Title page.

1

2

5

10

23

- 3 The genomic basis of domestic colonisation and dispersal in Chagas disease
- 4 vectors.
- Luis E Hernandez-Castro*¹, Anita G Villacís², Arne Jacobs³, Bachar Cheaib¹, Casey C Day⁴,
- 7 Sofía Ocaña-Mayorga², Cesar A Yumiseva², Antonella Bacigalupo¹ Björn Andersson⁵,
- 8 Louise Matthews¹, Erin L Landguth^{4,6}, Jaime A Costales², Martin S Llewellyn^{¶*1}, Mario J
- 9 Grijalva^{¶2,7}
- 11 1. Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
- 12 Glasgow, United Kingdom.
- 13 2. Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y
- 14 Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
- 15 **3.** Department of Natural Resources, Cornell University, Ithaca, United States of America.
- 4. Computational Ecology Lab, School of Public and Community Health Sciences, University
- of Montana, Missoula, United States of America.
- **5.** Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- 19 6. Center for Population Health Research, School of Public and Community Health
- 20 Sciences, University of Montana, Missoula, United States of America.
- 7. Infectious and Tropical Disease Institute, Department of Biomedical Sciences, Heritage
- 22 College of Osteopathic Medicine, Ohio University, Ohio, United States of America.

* Corresponding authors

Luis E Hernandez Castro: enrighernandez18@gmail.com

Martin Llewellyn: martin.llewellyn@glasgow.ac.uk

¶ These authors contributed equally to this work.

Abstract.

The biology of vector adaptation to the human habitat remains poorly understood for many arthropod-borne diseases but underpins effective and sustainable disease control. We adopted a landscape genomics approach to investigate gene flow, signatures of local adaptation, and drivers of population structure among multiple linked wild and domestic population pairs in *Rhodnius ecuadoriensis*, an important vector of Chagas Disease. Evidence of high triatomine gene flow (F_{ST}) between wild and domestic ecotopes at sites throughout the study area indicate insecticide-based control will be hindered by constant reinfestation of houses. Genome scans revealed genetic loci with strong signal of local adaptation to the domestic setting, which we mapped to annotated regions in the *Rhodnius prolixus* genome. Our landscape genomic mixed effects models showed *Rhodnius ecuadoriensis* population structure and connectivity is driven by landscape elevation at a regional scale. Our ecologically- and spatially-explicit vector dispersal model enables targeted vector control and recommends spatially discrete, periodic interventions to local authorities as more efficacious than current, haphazard approaches. In tandem, evidence for parallel genomic adaptation to colonisation of the domestic environment at multiple sites

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

sheds new light on the evolutionary basis of adaptation to the human host in arthropod vectors. Main. The process by which insect vectors of human diseases adapt to survive and breed in human habitats is fundamental to the emergence and spread of vector-bone disease (e.g., Aedes aegypti¹). Relatively modest changes in vector host preference between ancestral (wild) and derived (domesticated) forms can drive devastating epidemics that result in millions of deaths². Understanding the evolution and genetic bases of traits associated with domestication in disease vectors is, therefore, paramount and could inform control efforts and reveal the epidemic potential for new vector species^{3,4}. Furthermore, an accurate definition of landscape functional connectivity (the level at which the landscape heterogeneity facilitates or impedes an organism's movement from, and to, different habitat patches⁵) can shed light on the drivers of vector dispersal, and even assist in identifying poorly connected or isolated areas that can be easily targeted by eradication interventions⁶⁻ Triatominae (Hemiptera: Reduviidae) are a group of hematophagous arthropods that transmit Trypanosoma cruzi, the parasite that causes Chagas disease, a fatal parasitic infection afflicting > 7 million people in Latin America9. Eradication of 'domesticated' triatomines has been the mainstay of disease control in the past (e.g., Triatoma infestans¹⁰, Rhodnius prolixus and Triatoma dimidiata¹¹). However, wild (e.g., T. infestans¹² and R.

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

prolixus¹³) and/or secondary competent species of triatomines (e.g., Triatoma sordida¹⁴, Triatoma maculata and Rhodnius pallescens¹⁵, Panstrongylus howardi¹⁶ and P. chinai¹⁷) can occupy empty domestic niches and continue to jeopardise Chagas disease control strategies. Colonisation of the domestic niche may involve multiple, independent evolutionary processes across the geographic distribution of a given vector species 18,19, analogous to parallel trophic speciation observed in other arthropods²⁰. Alternately, domestication of zoonotic parasites and their vectors may result from a single or limited number of independent colonisation events, followed by rapid and widespread dispersal within the domestic setting^{21,22}. Domestication of a given species may also represent a combination of these two scenarios, where multiple domesticated lineages serially introgress with wild lineages over evolutionary time, as has been elegantly demonstrated through analysis of the genomes of the domestic pig²³. Disentangling these different scenarios in triatomine species, and their important implications for disease control, has been challenging due to a lack of genomic resources for these organisms which are only recently becoming available^{24–26}. With adequate genomic tools; however, the occurrence of domestic colonisation can be established, and its underlying mechanisms unveiled. Parallel colonisation events explored using models of 'adaptation with gene flow' (e.g., ²⁷) can exploit standard population genetic metrics and theory to make generalisations about the genomic basis of adaptations (e.g., ²⁰) and reveal fundamental traits associated with the domestic niche.

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Rhodnius ecuadoriensis is the major vector for Chagas disease in Ecuador and Northern Peru²⁸. Both domestic and wild populations of this species exist throughout its range²⁹. Preliminary morphological and genetic evidence suggests some gene flow of R. ecuadoriensis between domestic and wild ecotopes^{30,31}. By comparison, genetic studies of T. cruzi infecting the same vectors in Ecuador have shown strong to moderate differentiation between wild and domestic isolates 32,33. As such there is a lack of a clear understanding of the micro and macro-evolutionary and ecological forces shaping vector domestic adaptation and dispersal capabilities, and those of the parasites they transmit. Morphometric studies have attempted to develop phenotypic markers in triatomines associated with domestic or wild ecotopes with little (e.g., 34) to moderate (e.g., 35) success. Therefore, domestication in triatomines has become a rather qualitative concept³⁶ with urgent need for quantitative foundations. Our study represents a first attempt to accurately quantify genomic signatures of domestication of triatomine species, as well as landscape drivers of vector dispersal. We use a reduced-representation sequencing approach (2b- RADseq) to recover genome-wide SNP variation in 272 Rhodnius ecuadoriensis individuals collected across ecological gradients in Loja, Ecuador. We find strong evidence of gene flow between domestic and wild ecotopes and signatures of local adaptation in some genomic regions. Furthermore, we provide substantial evidence that triatomine dispersal is fundamentally restricted by landscape elevation. Our findings suggest frequent and spatially targeted interventions, to cope with high gene flow and fragmented populations, are necessary to suppress Chagas Disease

