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Abstract 17 

There is great interest in identifying the neurophysiological underpinnings of speech production. 18 

Deep brain stimulation (DBS) surgery is unique in that it allows intracranial recordings from both 19 

cortical and subcortical regions in patients who are awake and speaking. The quality of these 20 

recordings, however, may be affected to various degrees by mechanical forces resulting from 21 

speech itself. Here we describe the presence of speech-induced artifacts in local-field potential 22 

(LFP) recordings obtained from mapping electrodes, DBS leads, and cortical electrodes. In 23 

addition to expected physiological increases in high gamma (60-200 Hz) activity during speech 24 

production, time-frequency analysis in many channels revealed a narrowband gamma 25 

component that exhibited a pattern similar to that observed in the speech audio spectrogram. 26 

This component was present to different degrees in multiple types of neural recordings. We 27 

show that this component tracks the fundamental frequency of the participant’s voice, correlates 28 

with the power spectrum of speech and has coherence with the produced speech audio. A 29 

vibration sensor attached to the stereotactic frame recorded speech-induced vibrations with the 30 

same pattern observed in the LFPs. No corresponding component was identified in any neural 31 

channel during the listening epoch of a syllable repetition task. These observations demonstrate 32 

how speech-induced vibrations can create artifacts in the primary frequency band of interest. 33 

Identifying and accounting for these artifacts is crucial for establishing the validity and 34 

reproducibility of speech-related data obtained from intracranial recordings during DBS surgery.  35 
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Introduction 36 

Invasive brain recordings performed in awake patients undergoing clinically indicated 37 

neurosurgeries provide a unique opportunity to study speech production with better spatial and 38 

temporal precision than noninvasive neuroimaging methods. One of the advantages of 39 

intracranial recordings is a much higher signal-to-noise ratio (SNR) and larger measurable 40 

frequency range. This allows examination of frequency bands above 70 Hz that are typically 41 

unattainable with noninvasive methods due to volume conduction effects and a sharp 42 

attenuation in power at higher frequencies when passing the skull (Mukamel and Fried, 2012). 43 

Many assume that a higher SNR in the intracranial recordings makes them less susceptible to 44 

artifacts frequently observed in noninvasive recordings, such as electro-myographic artifacts 45 

due to eye, jaw, lip and tongue movement (Flinker et al., 2018; Lachaux et al., 2003; Llorens et 46 

al., 2011). Comprehensive quantitative examination of the quality of the signal and identification 47 

of potential sources of artifacts in intracranial recordings, however, have received very little 48 

attention. Several types of artifacts found in scalp EEG have been described in intracranial 49 

recordings, such as eye movement artifacts in fronto-anterior regions (Ball et al., 2009), and 50 

facial and mouth movement artifacts in electrodes close to temporal muscles (Otsubo et al., 51 

2008). This suggestes that movement artifacts can contaminate intracranial LFP recordings 52 

acquired to study of the neural control of speech production.  53 

Neural activity in the high gamma frequency band (60-200 Hz) tracks specific features of 54 

speech perception and production. For example, increased power in the high gamma frequency 55 

range has been observed in the superior temporal gyrus in response to auditory stimuli (Crone 56 

et al., 2001; Hamilton et al., 2018; Mesgarani et al., 2014), and in Broca’s and motor cortices 57 

during speech production (Edwards et al., 2010; Flinker et al., 2015; Mugler et al., 2018). High 58 

gamma activity recorded from the Rolandic cortex (pre and postcentral gyri) has been shown to 59 

track articulatory and/or acoustic features of speech sounds (Bouchard et al., 2013; Cheung et 60 
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al., 2016; Chrabaszcz et al., 2019; Conant et al., 2018). Some recent advances have even 61 

made it possible to reconstruct speech from the brain’s activity in the high gamma band 62 

(Anumanchipalli et al., 2019; Martin et al., 2019), pointing at its potential utility for brain-63 

computer interfaces (BCI) to develop speech prostheses. Contamination of the neural signal 64 

with audio acoustics therefore is a potential barrier to decoding the true electrophysiological 65 

correlates of speech production. 66 

Given the impact that speech dysfunction can have in patients with movement disorders, 67 

and the fact that the role of subcortical regions in speech production are not well understood, we 68 

recently developed a strategy to simultaneously record from the cortex and the subcortical 69 

implantation target during DBS surgery. With the patient's consent, it is possible to temporally 70 

place an electrocorticography (ECoG) electrode strip on the surface of the brain, a technique 71 

that has been used safely in over 500 patients (Panov et al., 2017; Sisterson et al., 2021). Here, 72 

we report the systematic identification and quantification of speech-induced artifacts in several 73 

types of intracranial electrophysiological recordings obtained using a speech production task 74 

performed during DBS implantation surgery. We show that this artifact is caused by mechanical 75 

vibrations induced by the produced speech, and that it can also be found in a 'blank' headstage 76 

pin not connected to any electrode. The results presented in this study encourage careful 77 

assessment of possible audio-induced artifacts in intracranial recordings obtained during 78 

speech production research. Additionally, we provide suggestions for data collection and 79 

analysis that may reduce the potential for false discoveries. 80 

Materials and Methods 81 

Participants 82 

Participants were English-speaking patients with Parkinson’s disease (21M/8F, age: 65.6±7.1 83 

years, duration of disease: 6.1±4.1 years) undergoing awake stereotactic neurosurgery for 84 
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implantation of DBS electrodes in the subthalamic nucleus (STN). Dopaminergic medication 85 

was withdrawn the night before surgery. All procedures were approved by the University of 86 

Pittsburgh Institutional Review Board (IRB Protocol #PRO13110420) and all patients provided 87 

informed consent to participate in the study. 88 

Behavioral task 89 

Participants performed a syllable repetition task intraoperatively. Subjects heard consonant-90 

vowel (CV) syllable triplets through earphones (Etymotic ER-4 with ER38-14F Foam Eartips) 91 

and were instructed to repeat them. Triplets were presented at either low (~50dB SPL) or high 92 

