (96), dplyr (97), ggplot2 (98), ggpubr (99), gtools (100), 

maxLik (101), tibble (102), magrittr (103), reshape2 (104), RColorBrewer (105), 

ComplexHeatmap (106), and survival (107). 

4.8. Immunohistochemistry 

TMA sections (2.5 μm) on glass slides were subjected to immunohistochemical analysis 

stained using Ultra Discovery (Ventana, Roche Diagnostics, Rotkreuz, Switzerland). 

MUC16/CA125 was immunostained using monoclonal mouse anti-MUC16 antibody (clone 

X75, cat. no. M1-90039; Invitrogen, diluted 1:1000 in Bond medium). MUC16 was made visible 

using IHC Refine kits (Ventana). Normal and tumour tissue (cut off: >5% tumour cells) were 

considered MUC16-positive if tumour cells showed unequivocal weak, moderate or strong 

cytoplasmic and membranous expression. 

5. Conclusions  

In summary, the systematic analysis of the clone constellations as performed here in large 

patient cohorts will contribute towards a better understanding of the evolutionary forces 

beyond mutation and selection that drive tumour evolution and will help to improve treatment 

strategies available for those with ccRCC. 
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