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

transmission in Loja. Moreover, discovery of signatures of local adaptation shed the first light on the genomics basis of domestication in triatomines. Results. Recovery of SNP markers from 272 Rhodnius ecuadoriensis SNP specimens. Our CspCI-based 2b-RAD protocol was successful in obtaining genome-wide SNP information for R. ecuadoriensis. Sequencing of non-target species was minimal (0.2%) (Supplementary Figure 1). We genotyped six Rhodnius prolixus as controls and 80% of reads mapped to the R. prolixus reference genome. Only 9.5% of R. ecuadoriensis reads mapped to the same reference, a consequence of genomic sequence divergence between R. ecuadoriensis and R. prolixus ³⁷. A stringent genotyping approach confidently identified 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites, which represented closely administrative boundaries of human communities. (Supplementary Table 1). In seven collection sites (Figure 1a; CG, BR, CE, CQ, HY, SJ and GL- seven pairs) triatomines from both domestic and wild ecotopes were collected. Remaining sites only had individuals of one ecotope (domestic or wild). Reduced R. ecuadoriensis population genetic diversity in domestic ecotopes. Multiple genetic diversity estimates among populations from the 25 collection sites in Loja province were calculated (Obsvered (H_O), and expected (H_E) heterozygosity, inbreeding coefficient (F_{IS}) and Allelic Richness (A_r) ; Supplementary Table 2). Sample-size corrected A_r values ranged from 1.19 to 1.44 with the lowest values in La Extensa (EX), San Jacinto (SJ), El

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

Huayco (HY) and Santa Rita (RT). In the paired ecotopes within the seven collection sites, A_r values were higher for wild than domestic triatomine populations in five out of seven instances, a significant effect observed (p<0.05, rarefaction method³⁸). Genomic differentiation between domestic and wild ecotopes. To assay populations dynamics between sympatric domestic and wild foci, we focused our individual-based genomic differentiation and pairwise F_{ST} comparisons analyses on the seven collection sites for which samples from both ecotopes were available (Figure 1a). Supporting frequent migration between domestic and wild ecotopes, samples from each ecotope were interleaved at most collection sites in the phylogenetic tree, with collection site geography, not ecotope, impacting the tree topology (Figure 1b). As such, samples collected in Galapagos (GL), Coamine (CE) and Chaquizhca (CQ) formed distinct clusters, and El Huayco (HY) - San Jacinto (SJ) and Bramaderos (BR) - La Cienega (CG) also grouped discretely. Five broadly congruent clusters were defined in a discriminant analysis of principal components (DAPC) (Figure 1c), with geographic collection site rather than their ecotope again structuring observed diversity. F_{ST} indices between paired domestic and wild triatomine samples within each of the seven compared collection sites indicate little differentiation (e.g., F_{ST} ≤ 0.10). Permutation tests indicated that F_{ST} was significant (p < 0.05) at only two sites - Bramaderos and El Huayco (Figure 1d). As expected, hierarchical analysis of molecular variance revealed genetic subdivision was significantly stronger (F_{collection sites/total} = 0.26, p-value < 0.001) among collection sites than among ecotopes within collection sites (F_{ecotope/collection site} = - 0.004, p-value < 0.001) or among collection year within

communities (F_{collection vear/collection site} = 0.06, p-value < 0.001) (Supplementary Table 4).

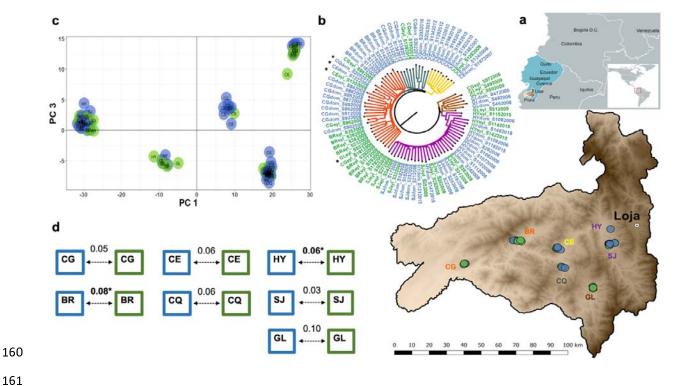


Figure 1. Genomic differentiation of domestic and wild *R. ecuadoriensis.* **a,** geographic distribution of the seven collection sites with both ecotopes over an elevation surface map of Loja. **b**, Neighbor-Joining midpoint phylogenetic tree with phylogenies indicating the Euclidean distance between triatomine samples built from allele counts. Tree branches clades are colour-coded to approximately differentiate collection sites (or clusters of collection sites) with few samples (black asterisks) not conforming to the pattern. **c**, the scatter plot shows five clusters are built with the first and third principal components of the discriminant analysis eigenvalues. **d**, pairwise F_{ST} comparisons between domestic (blue box) and wild (green box) *R. ecuadoriensis* in multiple sites across Loja (**a**). Significant F_{ST} values (arrows) after FDR correction are highlighted in bold and an asterisk. In all panels, samples location (dots) and labels are colour-coded to indicate their domestic (blue) or wild (green) collection ecotope. Collection sites 2-letter ID labels: SJ, San Jacinto; HY, EL Huayco; GL, Galapagos; CQ, Chaquizhca; CE, Coamine; BR, Bramaderos; CG, La Cienega (see Supplementary Table 1 for full collection sites list).

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Genetic loci correlated with domestic colonisation. To identify loci associated with domestic colonisation, we combined a Random Forest (RF) classification approach and redundancy analyses (RDA) with outlier scans. We included the seven collection sites with frequent domestic-wild migration and three additional wild-only sites to roughly conform similar number of domestic (n= 56) and wild (n= 52) samples. A total of 347 SNPs provided high ranked classification accuracy (mean > 3) across the three RF iterations (inset in Figure 2a). Backwards purging on this highly discriminatory subset of SNPs detected a set of 43 SNPs that minimised the 'Out-of-bag' error rate (OOB-ER) to a minimum of 0.09 and maximised the discriminatory power among domestic and wild samples (Figure 2a). In a parallel RDA model, ecotope (domestic / wild) was a predictor explaining approximately 0.4% of the total variation and the constrained axis built from that variation was significant (p-value < 0.001), and so was the full model as indicated by the Monte Carlo permutation test. The distribution of each SNP loading/contribution to the RDA significant axis showed 109 candidate adaptive loci as SNPs loadings at ±2 SD from the mean of this distribution (permissive threshold; Figure 2b). In a more conservative approach, we also identified seven loci from those 109 under very strong selection as represented by those SNPs loading at the extreme ±3 SD (conservative threshold) away from the mean distribution of the constrained axis (Figure 2b). The arrangement of the individual samples in the ordination space with relation to the RDA axis showed a clear pattern of subdivision comparable to the ecotope in which samples were collected (Figure 2c). The 21 loci/SNPs identified as adaptive loci (dark dots in Figure 2b) by RDA were also detected as highly discriminatory SNPs for domestic and wild ecotopes in the RF analysis. Assuming 'adaptation with geneflow' we assessed locus-specific estimates of F_{ST} (Figure 2d), among the 2552 SNPs between domestic and