(~70dB SPL) volume using BCI2000 (Schalk et al., 2004) presentation software. The absolute 93 

intensity was adjusted to each participant’s comfort level, keeping the difference between low 94 

and high-volume stimuli fixed at 25dB SPL. Participants were instructed to repeat the low-95 

volume syllable triplets at normal conversation level and the high-volume triplets at increased 96 

volume, “as if speaking to someone across the room”. The syllables were composed of a 97 

combination of either of the 4 English consonants (/v/, /t/, /s/, /g/) and either of the 3 cardinal 98 

vowels (/i/, /a, /u/), resulting in 12 unique CV syllables. A total of 600 triplets were constructed 99 

which were divided among 5 presentation lists, with each session composed of 120 triplets. No 100 

syllable was repeated within a triplet. Syllable position and phoneme occurrence within a triplet 101 

and intensity level (low or high) within each session were balanced. The produced audio was 102 

recorded with an PRM1 Microphone (PreSonus Audio Electronics Inc., Baton Rouge, LA, USA) 103 

at 96 kHz using a Zoom-H6 portable audio recorder (Zoom Corp., Hauppauge, NY, USA). The 104 

average number of trials per session was 106 (range: 14-120). The duration of the utterances 105 

was of 1.3 ± 0.3 s (mean ± standard deviation pooled across subjects), with a median within-106 

subject standard deviation of 0.14 s.  107 
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Neural recordings  108 

As part of the standard clinical DBS implantation procedure, functional mapping of the STN was 109 

performed with microelectrode recordings (MER), acquired with the Neuro-Omega recording 110 

system (Alpha-Omega Engineering, Nof HaGalil, Israel) using parylene-insulated tungsten 111 

microelectrodes (25 μm in diameter, 100 μm in length). LFPs were recorded from stainless steel 112 

macroelectrode rings (0.55 mm in diameter, 1.4 mm in length) located 3 mm above the tip of the 113 

microelectrode. The microelectrodes were oriented on the microtargeting drive system using 114 

three trajectories of a standard cross-shaped Ben-Gun array with 2 mm center-to-center 115 

spacing (Central, Posterior, Medial). The MER and LFP signals were recorded at a sampling 116 

rate of 44 kHz. The neural signal was referenced to the metal screw holding one of the guide 117 

cannulas used to carry the microelectrodes. Prior to initiating MER mapping, one or two 118 

subdural electrocorticography (ECoG) strips with 54 or 63 contacts each (platinum 1 mm disc 119 

contacts arranged in a 3x18 or 3x21 layout, with 3 mm center to center spacing, PMT Cortac 120 

Strips models 2110-54-001 and 2011-63-002) were placed through the standard burr hole. 121 

ECoG strips were targeted to the left superior temporal gyrus (covering the ventral sensorimotor 122 

cortex) and left inferior frontal gyrus. Signals from ECoG electrodes and DBS leads were 123 

acquired at 30 kHz with a Grapevine Neural Interface Processor equipped with Micro2 Front 124 

Ends (Ripple LLC, Salt Lake City, UT, USA). Recordings were referenced to a sterile stainless-125 

steel subdermal needle electrode placed in the scalp, approximately at the location of Cz in a 126 

standard EEG montage. 127 

Two or three sessions of the syllable repetition task were performed by each subject 128 

when the microelectrode was positioned at different depths within the STN. The clinical setup 129 

evolved during the collection of this dataset between subjects 22 and 23, transitioning from a 130 

traditional stereotactic frame to the use of robotic stereotactic assistance (Faraji et al., 2020). 131 
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This change resulted in modification of the stereotactic frame’s mechanical coupling to the 132 

electrode micro-drive. 133 

After the functional mapping phase patients were implanted with one of the DBS leads 134 

models shown in Table 1:  135 

● Medtronic 3389: Platinum/Iridium, 4 cylindrical macroelectrodes, contact length 1.5 mm, 136 

1.27 mm in diameter, 0.5 mm axial electrode spacing (Medtronic, Minneapolis, MN, 137 

USA). 138 

● St. Jude 6172 short: Platinum/Iridium, directional lead with two central rings split in three 139 

contacts, 8 contacts total, length 1.5 mm, axial spacing 0.5 mm, lead diameter 1.27 mm, 140 

outer tubing material polycarbonate urethane (Abbott Neuromodulation, Austin, TX, 141 

USA).  142 

● Boston Scientific DB-2202-45: Platinum/Iridium, directional lead with two central rings 143 

split in three contacts, 8 contacts total, length 1.5 mm, axial spacing 0.5 mm, lead 144 

diameter 1.3 mm, outer tubing material polyurethane (Boston Scientific Neuromodulation 145 

Corp, Valencia, CA, USA).  146 

After the leads were successfully implanted, a final session of the speech task was performed 147 

by some participants, providing LFP data from DBS leads. A summary of recording types and 148 

the corresponding acquisition specifications is provided in Table 1. A schematic illustration of 149 

the intraoperative intracranial recording setup is shown in Figure 1.  150 

Vibration sensor 151 

A shielded piezoelectric vibration sensor (model SDT1-028K, TE Connectivity Company) was 152 

fixed to the stereotactic frame using a sticky pad for the duration of one experiment. This sensor 153 

was selected for its flat transfer function at frequencies above 30 Hz. The signal from the sensor 154 

was captured without amplification as an analog input to the Grapevine system 155 
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Data type Acquisition 
system 

Model/Manufacturer Sampling 
rate 

Number of 
recordings 

DBS Lead Grapevine Medtronic 3389; St. Jude 
6172 short; Boston 
Scientific DB-2202-45 

30 kHz 4 or 8  

Micro Neuro-Omega Alpha Omega 44 kHz 3 

Macro Neuro-Omega Alpha Omega 44 kHz 3 

ECoG Grapevine PMT 2110-54-001; PMT 
2011-63-002 

30 kHz 54 to 126 

Presented 
audio 

Grapevine BCI2000 30 kHz 1 

Produced audio Grapevine PRM1 PreSonus 
Microphone; Zoom-H6 
audio recorder  

96 kHz  1 

Vibration 
sensor 

Grapevine SDT1-028K, TE 
Connectivity Company 

1 kHz 1 

Table 1. Acquisition system specifications for neural and physiological signals.  156 

Electrode localization 157 

DBS electrodes were localized using the Lead-DBS localization pipeline (Horn and Kühn, 2015). 158 

Briefly, a preoperative anatomical T1-weighted MRI scan was co-registered with a postoperative 159 

CT scan. The position of individual contacts was manually identified based on the electrode 160 

artifact present in the CT image and constrained by the geometry of the implanted DBS lead. 161 

This process rendered the coordinates for the leads in each subject’s native space. Based on 162 

the position of the lead and the known depth and tract along which the lead was implanted in 163 

each hemisphere, the positions of the micro and macro recordings from the functional mapping 164 

were calculated using custom Matlab scripts (github.com/Brain-Modulation-Lab/Lead_MER). 165 

The position of the ECoG strips was calculated from an intraoperative fluoroscopy image as 166 

described in (Randazzo et al., 2016). Briefly, the cortical surface was reconstructed from the 167 

preoperative MRI using the FreeSurfer image analysis suite 168 
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(http://surfer.nmr.mgh.harvard.edu/).  A model of the skull and the stereotactic frame was 169 

reconstructed from the intraoperative CT scan using OsiriX neuroimaging viewing tool 170 

(https://www.osirix-viewer.com/). The position of the frame’s tips on the skull and the implanted 171 

DBS leads were used as fiducial markers. The models of the pial surface, skull and fiducial 172 

markers were co-registered, manually rotated and scaled to align with the projection observed in 173 

the fluoroscopy image. Once aligned, the position of the electrodes in the ECoG strip was 174 

manually marked on the fluoroscopy image and the projection of those positions to the convex 175 

hull of the cortical surface was defined as the electrodes’ locations in the native brain space. 176 

The coordinates were then regularized based on the known layout of the contacts in the ECoG 177 

strip (github.com/Brain-Modulation-Lab/ECoG_localization). All coordinates were then 178 

transformed to the ICBM MNI152 Non-Linear Asymmetric 2009b space (Fonov et al., 2011) 179 

using the Symmetric Diffeomorphism algorithm implemented in the Advanced Normalization 180 

Tools (Avants et al., 2008). Anatomical labels were assigned to each electrode based on the 181 

HCP-MMP1 atlas (Glasser et al., 2016) for cortical electrodes, and the Morel (Niemann et al., 182 

2000) and DISTAL (Ewert et al., 2018) atlases for subcortical electrodes.  183 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441553doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441553


  184 

Figure 1: Intraoperative intracranial recording setup and speech task.  185 
A. Schematic representation of intracranial electrodes and syllable triplet repetition task. During 186 
the mapping phase of the DBS implantation surgery ECoG strips were temporarily placed 187 
through the burr hole, allowing simultaneous recording of cortical and subcortical LFPs and 188 
MER from the STN. Participants were instructed to repeat aloud CV syllable triples at a volume 189 
matching the auditory stimuli. B. Photograph of a participant performing the speech task. 190 

Phonetic coding 191 

Phonetic coding of each participant’s produced speech was performed by a trained team of 192 

speech pathology students. Using a custom Matlab GUI (github.com/Brain-Modulation-193 

Lab/SpeechCodingApp), onset and offset times, IPA transcription, accuracy and disorder 194 

characteristics of each produced phoneme were coded. Speech onsets were marked based on 195 

acoustic evidence of key speech features.  Voice segments, such as vowels, were marked at 196 

the first visible glottal pulse, indicating the onset of vocal fold vibration. Unvoiced phonemes 197 

were marked based on the characteristic noise features for that phoneme. For example, the 198 
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rapid increase of high frequency energy denoted the onset of plosive consonants. A broadband 199 

spectrogram was utilized to maximize visualization of key speech features. All coders completed 200 

a course in speech science to ensure knowledge of important speech features and were trained 201 

in coding procedures by a speech language pathologist. 202 

Electrophysiological data preprocessing 203 

Data processing was performed using custom code based on the FieldTrip (Oostenveld et al., 204 

2011) toolbox implemented in Matlab, available at (github.com/Brain-Modulation-Lab/bml). 205 

Recordings from the Grapevine, Neuro-Omega and Zoom-H6 systems were temporally aligned 206 

based on the stimulus and produced audio channels using a linear time-warping algorithm. 207 

Continuous alignment throughout the entire recording session was achieved with sub-208 

millisecond precision. Data was low-pass filtered at 250 Hz using a 4th order non-causal 209 

Butterworth filter, down-sampled to 1 kHz and stored as continuous recordings in FieldTrip 210 

datatype-raw objects in mat containers. This frequency range is well-suited for analyses in the 211 

canonical frequency bands normally used to explore cognitive functions. All annotations, 212 

including descriptions of each session (duration, type of subcortical recording, depth of the MER 213 

recordings), details of the electrodes (active time intervals, channel names, coordinates in 214 

native and MNI space, anatomical labels), phonetic coding at the phoneme, syllable and triplet 215 

level, and times of stimulus presentation were stored in annotation tables. 216 

An automatic data cleaning procedure was used to remove segments of data with 217 

conspicuous high-power artifacts. First, a 1 Hz high-pass 5th order non-causal Butterworth filter 218 

was applied to remove low frequency movement related artifacts. The power at frequencies in 219 

different canonical bands (3 Hz for 𝛅, 6 Hz for θ, 10 Hz for ɑ, 21 Hz for β, 45 Hz for ɣL and 160 220 

Hz for ɣH) was estimated by convolution with a Morlet wavelet with a width parameter of 9. For 221 

each frequency, the maximum power in 1-s time bins was calculated, log-transformed and the 222 

mean (�̅�) and standard deviations (σ) of the distribution were estimated using methods robust to 223 
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outliers. A time bin was defined as artifactual if its maximal log-transformed power in any band 224 

exceeded �̅� + 3𝜎 for that band. Note that this resulted in thresholds at least 10-fold higher than 225 

the mean power. Channels were entirely discarded if more than 50% of the time-bins were 226 

classified as containing artifacts. Blocks of channels sharing a head-stage connector were 227 

entirely discarded if more than 50% of those channels were defined as artifactual. 228 

For each trial, 3 different behavioral epochs were defined: stimulus presentation or 229 

listening epoch - the 1.5-s long window during which syllable triplets were presented auditorily; 230 

speech production epoch - the variable time during which subjects repeated the syllable triplet; 231 

baseline epoch - a 500-ms time window centered between speech offset of one trial and 232 

stimulus onset of the following.  233 

Electrophysiology data analysis 234 

Time-frequency plots. Time-frequency analyses for neural and audio data were performed 235 

using the Short Time Fourier Transform (STFT) method with a 100 ms Hanning window and a 236 

frequency step of 2 Hz, based on multiplication in the frequency domain as implemented by 237 