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

wild ecotopes and identified one SNP (Locus ID 15732 – purple diamond in Figure 2bd) likely to be under local adaptation and/or spatial heterogeneous selection as suggested by OutFlank analysis (Figure 2d left). Moreover, outlier scan with fsthet (Figure 2d right) in the same subset flagged this OutFlank SNP and 73 additional SNPs showing F_{ST} higher that the average neutral loci distribution at a 5% threshold. In summary, 43 SNPs were identified with the highest classification accuracy in RF analysis. 21 of those SNPs showed some signal of adaptation (that is, loaded ± 2 SD away from mean distribution of contrained axis) and 4 were identified showing strong signal of adaptation (that is, loaded ± 3 SD away from mean distribution of contrained axis) in RDA analysis. Three of the SNPs flagged as outliers in fsthet analysis were found also being at high classification accuracy in RF analysis. The SNP (Locus ID 15732) likely to be under strong selection as identified by OutFlank analysis, also had a high classification accuracy in RF and, interestingly, it was also identified within the RDA and fsthet SNPs sets under strong signal of selection. Mapping outlier loci to the Rhodnius prolixus genome. Several SNPs from the different analyses mapped to annotated regions of the R. prolixus genome. One SNP identified in the RDA analysis mapped (97.1% identity) in a R. prolixus genome region containing the characterised Krüppel gap gene (Accession No JN092576.1) involved in embryo development in arthropods³⁹. Three SNPs likely to be under balancing selection identified in fsthet analysis mapped (100% identity) to regions in the R. prolixus genome containing characterised GE-rich and polylysine protein precursors (mRNA - Accession AY340265.1), and the Krüppel and giant gap genes^{39,40} (Accession No HQ853222.1). The former are important proteins within the sialome of blood-sucking bugs⁴¹ and the latter involved in

embryo development⁴⁰. Mapping of the majority of putatively adaptive SNPs, including Locus

ID 15732, was not possible in the absence of an available *R. ecuadoriensis* genome.

223

224

225

227

228 229

230

231

232

233

234

235

236

237

238

239

240

241

242

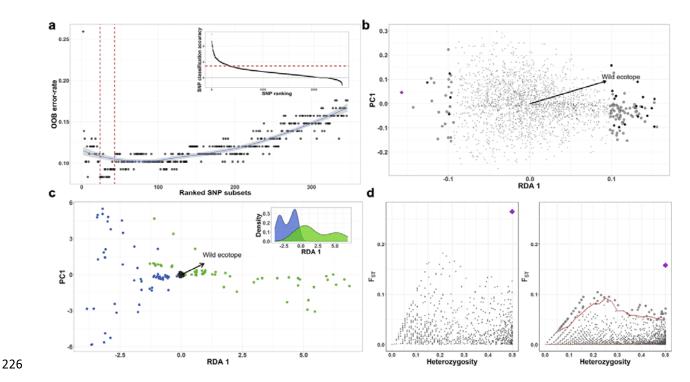
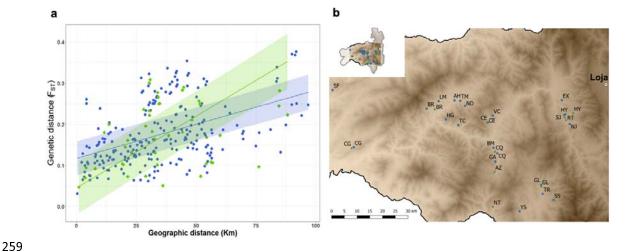


Figure 2. Scanning outlier SNP markers for signatures of local adaptation. a, Random Forest backwards purging shows subsets with decreasing number of highly discriminatory SNPs and their resulting OOB-ER. The two vertical red lines indicated the 43 SNPs subset with the lowest OOB-ER and maximum discriminatory power between domestic and wild ecotopes. The inset shows SNPs ranked based on their classification accuracy averaged after 3-independent RF runs. SNPs with classification accuracy above three (red horizontal line) were used for the backwards purging. b, In our RDA model, SNPs (dots and diamonds) are arranged as a function of their relationship with the constrained predictor, ecotope (arrow outlines towards a wild ecotope relationship). SNPs closer to the centre (small grey dots) are not showing relation with the predictor. Adaptive loci/SNPs are represented by those large dots/diamond loading at ± 2 SD and ± 3 SD separated from the mean SNPs loading distribution. Black large dots (and purple diamond) represent loci/SNP identified with high classification power in RF analysis. c, a biplot of R. ecuadoriensis triatomine smaples and SNPs (small black dots in the centre) are arranged in relation to the constrained RDA axis with an arrow indicating those related to the wild ecotope. Dots are colour-coded to show sample ecotope of collection, domestic (blue) or wild (green). Biplot scaling is symmetrical with inset showing the density function for the RDA axis. d, Scatter plots show OutFlank (left) and fsthet (right) SNPs F_{ST}-

heterozygosity relationship. 43 SNPs (large dots) had higher than average F_{ST} distribution of neutral loci in fsthet, whereas only one in OutFlank. Purple diamond indicated the SNP (ID 15732) flagged in all four analyses.

Comparison of dispersal rates of *R. ecuadoriensis* between domestic sites with dispersal rates between wild sites. Including all samples (n = 272) and collection sites (n = 25), we tested the strength of genetic isolation-by-distance (IBD) initially among domestic sample collection sites and latterly among wild collection sites (Figure 3). Mantel tests in both domestic ($r_m = 0.46$, p-value < 0.001) and wild ($r_m = 0.31$, p-value = 0.043) ecotopes strongly supported an effect of geographic distance on genetic distance (Figure 3a). Based on a generalised least square model (Supplementary Table 5) with maximum likelihood population effects parametrisation (GLS-MLPE), the effect of geographic distance significantly stronger (0.0018, p-value < 0.001) in wild compared to domestic foci (Figure 3a), suggesting that the rate of vector dispersal occurred at a higher rate between domestic populations than between wild ones.



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

within and among clusters (Figure 4b).

Figure 3. Dispersal rate in R. ecuadoriensis. a, correlation between pairwise genetic (F_{ST}) and geographic distances (data points) with fitted regression lines (95% CI) for domestic (blue dots) and wild (green diamonds) ecotopes. Fitted GLS-MLPE model in egn 1. b, geographic distribution of the 25 collection sites across Loja province used for estimating R. ecuadoriensis gene flow with geographic distance. Collection sites 2-letter ID labels: EX, La Extensa; SJ, San Jacinto; HY, EL Huayco; RT, Santa Rita; NJ, Naranjillo; GL, Galapagos; SS, Santa Rosa; TR, Tuburo; YS, Camayos; NT, San Antonio de Taparuca; AZ, Ardanza; GA, Guara; CQ, Chaquizhca; BM, Bella Maria; CE, Coamine; VC, Vega del Carmen; TM, Tamarindo; HG, Higida; ND, Naranjo Dulce; TC, Tacoranga; AH, Ashimingo; LM, Limones; BR, Bramaderos; CG, La Cienega; SF, San Francisco (SF). Landscape functional connectivity in R. ecuadoriensis. Landscape genomic mixed modellling aims to identify the effect of different combinations of landscape surfaces and their parameters on a given genomic differentiation pattern. To obtain an accurate representation of the genomic differentiation pattern among R. ecuadoriensis populations, we chose Hedrick's G_{ST} pairwise comparisons (Figure 4b) which corrects for sampling limited number of populations⁴². The genomic pattern was consistent regardless of metric used (e.g., Pairwise F_{ST} ⁴³ and Meirman's standardised F_{ST} ⁴⁴) as revealed by strong and significant ($r^2 = 0.99 \& 0.92$, respectively; p < 0.001) Pearson's correlations. Pairwise Hedrick's G_{ST} comparisons showed a strong pattern of population structure across Loja province with presence of both high and low genetic differentiation among collection sites (Figure 4ab). San Francisco (SF) and San Antonio (NT) were two examples of clear, and mutually distinct, outliers in genetic terms. Santa Rita (RT), El Huayco (HY), San Jacinto (SJ) and La Extensa (EX) were genetically and geographically close but highly differentiated form the rest. Overall, clusters of collection sites were evident with some differentiation