FieldTrip. Trials were aligned to speech onset and Z-scored relative to a 500-ms baseline 238 

epochs included in every trial. Frequencies up to 250 Hz were used for this analysis as that 239 

covers the canonical frequency bands normally used to explore cognitive functions. 240 

Spectrogram correlation analysis. To index the degree of similarity between the audio 241 

spectrogram and the time-frequency spectrogram of a neural channel calculated by the STFT 242 

method, a correlation between these two matrices was calculated. This correlation was 243 

computed as the normalized sum of the element-by-element products of the two matrices. 244 

𝑟 = ∑ ∑ (+,,./+̅)(1,,./12).,

3∑ ∑ (+,,./+̅)4., ×∑ ∑ (1,,./12)4.,

                                                                           (Equation 1) 245 
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where A represents the audio spectrogram and B the time-frequency spectrogram of data at a 246 

given neural channel.  247 

Coherence analysis. Phase relationship between the audio signal and the neural signal at a 248 

given channel was quantified using a metric of inter-trial phase consistency (ITPC) (Cohen, 249 

2014). First, the audio and the neural signals were band-pass filtered between 70 and 240 Hz 250 

using a 5th order non-causal Butterworth filter. This frequency range contains the fundamental 251 

frequency of the voice in humans and the narrowband component studied in this work. A notch 252 

filter was applied to remove line noise and its harmonics. For each individual epoch of interest 253 

(noted by the index 𝑒), and neural channel (X) a complex value 𝜑8 was calculated following  254 

𝜑8 =
9

|;<|	|+<|
∑ 𝑆8,?	𝐴8,??         (Equation 2) 255 

where 𝑆8 = 𝑋8 + 𝑖𝐻(𝑋8) is the analytic signal, 𝐻(𝑋8) is the Hilbert transform of the neural data 256 

for the epoch 𝑒 , and 𝐴8 is the audio signal for that epoch. The sum is taken for every sample k 257 

within the epoch. |𝑋8| and |𝐴8| are the Euclidean norms of the neural and audio signals for 258 

epoch 𝑒. The absolute value and phase of 𝜑8 represents the degree of correlation and phase 259 

relationship between the neural and the audio channels for epoch 𝑒. If there is inter-trial phase 260 

consistency, the mean value of 𝜑	across trials (noted as 〈𝜑〉) will be significantly different from 0. 261 

To quantify this, the ITPC index was defined as 262 

𝐼𝑇𝑃𝐶 = |〈J〉|
KLMNOO(J)

           (Equation 3) 263 

where the standard error of 𝜑 is defined as 𝑆𝑡𝑑𝐸𝑟𝑟(𝜑) = S∑ |𝜑8 − 〈𝜑〉|U8 /𝑁, and the sum is 264 

taken over the N epochs considered for the neural channel of interest. Note that this metric was 265 

calculated independently for the speech production, listening and baseline epochs. 266 

Significance threshold for coherence index. To define a threshold of significance for the 267 

coherence index, a Monte Carlo simulation was performed to obtain the distribution of 268 
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coherence index under the null hypothesis of no consistent phase relationship between the 269 

neural and the audio channels. To this end, a random time jitter uniformly distributed between -270 

100 and 100 ms was applied to the neural data before calculating each 𝜑8 value. 22000 271 

independent randomizations were calculated using data from all electrodes in the dataset. This 272 

analysis resulted in a significant threshold for the coherence index of 3.08 that corresponds to 273 

the 99.99 percentile of the distribution. Thus, a coherence index greater than 3.08 suggests 274 

significant correlation of inter-trial phase consistency between the audio and the neural signal. 275 

Objective assessment of acoustic contamination. A recent study by Roussel et al. 2020, 276 

comparing intracranial recordings collected from human subjects during speech perception and 277 

production at five different research institutions found that spectrotemporal features of the 278 

recorded neural signal are highly correlated with those of the sound produced by the 279 

participants or played to participants through a loudspeaker. The method proposed by Roussel 280 

et al. for quantifying the extent of acoustic contamination in an electrophysiological recording 281 

was applied to the data using the open source toolbox developed by the authors (Roussel et al., 282 

2020) (https://doi.org/10.5281/zenodo.3929296). Briefly, the method correlates the power of the 283 

neural data and audio across different frequency bins, thus creating a correlation matrix for 284 

every combination of frequencies of the two channels. Significantly higher correlation 285 

coefficients at matching frequencies of the two channels (i.e. on the diagonal of the matrix), 286 

compared to non-matching frequencies, is considered to be evidence of acoustic contamination. 287 

A permutation test is used to determine the significance threshold. The method was applied to 288 

data from individual electrodes, and the False Discovery Rate was adjusted according to 289 

(Benjamini and Hochberg, 1994). 290 

Testing the spatial distribution of coherence over the brain. We used hierarchical 291 

bootstrapping (Saravanan et al., 2020) to test whether any particular brain region displayed an 292 
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average coherence that was significantly different from the rest of the brain. Specifically, we 293 

built a null distribution of average coherence across the brain by calculating the mean 294 

coherence across the brain accounting for subjects as one hierarchical level but ignoring brain 295 

regions within subjects. We then calculated the average coherence for the 15 brain regions (as 296 

parcellated by the MMP1 atlas) that had coverage in 10 or more subjects, with 3 or more 297 

electrodes per subject. Each distribution was again built using subjects as the hierarchical level 298 

and electrodes were restricted to those within that particular brain region. Bootstrapping was 299 

performed weighing each subject by the number of electrodes present in that region. The 300 

distributions were then all compared to the null and the significance threshold was adjusted 301 

using an FDR correction for 15 comparisons. Resampling number (Nbootstrap) was set to 10,000 302 

for all bootstrap samples. 303 

Results 304 

Narrowband high gamma component in neural recordings during speech production 305 