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

The genomic pattern was iteratively regressed with different combinations of landscape variables and parameters using the ResistanceGA⁴⁵ optimisation framework (see Methods). The optimisation process involves estimating unbiased resistance values for a given combination of surfaces and select the best (true) model representing the genomic pattern. To rule out collinearity between landscape variables, we calculated Spearman's correlation coefficient, rho, between all pairs of surfaces which resulted in small and/or negative (rho < 0.29) correlations (Supplementary Table 8). Similarly, a scatterplot matrix did not show highly correlated surfaces (Supplementary Figure 11). Our three ResistanceGA optimisation replicates (see Methods) showed comparable results. In all replicates, the single elevation surface showed the lowest AIC_c values and the highest AIC_c weight compared to the other single and composite optimised surfaces (Table 1 is a replicate example). Delta AICc shows the AICc difference between the elevation surface (best model) and the rest of the (combination of) surfaces. A difference of ~2.26 units between elevation surface and a distance-only model was evident which suggests elevation surface is a better predictor that geographic distance. Optimisation of the elevation surface parameters confirmed gene flow resistance increases with altitude up to the highest resistance at approximately 2,400 m.a.s.l. (Supplementary Figure 12). To evaluate the roboustness of our optimisation procedure and test the effect of uneven distribution of sample sites, we ran a bootstrap analysis with resampling of the sites at each iteration. Interestingly, the bootstrap analysis revealed that, when resampling 85% of the collection sites, the optimised elevation surface model was ranked the top model in only

43.2% of the bootstrap iterations compared to 46% of the times in which a distance-only model was better (Table 2). The fact that elevation surface was slightly less supported in the bootstrap analysis is likely due to the irregular distribution of sites across the study area and altitudes. Nevertheless, elevation surface remains the strongest predictor of genetic connectivity across the study area (Table 1).

Table 1 Model selection results for the generalised mixed-effects models optimised on genetic distance (Hedrick's G_{ST}) for R. ecuadoriensis. For each resistance surface model, number of parameters plus the intercept (k), Akaike information criterion (AIC), additional parameters corrected AIC (AIC_c), marginal (R²m) and conditional (R²c) R² values of the fitted MLPE model, log-likelihood (LL), delta AIC_c and AIC_c weight (ω) are provided.

Resistance surface model	Туре	k	AIC	AIC _c	R²m	R ² c	LL	Delta AIC _c	ω
Elevation	single	4	-751.51	-749.51	0.41	0.72	379.76	0	0.76
Distance	single	2	-743.79	-747.25	0.43	0.74	375.90	2.26	0.24
Roads	single	6	-744.91	-736.25	0.42	0.75	376.46	13.26	0.0010
Elevation + Roads	composite	9	-751.55	-729.55	0.42	0.72	379.77	19.96	3.49e-05
Land	Single	12	-762.26	-720.26	0.52	0.81	385.13	29.25	3.35e-07
Elevation + Land cover	composite	15	-763.15	-687.82	0.57	0.78	385.57	61.70	3.03e-14
Land cover + Roads	composite	17	-762.06	-648.63	0.56	0.78	385.03	100.88	9.37e-23
Null model	single	1	-561.25	-565.08	0	0.42	283.63	184.43	6.75e-41
Elevation + Land cover + Roads	composite	20	-762.44	-520.44	0.55	0.78	385.22	229.08	1.36e-50

Table 2 Summary of bootstrap analysis. For each resistance surface model, number of parameters plus the intercept (k), and average (Avg) of the Akaike information criterion (AIC), additional parameters corrected AIC (AIC_c), AIC_c weight (ω), rank, R²m, LL, root mean square error (RMSE) and frequency the model was top ranked are provided.

Resistance surface model	k	Avg AIC	Avg AIC _c	ω	Avg rank	Avg R²m	Avg LL	Avg RMSE	Top model (%)
Elevation	4	-535.59	-533.09	0.40	1.62	0.41	271.79	0.055	43.2

Distance	2	-531.44	-530.78	0.60	2.33	0.42	267.72	0.055	46
Land cover	12	-526.59	-487.59	4.17e-05	3.91	0.51	275.30	0.053	10.8
Roads	6	-523.81	-517.81	0.0008	4.18	0.41	267.91	0.055	0
Elevation + Roads	9	-525.76	-509.40	2.80e-06	4.40	0.41	271.88	0.055	0
Elevation + Land cover	15	-521.94	-425.94	1.45e-21	5.29	0.55	275.97	0.054	0
Land cover + Roads	17	-516.51	-312.51	3.97e-46	6.59	0.54	275.26	0.054	0
Elevation + Land cover + Roads	20	-511.14	328.86	1.11e-185	7.68	0.54	275.57	0.054	0

To assist with the identification of vector management zones for regional health authorities, an electrical current map was built by applying a circuit theory algorithm ^{46,47} on the optimised elevation surface model (Figure 4c). Specifically, the algorithm simulates the passing of an electric current across grids (zones) with low/high optimised resistance values. Low resistance grids are highlighted as high current intensity zones (yellow/light zones in Figure 4c) in which high population connectivity, and therefore high degree of gene flow, is predicted. The map showed different gradients of connectivity within and among western, central, eastern and southern Loja province. These included individually isolated populations (e.g. SF & CG), isolated clusters (e.g EX; SJ; HY; RT; NJ); as well as well-connected hubs (e.g., BR-LM, AH-TM-ND, HG-TC and CE-VC).

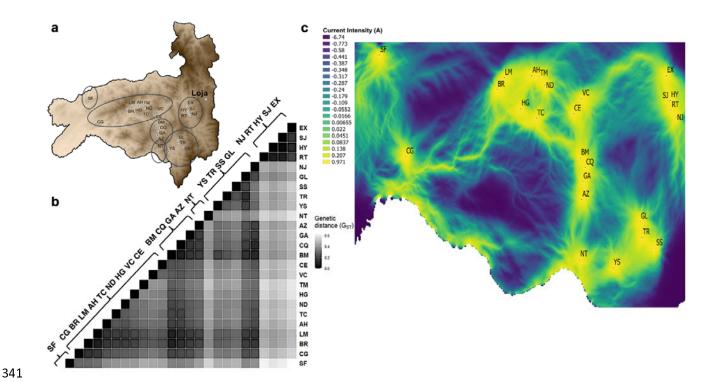


Figure 4. Landscape connectivity of *Rhodnius ecuadoriensis* in Loja province, Ecuador. a, Map of the geographic location of collection sites across Loja. b, Heatmap shows pairwise genetic distances (G_{ST}) with collection sites ID labels on the right. Clusters and highly differentiated collection sites are circled in a. Grey scale indicate genetic distance with lighter colours showing higher differentiation. c, Electrical current map of Loja built from the optimised elevation surface model showing a gradient of high (yellow/light shade), medium (light greens) and low (blue/dark shade) functional connectivity across Loja. Clusters of highly connected sites are evident but isolated sites are also present across regions on Loja. Connectivity within and among clusters and collection sites is highly influenced by the landscape, specifically elevation surface.