We averaged spectrograms time-locked to the speech onset across trials for each audio and 306 

neural channel. Representative examples of the averaged spectrograms for each recording type 307 

are provided in Figure 2. Figure 2A shows the spectrogram for the produced audio, in which the 308 

fundamental frequency (F0) of the participant's voice (at around 120 Hz) and its first harmonic 309 

(at around 240 Hz) can be easily discerned as an increase in power at the corresponding 310 

frequencies. The 3 peaks of power in the spectrogram at different times correspond to the three 311 

produced syllables. A similar narrowband component occurring around the frequencies of the 312 

participants' F0 also appeared in some electrodes during the speech production epoch. For 313 

example, this narrowband component can be readily observed in the time-frequency plot for one 314 

ECoG electrode shown in Figure 2B, but not for another ECoG electrode from the same subject 315 

shown in Figure 2C. Thus, while both electrodes show an increase in speech-related gamma 316 
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activity, the increase in gamma activity in the electrode in Figure 2B is remarkably similar to the 317 

narrowband component in the audio spectrogram (Figure 2A), overlapping with it in frequency, 318 

time, and overall shape. Similar narrowband components in the high gamma frequency range 319 

were also identified in some of the LFP recordings extracted from the micro electrodes (Figure 320 

2D), macro electrodes (Figure 2E) and from the DBS leads (Figure 2F). Thus, this narrowband 321 

speech-related component can be observed in different electrophysiological recordings 322 

collected simultaneously with different acquisition devices.  323 

 324 

Figure 2: A speech-related narrowband component in the high gamma frequency range 325 
was observed across different types of neural recordings. 326 
Time-frequency plots for the audio and different neural channels from subject DBS3014. The 327 
red vertical dashed line represents speech onset time, which was used to time-lock the data 328 
across trials. A. Average spectrogram of the produced speech audio, z-scored to baseline. B. 329 
ECoG contact 1-54, showing a prominent narrowband high gamma component during the 330 
speech production epoch. C. ECoG contact 2-55, showing a broadband activation during 331 
speech production (note that this activity begins before speech onset). D. Spectrogram for LFP 332 
signal extracted from the posterior micro electrode targeting the left STN. E. Spectrogram for 333 
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LFP signal from the medial macro ring targeting the left STN. F. Spectrogram for the left DBS 334 
lead contact.  335 

The narrowband high gamma component correlates with the fundamental frequency of 336 

the voice  337 

Because of the striking similarity between the neural data and speech spectrogram, we set out 338 

to quantify the identified narrowband high gamma component and its relationship with the 339 

produced audio further, using different analytical approaches. First, we asked whether the 340 

observed overlap in the frequency range between the narrowband component and the produced 341 

speech audio was consistent across participants. To this end, we calculated the Welch power 342 

spectrum of the audio and neural data during the speech production epochs (Figure 3A), 343 

identified at which frequencies peak power within the F0 range (70-240 Hz) occurs in both types 344 

of spectra, and correlated the obtained frequency values. For each subject, we used data from 345 

single trials of the LFP signal extracted from one of the micro channels of the subcortical 346 

mapping electrodes, selected for having a prominent narrowband high gamma component. 347 

As can be seen in Figure 3B, there is a strong correlation (Spearman's ⍴=0.98, p-value 348 

<	10/[, intercept = 1.4±5.1 Hz, slope = 0.99±0.4) between the fundamental frequency of the 349 

voice and the peak frequency of the narrowband component across participants. Furthermore, 350 

the relation not only is linear, but also has a slope not significantly different from 1, meaning that 351 

the frequency of peak high gamma power in the neural data corresponds to the fundamental 352 

frequency of the voice. 353 
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 354 

Figure 3: The frequency of peak power of the high gamma narrowband component 355 
correlates with the fundamental frequency of the voice across participants. 356 
A. Welch power spectrums for the produced speech audio (top) and the LFP signal extracted 357 
from the micro tip of the subcortical mapping electrode by low-pass filtering at 400 Hz (bottom). 358 
The vertical dashed blue line represents the frequency of peak power identified in each 359 
spectrum. B. Correlation of the frequency of peak power in the range of 70-200 Hz between the 360 
audio and neural data. Blue line represents the best linear fit to the data; gray ribbon represents 361 
the confidence interval of the fit. 362 

Spectrogram cross-correlation between audio and neural data 363 

To further characterize the distribution of this narrowband component across electrodes and 364 

recording sessions, we developed two different and complementary measures of similarity 365 

between the neural signal and the audio signal. The first metric consists of correlating the time-366 

frequency spectrogram of a neural channel across times and frequencies with the spectrogram 367 
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of the produced audio. A schematic representation of the method is shown in Figure 4A. For 368 

each subject, the correlation coefficient between the spectrogram of the produced audio and the 369 

spectrogram of neural recordings was calculated (Equation 1). We found widespread correlation 370 

between spectrograms obtained from intracranial recordings and spectrograms of the produced 371 

audio, reaching correlation coefficients of up to 0.8 (Figure 4B). The strength of correlations was 372 

variable across subjects, recording sessions, and electrodes. Also note that strong correlations 373 

were present in different types of intracranial recordings, albeit with a varying consistency. 374 

 375 

Figure 4: Spectrogram correlation between audio and neural data. 376 
A. A schematic representation of the spectrogram correlation approach. The electrode 377 
spectrogram (top) is multiplied by the audio spectrogram (middle) to give the cross-spectrogram 378 
(bottom). B. Correlation coefficients (Equation 1) for each electrode (represented on the y-axis), 379 
and each recording session (represented on the x-axis). Panels are defined by subject and 380 
electrode type. Tiles in gray correspond to electrodes not present in the montage or which were 381 
removed after the artifact rejection.  382 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441553doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441553


Consistent phase relationship between audio and neural data 383 

The method described above compares similarity of time-frequency resolved power between 384 

neural and audio data but does not take into account the phase information of the signals. 385 