Discussion.

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

In this study we make several core observations: R. ecuadoriensis do invade houses from wild populations, genomic signatures of R. ecuadoriensis domestication can be functionally mapped, and the landscape drivers of vector dispersal can be identified. Consistent with frequent house invasion, high levels of gene flow between multiple domestic and wild R. ecuadoriensis populations were detected by hierarchical analysis. Low and largely nonsignificant pairwise F_{ST} values, as well as interleaved sample clustering based on phylogenetic and discriminant analyses were also consistent with house invasion. Significantly elevated allelic richness in wild sites by comparison to nearby domestic foci clearly confirmed that dispersal occurred most frequently from wild ecotopes into domestic structures. Genome scans across these parallel domestication events revealed strong evidence of 'adaptation with geneflow', with key outlier loci associated with colonisation of human-made domestic structures and, presumably, human blood feeding - several of which mapped to the R. prolixus genome. A strong signature of isolation-by-distance (IBD) was observable throughout the dataset, an effect less pronounced between domestic sites than between wild foci. Formal landscape genomic analyses revealed elevation surface as the major barrier to genetic connectivity between populations. Landscape genomic analysis enabled a spatial model of vector connectivity to be elaborated, informing ongoing control efforts in the region and providing a model for mapping the dispersal potential of triatomines and other disease vectors.

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

Vector control is the mainstay of Chagas Disease control¹¹. Widespread wild reservoir hosts, as well as a lack of safe treatment options^{48,49} and associated healthcare infrastructure, mean that transmission cannot be blocked by reducing parasite prevalence in human and animal hosts⁵⁰. Our data indicate that elimination of domesticated R. ecuadoriensis in Ecuador will be frustrated by repeated re-invasion from the wild environment. Similar risks to effective control are posed by wild *T. infestans* in the southern cone region¹², *R. prolixus* in Los Llanos of Colombia and Venezuela¹³ and potentially elsewhere in Latin America where competent vectors are present in the wild environment and nearby domestic locales (e.g., T. sordida, T. maculata, R. pallescens and others 14,15). Understanding evolutionary processes that underpin the colonisation of the domestic environment by arthropod vectors, and their specialisation to feeding on humans, is required to characterize their vectorial capacity. Hybrid ancestry in Culex pipiens, for example, is thought to contribute to the biting preference for humans⁵¹. Human feeding preference can be rapidly genetically selected for in *Anopheles gambiae*⁵². Specialisation of *Aedes aegypti* on humans, and resultant global outbreaks of dengue, yellow fever, and Chikungunya viruses, may be traceable to the emergence of a differential ligand-sensitivity of the odorant receptor AaegOr4 in East Africa2. In triatomines, the nature of genetic adaptions that have enabled the widespread dispersal of successful lineages are far from clear. T. infestans, thought to have originated in the Western Andean region of Bolivia, spread rapidly among human dwellings in the Southern Cone region of South America before its near eradication in the 1990s¹⁰. Cytogenetic analyses suggest this early expansion was accompanied by a substantial reduction in genome size⁵³, but the adaptive significance such a change is not

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

clear. The advantage of the R. ecuadoriensis system we describe is that it captures multiple parallel adaptive processes and; therefore, can assist in the identification of common evolutionary features associated with colonisation of the domestic environment. Despite limited genomic coverage, and with no R. ecuadoriensis reference genome available, we mapped outlier loci to genes in the R. prolixus draft genome, and found they are related to salivary enzyme production⁴¹, as well as embryonic development³⁹. Although these genes may have a role in domestic adaptation in triatomines, genome-wide association studies or quantitative trait locus mapping approaches are necessary to fully reveal the genomic architecture of adaptation to the domestic setting. Nevertheless, these findings motivate us to investigate further putative genes involved in local adaptation to the domestic environment such as blood-feeding⁵⁴, sensory cues and host-seeking behaviour^{25,55}, as well as human blood detoxification^{54,56}. Recent data from our group in Loja province shows that, without doubt, domestic *R. ecuadoriensis* feed extensively on human blood⁵⁷. Our analyses identified a strong signal of genetic IBD among R. ecuadoriensis populations across our study area. Geographic partitioning at this scale is consistent with limited autonomous dispersal capabilities of triatomines which, are, in the main, poor fliers⁵⁸. Windblown dispersal observed in smaller vector species is unlikely in triatomines⁵⁹. Passive dispersal of triatomine vectors alongside the movements of their human hosts, which certainly underpins the successful dispersal of other domesticated vector species, is more likely (e.g., Aedes spp. 60,61). Lower IBD observed among domestic than wild settings may be consistent with passive dispersal alongside humans. We observed a similar phenomenon among parasite isolates from the same region in a previous study³². Nonetheless, our formal

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

exploration of the landscape drivers of vector dispersal did not reveal an important effect of roads, and it is not clear to what extent human dispersal of vectors takes place based on our data alone. According to our landscape genomic analysis, elevation surface is a key predictor of connectivity/discontinuity among R. ecuadoriensis populations. Our machine learning (ML) optimisation procedure provides objective parameterisation of altitude resistance values to R. ecuadoriensis gene flow⁶². Based on our landscape model predictions we were able to construct a electric current map (Figure 4c) to assist medical entomologists and policy makers in understanding vector dispersal routes. Current vector control strategies in Loja target a single civic administrative unit (neighbourhood or town) for any given insecticidal intervention²⁸. Our data and model suggest this approach may be effective for certain communities (e.g., SF, CG, NT and YS, Figure 4). However, for highly connected hubs (e.g. BM, GA, CQ, AZ), successful longer term triatomine control (e.g., insecticide spraying, house improvement, window nets, etc.) will depend on simultaneous intervention in multiple connected communities. In Ecuador, as with many other endemic regions in Latin America, efforts to control Chagas disease may be complicated in the long term by substantial wild populations of secondary triatomine vectors¹⁶. As with many other vector borne diseases, there is also a strong case for the use of integrated vector management (IVM) for Chagas disease, where improvements to housing, education, community engagement, in addition to bed net use and insecticide spraying are all likely to be necessary to achieve sustained control^{28,63}. Our data

clearly indicate that triatomines do invade houses in Loja and low-lying valleys provide routes for vector dispersal between communities and cost-effective IVM must be underpinned by this understanding of vector population structure. Fortunately, genomic and analytical tools can now furnish much of the detail, although better genomic resources for secondary triatomine vector species are required to reveal the process of vector adaptation to the human host. Targeting secondary vector species must now be a priority for health authorities, as these now represent the most pernicious and persistent barrier to controlling residual Chagas disease transmission.