Therefore, we developed a complementary metric to quantify the phase relationship between 386 

the neural data and the produced audio, that is, a measure of coherence or inter-trial phase 387 

consistency (ITPC) with the produced audio. This metric is based on dot products of the analytic 388 

signal of the neural channel and the produced audio, as schematized in Figure 5A. For each 389 

epoch, a complex value representing the magnitude of the correlation and the phase 390 

relationship of the neural signal with the audio is obtained (Equation 2). If the mean of these 391 

complex values is significantly different from zero, this serves as evidence of a consistent phase 392 

relationship between the neural data and the produced speech (Figure 5B). We used the 393 

absolute value of the mean of these complex values, normalized by their standard error, as an 394 

index of coherence (Equation 3). This method is computationally efficient and well suited for 395 

narrowband signals as the one we are characterizing (see details in Methods Section). We 396 

calculated a significance threshold using a Monte Carlo simulation in which we applied random 397 

time jitters before calculating the coherence index (see details in Methods Section). 398 

As observed in Figure 5C, there is widespread coherence across many subjects and all 399 

electrode types during the speech production epoch. Around 50% of the analyzed electrodes 400 

show significant coherence with the audio during the speech production epoch (Table 2). 401 

Importantly, no significant coherence with the speech audio was observed during the baseline 402 

or listening epochs (Table 2). Coherence of the neural signals with the stimulus audio in all 403 

behavioral epochs, including the listening epoch, was negligible (Table 2). This suggests that 404 

only the process of producing speech sounds was contaminating the neural signal.  405 

The distribution of the coherence indices across electrodes for each recording session 406 

can be classified as i) having no or little coherence between neural channels and the produced 407 

speech (e.g. subjects 06, 03, 21); ii) having homogenous coherence across electrodes, (e.g. 408 
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subjects 02, 04); and iii) having heterogeneous coherence across electrodes (e.g. subjects 14, 409 

28). While for the homogeneous case both the amplitude of the coherence (|<𝜑>|) and the 410 

phase relationship with the produced speech are similar across the neural electrodes, in the 411 

heterogeneous recording sessions these values may change substantially across electrodes 412 

(Figure 5D). 413 

 414 

Figure 5: Inter-trial phase consistency (ITPC) reveals significant coherence of neural data 415 
with the produced speech audio. 416 
A. An ITPC index is derived from multiplying the band-pass filtered analytic neural signal (blue 417 
and orange lines for real and imaginary parts) with the produced speech signal (black line) using 418 
the internal product, resulting in a complex value 𝜑 for each trial. B. An example 𝜑 values 419 
plotted on the complex plane (real part of 𝜑 on the x axis and imaginary part on the y axis) for 420 
three behavioral epochs: baseline (green circles), listening (blue squares), and speech 421 
production (red triangles). The ITPC index is related to the average value of < 𝜑8 >, 422 
represented as a red arrow for the speech production epoch. For the baseline and listening 423 
epochs the < 𝜑8 >	= 	0, indicating no phase consistency between the neural and the audio 424 
data. The circled point in the bottom left quadrant of the plot corresponds to the traces shown in 425 
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panel A. C. ITPC indices from the speech production epoch plotted for each electrode, recording 426 
session, and subject. Each row corresponds to an electrode; each column - to an individual 427 
session; panels are defined by subject and data type. Tiles in gray correspond to electrodes that 428 
were not present in the montage or which were removed after artifact rejection. White tiles 429 
represent electrodes that do not show significant coherence indices D. Phase consistency of the 430 
neural data with the produced audio across contacts of the ECoG strips. In each polar plot, the 431 
angle between the radial lines and the horizontal axis represents the phase relation with the 432 
produced audio of an ECoG electrode. Red asterisks mark ECoG strips with homogeneous 433 
coherence, defined as those with at least 90% of the electrodes' phases within 90º of each 434 
other.  435 

The speech acoustic component can be detected in the neural data by different 436 

quantification methods   437 

The spectrogram correlation index (Figure 4) and the coherence index (Figure 5) are highly 438 

correlated with each other, as can be observed in Figure 6A (Spearman's ⍴ = 0.7, p < 1e-6). In 439 

applying the method proposed by Roussel et al. (2020), the power of the neural data was 440 

correlated with the audio across different frequency bins to create a correlation matrix (Figure 441 

6B). High correlation coefficients on the diagonal of this matrix indicate acoustic contamination 442 

(see details in the Methods Section). Electrodes classified as contaminated based on this 443 

method are indicated by red triangles in Figure 6A. As can be observed, these points tend to 444 

have high spectrogram correlation index and coherence index above the significant threshold 445 

(Figure 6A). This result suggests that all three methods have similar sensitivity in identifying 446 

speech-related artifacts in our dataset.  447 
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 448 

Figure 6: The spectrogram correlation index and the coherence index show strong 449 
correlation with each other and high consistency with the Roussel et al. method’s 450 
outcome. 451 
A. Relationship between the spectrogram correlation index and the coherence index for ECoG 452 
electrodes for one representative subject (DBS3024). Red triangles indicate electrodes with 453 
significant ‘acoustic contamination’ as assessed by the method developed by Roussel et al., 454 
2020. B. Detection of acoustic contamination by the Roussel method is based on the cross-455 
frequency correlation matrix, which indicates degrees of correlation of power across time for 456 
different frequencies of the neural and audio data. The shown matrix corresponds to ECoG 457 
electrode 2-31, indicated by an arrow in panel A. 458 

Audio	 Produced	speech	audio	 Stimulus	audio	

Method	 Coherence	 Roussel	 Coherence	 Roussel	

Epoch	 baseline	 listening	 speech	 all	 baseline	 listening	 speech	 all	

ECoG	 0.2±0.1%	 0.2±0.1%	 52±6%	 54±5%	 0.4±0.3%	 0.2±0.1%	 1.4±0.7%	 2.2±0.5%	

Macro	 0%	 0%	 42±8%	 25±5%	 0%	 0%	 0%	 4±2%	

Micro	 0%	 0%	 56±7%	 96±7%	 0%	 	0%	 0%		 0.6±0.8%	

DBS	Lead	 0%	 0%	 47±10%		 59±10%		 6±6%	 7±6%	 10±8%	 12±8%	

Blank	 10±4%	 12±5%		 65±8%	 71±6%	 2±2%	 15±8	 3±2%	 12±7%	

Table 2. Percentage (± standard error) of electrodes showing significant similarity between 459 
neural data and the produced speech audio or stimulus audio, as established by the coherence 460 
method and the Roussel et al.'s method. The coherence method was run independently for the 461 
baseline, listening and speech production epochs. The Roussel et al. 2020 method used the 462 
entire duration of the session. Hierarchical bootstrapping was used to estimate the standard 463 
error.  464 
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Coherence indices for cortical recording sites are independent of anatomic location 465 