Methods.

Sample collection and study area.

Rhodnius ecuadoriensis triatomine bugs (Supplementary Table 1) were derived from a larger collection in the Center for Research on Health in Latin America (CISeAL) of Pontificia Universidad Católica del Ecuador (PUCE). Rhodnius prolixus samples (n=6) were provided by the London School of Hygiene and Tropical Medicine and sequenced as an outgroup, as well as to assist with the decontamination of the of 2b-RAD reads and their mapping to functional regions in the draft *R. prolixus* genome²⁴. *R. ecuadoriensis* individuals were collected using the one-hour-man method during field surveys across Loja, Ecuador from 2004 to 2018²⁸. The triatomines were collected under Ecuadorian collection permits: N° 002–07 IC-FAU-DNBAPVS/MA; N° 003–2011-IC-FAU-DLP-MA; N° 006-IC-FAU-DLP-MA-2010; N° 010-IC-FAN-DPEO-MAE; N° 011–2015- IC-INF-VS-DPL-MA; MAE-DNB-CM-2015-0030

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

and internal mobilization guide N° 001-2018-UPN-VS-DPAL-MAE and N° 017-2018-UPN-VS-DPAL-MAE, All these samples were exported to the University of Glasgow by the scientific export authorization N°70-2018-EXP-CM-FAU-DNB/MA. A widespread spatial sampling (Supplementary Figures 8, 9 and 10) of ecotopes (e.g., domestic and wild), altitudes (up to 1542.9 m.a.s.l.), vegetation types (e.g., tree/bush forest, cropland, etc.) and sites adjacent to different road infrastructure (e.g., highways, tertiary roads, etc.) was carried out in the study area. Genomic DNA extraction and sequencing. Genomic DNA (gDNA) was extracted in 88.2% (502/443) of the samples using a SSNT/Salt precipitation method⁶⁴ previously applied in triatomine bugs⁶⁵. For each sample, gDNA concentration was > 25 ng/uL and 288.4 ng/UL (sd. ± 241.8) on average with purity ratios $(260/280 \text{ and } 260/230) \text{ of } 1.87 \text{ (sd.} \pm 0.10) \text{ and } 2.30 \text{ (sd.} \pm 0.97), respectively. gDNA was$ digested with the CspCl Type IIB restriction enzyme (IIB-REase - New England BioLabs, Inc.) which has shown to yield a high marker density in triatomine⁶⁵. DNA fragments (36bp) were ligated to Illumina single-end adaptors and a specific barcode added during PCR amplification to construct 382 150bp 2bRAD libraries 66. Libraries were homogenised to an approximate similar concentration, purified with magnetic beads⁶⁷ and pooled in two separate batches (n = 191). Each batch was sequenced separately on 1-flowcell (2 lanes) HiSeq 2500 (Illumina) Rapid Mode platform with a single-end (1x50 bp) setup using v2 SBS

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

chemistry at the Science for Life Laboratory (SciLifeLab, Stockholm, Sweden), which also implemented the reads demultiplexing and their in-house quality-filtering. Bioinformatics of 2b-RAD sequenced data. Data cleaning and decontamination. Demultiplexed raw data quality scores were verified in FastQC software v0.11.9 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 2.3% (16/689) Million reads (Mreads) were removed due to incomplete CspCl restriction site (36 bp) and having across read quality score below 30⁶⁸. The 624.7 high quality Mreads with integrate restriction site had their Illumina adaptors and barcodes trimmed, and reads were forwarded (5'-3') using custom scripts. To exclude non-target sequences (Supplementary Methods 1.1), 1.2 Mreads (0.2%) reads mapping to bacteria, virus, archaeal, Trypanosoma cruzf⁶⁹ and homo sapiens (Genome Reference Consortium human build 38) genomes were removed using DeconSeg standalone v4.370 with an alignment identity threshold of 85% and Kraken⁷¹ taxonomic classifier (Supplementary Figure 1). After decontamination, each sample yield on average 1.6 Million reads (interquartile range = 1.9 Mreads). **Optimisation and genotyping.** As advised in refs. ^{72,73}, we optimised (Supplementary Methods 1.1) STACKS v2.55⁷⁴ DENOVO MAP.PL programme by varying at a time one of the main controlling parameters (-m, -M and -n; Supplementary Table 2) on each run while keeping the rest of the parameters at the setting used in early experiments (e.g., -m 5, -M 2, -n 1, -N 4, -alpha 0.01, -bound low 0, -bound high 0.01, -r 0.8, -min maf 0.01⁶⁵). The parameter combination yielding the highest number of SNPs with the least missing data and

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

genotyping error rate was chosen to be the optimal set. Genotypes below a quality score of 30, and samples with above 50% missing genotypes across sites and among loci were removed from downstream analysis using the VCFtools software suite v0.1.5 5⁷⁵. The remaining missing genotypes (< 0.5%) were imputed using the k-nearest neighbour genotype imputation (LDkNNi) method⁷⁶ implemented in the TASSEL software v5⁷⁷. Genomic differentiation between domestic and wild ecotopes Genetic diversity and linkage disequilibrium. Genetic diversity measures (e.g., observed (H_O) and expected heterozygosity (H_E), inbreeding coefficient (F_{IS}) and percentage of loci in Hardy-Weinberg equilibrium (% HWE)) were calculated for each collection site, and ecotopes (domestic and wild) within collection sites, in the HIERFSTAT⁷⁸ and pegas⁷⁹ packages in R80. Sample-size corrected Allelic richness (Ar) was calculated using the rarefaction method³⁸ implemented in the PopGenReport⁸¹ R package. To evaluate the percentage of SNP markers in linkage disequilibrium (LD), correlation coefficient (r²) estimates were calculated between markers pairs using using the GUS-LD R package⁸² which revealed a very low percentage (< 0.20%). To observe whether genetic diversity difference between ecotope pairs was significant, a permutation-based (10,000 permutations) two sample t-test was performed on each pair diversity values using the RVAideMemoire R package (https://www.rdocumentation.org/packages/RVAideMemoire). Individual-based genomic differentiation. Genomic differentiation among R. ecuadoriensis domestic and wild samples within a subset of seven collection sites was

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

visualised in a neighbour-joining midpoint tree⁸³ (Figure 1b) built from Euclidean genetic distances of allele frequencies with the ape⁸⁴ R package. Tree components were edited in FigTree software v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) to better illustrate domestic and wild samples and their overall clustering pattern. To explore samples genomic differentiation further, a DAPC⁸⁵ was performed in the same seven collection sites with the adegenet⁸⁶ R package (Figure 1c). The most likely a priori number of clusters was chosen based on the lowest Bayesian information criterion (BIC). In the DAPC, all principal components (PCs) and the eigenvectors of the first three DA discriminant functions were kept for visualizing the samples individual coordinates of different PCs linear combinations (Supplementary Figure 5). Pairwise F_{ST} comparisons. To support previous hierarchical analyses, pairwise F_{ST} comparisons⁴³ were performed between *R. ecuadoriensis* from domestic and wild ecotopes within the seven collection sites (Figure 3b). In this study, F_{ST} was exploited as a measure of genomic connectivity (flow) between ecotopes within given collection sites. Specifically, Nei's F_{ST}⁸⁷ pairwise comparisons were computed in adeqenet R package and tested at 5% significance via 999 permutations of individuals selected randomly within and between groups. P-values were corrected for multiple comparisons using the false discovery rate (FDR) method⁸⁸ in the function p.adjust of the stats R package⁸⁰. Hierarchical F-statistics. R. ecuadoriensis molecular variation was explored at a four-level (e.g., among collection sites, among ecotopes (domestic or wild) within collection sites, among collection year within collection sites and among individuals within populations)

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

hierarchy of population structure. For each hierarchy, a F-statistic (with 95% C.I.) was calculated, and its significance tested via 999 randomised permutations with the HIERFSTAT R package. For comparison and given not all sites had both ecotopes, two hierarchical analysis were performed, one with the total collection sites (n = 25) and the other with a subset of collection sites (n = 7) with samples collected in both ecotopes (Supplementary Table 4). Domestic-wild SNP association analyses. As a response of R. ecuadoriensis ecotopes fluxes in multiple collection sites across Loja, we screened for SNP RADseq markers under a strong signal of selection (outlier loci). The power for detecting outlier loci of four different approaches, Random Forest (RF) machine learning (ML) classification algorithm (implemented in refs.^{89–91}), redundancy analysis (RDA) constraint ordination⁹², and OutFlank⁹³ and fsthet⁹⁴ F_{ST}-outlier methods, was evaluated using a roughly similar number of domestic (n= 56) and wild (n= 52) R. ecuadoriensis across Loja province sharing a total of 2552 SNPs. Random Forest. The RF algorithm⁹⁵ implemented in the randomForest⁹⁶ R package was used to build a series of recursive decision trees, or forest, to classify domestic and wild R. ecuadoriensis based on their shared SNPs (predictors) covarying to a specific ecotope (response variable) (Supplementary Figure 6). Within each RF run, decision trees were trained by random subsampling with replacement 66.6% of triatomine samples (training dataset), for which aleatory selected SNPs were top-ranked classifiers when minimizing the

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

most within-ecotope variation (that is, partitioning triatomine by ecotope). Trained trees predictive power was tested with the remaining 33.3% triatomine samples ('Out-of-bag' test dataset) in which ecotope misclassification of samples estimated an OOB-ER for that RF run; SNPs importance classification accuracy was averaged among the total number of trees created in a given RF. Three independent (spatial structure-corrected) RFs with 100,000 trees were run and their convergence on SNPs importance classification accuracy was evaluated by Pearson's correlation test. Top-ranked SNPs (Figure 2a inset) among the three RFs (that is, importance classification accuracy above 3) were chosen for backwards purging, as implemented in refs. 90,97. Backwards purging (Figure 2a) iteratively runs RFs starting with the full top-ranked SNPs and discarding the least important ones before the next iteration until only two were left. The subset with the lowest OOB-ER contained SNPs outlying strongly for the ecotope response. Redundancy analysis. Outlier loci likely under selection were also identified using RDA multivariate constrained ordination⁹⁸ implemented in the vegan^{99,100} R package. First, a matrix fitted values (Supplementary Figure 7a) were obtained using multivariate linear regression between a matrix of genotypes (response) and ecotopes (explanatory) with an additional term controlling for spatial structure (based on the three first axes of an individual principal coordinates of each sample). Then, principal component analysis (PCA) on the fitted values matrix resulted in a constrained axis composed from the variation explained, 'redundancy', by our explanatory variable (Supplementary Figure 7b). Overall RDA model and variation explained by the constrained RDA axis were tested for significance via 999 permutations designed for constrained correspondence analysis. Additionally, SNPs

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

the rest of the values to default.

coordinates were scaled and plotted in the ordination space to see their relationship with the constraint axis, ecotope (Supplementary Figure 7c and Figure 2b). SNPs z-transformed loadings (Supplementary Figure 7d) separated by ±2 and ±3 standard deviations (permissible and conservative thresholds, respectively) from the mean distribution of the total SNPs loadings in our RDA axis were considered under selection (Figure 2b) (for further details on RDA see refs. 92,101,102). F_{ST}-Heterozygosity outlier method. The F_{ST}-Heterozygosity outlier method aims to identify loci with strong allele differences among ecotopes. First, ecotope differentiation for each locus is calculated using Wright's F_{ST} without sample correction. The distribution of these values is expected to have a chi-squared shape. The main goal is inferring a null F_{ST} distribution from neutral loci not strongly affected by diversifying selection⁹³. Therefore, a best-fit to the chi-squared F_{ST} distribution was achieved by trimming the lowest and highest F_{ST} values (loci in the tails of the distribution are likely to be under effective diversifying selection) and considering only the values in the centre (neutral loci and loci experiencing spatial uniform balancing selection). Loci with unusual F_{ST} values relative to this fitted distribution can be thought of experiencing additional diversifying selection 93,94. We used two R packages to accomplish this analysis, OutFlank⁹³ and fsthet⁹⁴, and compared the results (Figure 2d). The difference between the packages is that fsthet uses smoothed quantiles of the empirical F_{ST}-Heterozygosity distribution to identify outlier loci and does not assume a particular distribution or model of evolution as compared to OutFlank. We set OutFlank function with proportion of lower and upper loci trimmed to 0.06 and 0.35, respectively, and

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

Mapping SNP outlier loci. In order to identify genes that may be responsible for local adaptation in the Chagas disease vector, R. ecuadoriensis, to the domestic environment we mapped the SNPs found in the association analyses to the R. prolixus annotated genome²⁴. We used the BWA alignment tool implemented in DeconSeq software v0.4.3⁷⁰ to map SNPs sequences (38 bp) at a minimum alignment threshold of 85. The sequences of the regions (60-300kb) in which our SNPs aligned were BLAST searched and compared to the R. prolixus genome. **Estimating gene flow with distance.** Matrices of genetic (F_{ST}⁸⁷) and geographic (Km) distances between the 25 collection sites, and between domestic and wild collection sites separately, were obtained with the adegenet and raster 103 R packages, respectively. Mantel tests¹⁰⁴ were performed on those matrices using the ecodist¹⁰⁵ R packages. Genetic and geographic correlation between domestic and wild ecotopes was also viewed separately by fitting a generalised least square (GLS) model with a maximum likelihood population effects correction (MLPE)¹⁰⁶ implemented in the corMLPE (https://github.com/nspope/corMLPE/) R package and assuming a linear relationship $Y_{ij} = \alpha + \beta(X_{ij} - \bar{x}) + H_i + \tau_{ii} + e_{ij}$ (eqn1) between two distance matrices based on genetic and geographic distance measures, Y and

X, respectively. Centring the X_{ij} in about its mean, \bar{x} , removes the correlation between the