Next, we asked if there is any spatial structure of the coherence index within the cortex. To this 466 

end, we performed a hierarchical bootstrapping analysis accounting for the nested nature of the 467 

data (electrodes within anatomical regions within subjects) and found that none of the cortical 468 

regions (as defined by the Multi Modal Parcellation 1 in Glasser et al., 2016) show values of 469 

coherence significantly higher than the average distribution over the entire brain (see methods 470 

for detail). All cortical electrodes with their corresponding coherence values are plotted on a 471 

standard brain in Figure 7. Electrodes with high coherence with the produced audio do not 472 

cluster on any specific neuroanatomical region.  473 

 474 

Figure 7: Increased Inter-trial Phase Consistency is not specific to any cortical region. 475 
Localizations of cortical ECoG electrodes for the entire subject cohort (n = 29) plotted in MNI 476 
space (MNI152 Nonlinear Asymmetric 2009b, (Fonov et al., 2011)). The color of the points 477 
represents the average coherence between neural and produced audio data for that electrode. 478 

Speech-related vibrations can be detected in non-neural data  479 

The experiments described above demonstrated that some neural recordings show time-480 

frequency patterns similar to the produced audio recordings. This suggests that there is 481 

contamination of the electrophysiological neural data with the speech audio signal. If this is the 482 

case, we expect to find the same kind of contamination in "blank" electrodes not in contact with 483 

the brain. Most of the ECoG strips used in our experiments contained 63 contacts laid out in a 3 484 

x 21 arrangement (Figure 8A). These contacts were connected to the amplifier's front-end 485 
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through 4 cabrio-type connectors, each containing 16 pins. This resulted in the last pin of the 4th 486 

cabrio connector (#64) not connected to any electrode on the brain. Instead, the wire connected 487 

to this pin runs the length of the cable and ends within the silicon rubber matrix of the ECoG 488 

strip. We recorded the signal from this "blank" pin as it provides a control for all non-neural 489 

sources of noise affecting the neural signal. Using the same time-frequency method as before, 490 

we analyzed the recorded signal from this blank ECoG headstage pin. As can be observed in 491 

Figure 8B, a narrowband component similar to that observed in some neural recordings is also 492 

present during speech production in the recordings from the blank headstage pin. It is 493 

interesting to note that the frequency of peak power recorded from this pin is slightly lower than 494 

the fundamental frequency of the voice (Figure 8C), although the component has the same 495 

timing and overall pattern (note the power increase around the first harmonic of the F0). As 496 

shown in the bottom row of the Figure 5C, labeled ‘Blank’, signals from the blank headstage 497 

pins show significant coherence with the produced speech audio in the same recording 498 

sessions that showed strong coherence with the produced speech audio in other electrode 499 

types (see also Figure 4B and Table 2). 500 

These results strongly suggest that the source of the observed narrowband component 501 

is not neural. Among possible sources of this component are speech-induced vibrations of the 502 

stereotactic frame, cables, connectors and/or acquisition chain. To address this question, we 503 

attached a piezoelectric vibration sensor to the stereotactic frame (Figure 8D) during data 504 

collection in one subject (subject DBS3029). The recorded signal from the piezoelectric sensor 505 

was analyzed in the same way as other types of recordings. A strong narrowband component 506 

was observed at the time corresponding to the production of the first syllable, in the same 507 

frequency range as the fundamental frequency of the voice (Fig. 8E). The attenuated power 508 

observed during the time of the production of the second and the third syllables might be due to 509 

the fact that in this particular participant speech intensity decreased across the produced 510 

syllable triplet, as seen in the audio spectrogram in Figure 8F. 511 
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 512 

Figure 8: The narrowband component is present in non-neural recordings. 513 
A. A schematic of the ECoG electrode strip showing the electrode contact and connector layout. 514 
4 cables of 16 wires are used for the 63 electrodes, resulting in one headstage pin not 515 
connected to any electrode on the brain (marked as contact #64). B. Time-frequency plot of the 516 
signal recorded from the blank headstage pin (subject DBS3020). C. Spectrogram of the 517 
produced speech audio for the same subject as in B. D. A schematic representation of the 518 
montage of the vibration sensor on the stereotactic frame. E. Time-frequency plot of the signal 519 
recorded from the vibration sensor (subject DBS3029). F. Spectrogram of the produced speech 520 
for the same subject as in E. In panels B-C and E-F, zero marks the onset of the speech 521 
production. 522 

Discussion 523 

We identified the presence of a narrowband high gamma component in the neural signals 524 

recorded from patients undergoing DBS implantation surgery that is consistent with a 525 

mechanically induced artifact. This component is widespread across many electrode types and 526 

was the most prominent feature in many electrode recordings. It occurs almost exclusively 527 

during cued speech production epochs and it has spectral and temporal characteristics strikingly 528 
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similar to the produced speech audio. Indeed, a recent work shows the presence of acoustic 529 

contamination on ECoG recordings (Roussel et al., 2020). In the environment of DBS surgery, 530 

speech-induced vibrations conducted by the skull and stereotactic frame can impinge on the 531 

electrodes and/or signal acquisition chain affecting the recorded signal. 532 

Several results support the interpretation that the observed narrowband high gamma 533 

component is an artifact due to speech-induced vibrations. First, the frequency of peak power of 534 

the narrowband component tracks the fundamental frequency of the voice across participants 535 

(Figure 3). Second, the narrowband high gamma component is almost exclusively present 536 

during the cued speech production epoch, but not the listening epoch (Table 2). Thirdly, the 537 

time-frequency resolved power from the neural recordings strongly correlates with the produced 538 

audio spectrogram (Figure 4). Fourth, significant inter-trial phase consistency between the 539 

produced audio and the neural data suggests similarities not only across the frequency domain, 540 

but also the temporal domain (Figure 5). Fifth, most of the recordings that we classified as 541 

contaminated in our analysis were also classified as having acoustic contamination by the 542 

recently proposed method in Roussel et al. (2020) (Figure 6 and Table 2). Sixth, there was no 543 

significant cortical localization of the ITPC index (Figure 7). Finally, the narrowband high gamma 544 

component was also detected in "blank" pins of the headstage connector not connected to any 545 

electrode (Figure 8B) and in the recording from a vibration sensor attached to the stereotactic 546 

frame (Figure 8E). Taken together, these results strongly suggest the presence of speech-547 

induced vibration artifact. 548 

Although we cannot rule out the presence of physiological neural activity with the exact 549 

same spectral and timing characteristics as the observed narrowband high gamma component, 550 

we favor the interpretation that the narrowband component identified in this work is mainly, if not 551 

completely, due to the vibration artifact. It is worth mentioning that broadband gamma activity 552 

can be detected in many electrodes (see example in Figure 2C), including some that also show 553 

the vibration artifact.  554 
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These results are in line with a recent report by Roussel et al. (2020), in which the 555 

authors show evidence for acoustic contamination of ECoG recordings. The authors analyze 556 

multiple-center datasets collected in epilepsy patients in an extra-operative setting, finding that 557 

both produced, and stimulus audio can affect ECoG recordings. Our work extends these 558 

findings, showing that the same kind of contamination can occur not only in the ECoG 559 

recordings, but can also affect other types of invasive neural recordings, such as those collected 560 

in the context of DBS implantation surgery. In addition, there are two key differences to note 561 

between our results and those of Roussel et al. First, we only observe contamination when the 562 

patient is speaking, but not during auditory stimulus presentation. This difference may be due to 563 

the use of headphones in our recording setup as opposed to the loudspeaker in the work by 564 

Roussel et al., who found that acoustically isolating the speaker reduced contamination of the 565 

neural signal. Second, in our recordings the affected signals are those corresponding to the F0 566 

and to a lesser extent its harmonics. This could be explained by the fact that the stereotactic 567 

frame imposes some additional mechanical constraints, thus changing the way the vibration 568 

propagates.  569 

Despite the fact that intracranial recordings in general are less prone to artifacts than 570 

extracranial recordings, it is recognized that the patient’s speech induces vibrations that affect 571 

MER. For example, a patent for a new micro-electrode design from AlphaOmega mentions that 572 

“various mechanical noise and vibration, such as motor vibration, motion of the electrode within 573 

the tissue or voice of the subject, are detected by the electrode that acts essentially as 574 

microphone and is erroneously combined with the neural signal that is being recorded” (Alpha 575 

Omega Technologies, 2020). Therefore, a common practice has been to analyze the recordings 576 

only when the patient is not speaking. The introduction of “microphonic free” microelectrodes 577 

with improved shielding that reduces the effects of vibrations on the recordings, allows acquiring 578 

single unit activity while the patient is speaking (Alpha Omega Technologies, 2020). Besides the 579 

clear clinical advantage, this has opened the possibility of studying single unit activity of DBS 580 
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target structures during speech production. Although the quantifications of single-unit firing can 581 

be reliably performed with these electrodes (Lipski et al., 2017, 2018), in light of our results it is 582 

clear that mechanical vibrations affect other intracortical recordings including those obtained 583 

with macro contacts on the shaft of the micro electrodes, recordings from ECoG strips and 584 

recordings from the clinically implanted DBS leads. 585 

Interestingly, neural signals with similar characteristics to the narrowband high gamma 586 

component described in this work have been reported in the literature. The Frequency Following 587 

Response (FFR) in the auditory brainstem is a potential with spectrotemporal features 588 

resembling the stimulus audio that reflects sustained neural ensemble activity phase-locked to 589 

periodic acoustic stimuli (Bidelman, 2018; Marsh and Worden, 1968; Marsh et al., 1970; Rose et 590 

al., 1966). This brainstem response to auditory stimuli can be recorded from scalp electrodes by 591 

averaging over hundreds of trials, a technique that has become a powerful diagnostic tool in 592 

audiology and neurology known as the Auditory Brainstem Response (Hall, 1992; Jewett et al., 593 

1970). In recent years several works based on scalp EEG, sEEG and MEG have reported 594 

cortical FFRs (Behroozmand et al., 2016; Bidelman, 2018; Coffey et al., 2016). 595 

In our data, there are two features that argue against the narrowband component being 596 

a true FFR. First, it only occurs during speech production and not during auditory stimulus 597 

presentation. Second, the narrowband artifact is not localized to the auditory cortex, or to any 598 

other cortical region (Figure 7). In light of the results presented in this work and similar results 599 

recently published by Roussel et al, it is clear that caution should be taken when interpreting 600 

cortical FFR, due to the fact that this signal is exactly what would be expected if there was an 601 

artifact (e.g., vibration at electrodes or connectors, electromagnetic induction by speakers, 602 

electrical crosstalk in the amplifier or connectors).  603 

Other reported sources of artifacts affecting intracranial recordings, including artifacts 604 

due to eye blinking (Ball et al., 2009) and other facial muscle contraction (Otsubo et al., 2008), 605 

have spectral characteristics distinct from the narrowband component described in this work; 606 
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they show broadband spectrums that do not match that of the produced audio and are not 607 

expected to track the fundamental frequency of the voice or correlate with the power of the 608 

speech audio across time.  609 

Acknowledging the existence of this speech-induced vibration artifact is an important first 610 

step to avoid overinterpreting spurious features of the data. Many important questions related to 611 

high-level cognitive processes, including the neural control of speech production, can only be 612 

answered by acquiring recordings that are likely to be affected by the described artifact, but 613 

several steps can be taken to identify it. First, methods that correlate the audio signal with the 614 

neural data can be used to detect the presence of acoustic contaminations. Second, recording 615 

from open headstage pins provides a control for non-neural sources affecting the signal. Third, 616 

vibration sensors can detect mechanical vibrations along the recording system that might affect 617 

the signal. Furthermore, invasive recordings for BCI applications are likely to be affected by 618 

speech-induced vibrations, compromising the decoding performance. Therefore, it is necessary 619 

to develop source separation methods to remove speech-related artifacts from the neural data 620 

in order to reliably quantify underlying neural activity.  621 

Identifying and mitigating artifacts in intracranial recordings from awake patients is 622 

fundamental to achieving reliable and reproducible results in the field of human systems 623 

neuroscience. This, in turn, will lead to an improved understanding of the neural physiology and 624 

pathophysiology of uniquely human cognitive abilities.   625 
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