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

estimates of α and β^{106} . H, determines the ecotope and the τ_{\parallel} term adds the MLPE random effect correlation structure. Estimating gene flow with resistance. Genetic distances. Given genomic differentiation between domestic and wild ecotopes was low, we combined all samples within a collection site and used collection site as the unit in our landscape genetic analysis. Collection site units are logistically and budgetary important when carrying out triatomine surveys and insecticide spraying. Using a landscape genomics mixed modelling framework (Supplementary Figure 2), we aimed to disentangle the effects of landscape heterogeneity on R. ecuadoriensis population structure and gene flow. A Hedrick's G_{ST} ⁴², which corrects for sampling limited populations ¹⁰⁷, distance matrix among the 25 collection sites was obtained in the GenoDive v3.04¹⁰⁸ software. In addition, we ran a Pearson's correlation test between the Hedrick's G_{ST} matrix, and Meriman's standardised F_{ST}⁴⁴ and F_{ST}⁴³ matrices, calculated in the same software, to evaluate the consistency of genomic differentiation pattern among collection sites with different genetic distance measures. GIS data collection and preparation. Three landscape variables (elevation, land cover and road network - hereafter, surfaces) were hypothesized to influence R. ecuadoriensis dispersal and gene flow (Supplementary Figures 8, 9 and 10). For the continuous surfaces (elevation surface), only monomolecular transformations (e.g., Supplementary Figure 12ab) with any possible shape and maximum parameters were explored to assume a linear

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

relationship in which gene flow decreases as altitude increases as hypothesised in other triatomine species 109. Our categorical surfaces, land cover and road network, were reclassified as follows. Highly fragmented land cover categories (e.g., cultivated and managed areas) produced the least resistance to gene flow, whereas regular flooded areas and water bodies were barriers. Habitat fragmentation and human agricultural activities has been shown to affect triatomine populations dynamics¹¹⁰. Human-mediated passive triatomine dispersal has been suggested elsewhere¹¹, and therefore, we assumed roads would connect humans populations, and likely triatomines by passive carriage. High transitable roads (e.g., highways and tertiary roads) had the least resistant values, whereas absence of roads was a strong barrier (see Supplementary Table 9 & Supplementary Table 10). Original GIS surfaces were obtained from multiple sources (Supplementary Table 6) and transformed to have the same format (raster), resolution (250 m² grid), extent (~ 97 Km²) and coordinate reference system (Universal Transverse Mercator (UTM)). Spearman's rank correlation coefficient (rho) tests were run (Supplementary Table 8) and plotted (Supplementary Figure 11) on each pair of surfaces to ensure variables were uncorrelated (rho < 0.29 based on Cohen¹¹¹). All three surfaces original values were transformed to the same scale (i.e., a minimum value of 1 and a maximum of 100) to meet our initial hypothesis. **ResistanceGA principle.** The genetic algorithm¹¹² implemented in the R package, ResistanceGA⁴⁵, was used for multiple and sinlge-surface optimization of resistance values to gene flow in the above surfaces (Supplementary Figure 3). Briefly, ResistanceGA method is a powerful, flexible, stochastic and assumption-free framework based on an evolutionary

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

ML process that finds unbiased optimal resistance parameters (resistance weights values for a given surface) in space that best fits the genomic structure pattern¹¹³. The method works by correlating genomic (response) and effective (predictor) distances (derived from a random-walk commute time algorithm¹¹⁴ – Supplementary Figure 4b) matrices through a maximum likelihood population effects¹⁰⁶ model and, on each iteration, evaluates the best resistance parameters based on a ML objective function, log-likelihood in our case. Simulating the process of evolution on each iteration, the best model and parameters are selected and pass over the next generation with some random change on parameter values to explore the parameter space widely. Multiple surface optimisation. We performed three replicate runs to optimise all possible combinations of our surfaces (hereafter, composite surfaces), including surfaces individually (hereafter, single surfaces) to generate models with optimised resistance values. The major GA algorithm options were set to default, except for the 'pop.mult' which was set to 20 to increase the number of parameters to evaluate on each surface every iteration. All optimisation processes were run in parallel with 10-20 cores in a Debian cluster (http://userweb.eng.gla.ac.uk/umer.ijaz/#orion) at the University of Glasgow. Running times varied from days to weeks depending on surface size and number combined at a time. Model selection. Composite and single surface models, including an intercept- only (null model) and a geographic distance (resistance grid cells are set to 1 to model isolation-bydistance) model were evaluated (Table 1) and the best model was selected based on the lowest AIC_c, AIC_c weight and Delta AIC_c. To confirm the robustness of the optimisation

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

surfaces and controlling for potential bias due to uneven distribution of sample locations in the landscape, we carried out bootstrap resampling (10,000 iterations) in 85% of our sample locations and then fit the subset to each of the effective distance matrices from the optimised surfaces. After the bootstrapping analysis, the average AIC_c among all iterations and the percentage a model was top over all iterations was used as a criterion to rank the best model (Table 2). Landscape connectivity model. We used the best optimised single (elevation surface) resistance surface models to estimate landscape connectivity through a circuit theory algorithm^{46,47} (Supplementary Figure 4) implemented in the software CIRCUITSCAPE v5¹¹⁵. Here, our resistance surfaces were converted into electric networks (Supplementary Figure 4c) in which each grid cell represented a node connected to their neighbours by resistors of different weight. Resistor weights were calculated from the average resistance values (i.e., optimised resistance values) of the two grid cells being connected. The algorithm applies a simulated electric current between all pairs of focal nodes (collection sites) in the network to estimate effective distances between them. A current density map (Figure 4c) was obtained from those resistance distance estimations representing a random walk probability of movement through our study area. Data availability Raw sequenced data will be uploaded to the Sequence Read Archive (SRA) repository on publication.

Meterials & Correspondance

746 Correspondance to Martin Llewellyn and Luis Enrique Hernandez Castro

Code availability

745

747

748

751

752

753

- 749 Code for population, assosiation and landscape genomics analyses will be available
- via Github repository (github.com/lehernandezc/recuadoriensis) on publication.

References

- 754 1. Powell, J. R. & Tabachnick, W. J. History of domestication and spread of *Aedes* aegypti--a review. *Memórias do Instituto Oswaldo Cruz* vol. 108 11–17 (2013).
- 756 2. McBride, C. S. *et al.* Evolution of mosquito preference for humans linked to an odorant receptor. *Nature* **515**, 222–227 (2014).
- 758 3. Leftwich, P. T., Bolton, M. & Chapman, T. Evolutionary biology and genetic techniques for insect control. *Evolutionary Applications* vol. 9 212–230 (2016).
- 760 4. Powell, J. R. An Evolutionary Perspective on Vector-Borne Diseases. *Front. Genet.* **10**, 1266 (2019).
- Manel, S. & Holderegger, R. Ten years of landscape genetics. *Trends Ecol. Evol.* 28, 614–621 (2013).
- Vreysen, M. J. B. *et al.* Sterile Insects to Enhance Agricultural Development: The
 Case of Sustainable Tsetse Eradication on Unguja Island, Zanzibar, Using an Area Wide Integrated Pest Management Approach. *PLoS Negl. Trop. Dis.* 8, e2857 (2014).
- 767 7. Schwabl, P. *et al.* Prediction and Prevention of Parasitic Diseases Using a Landscape Genomics Framework. *Trends Parasitol.* (2016) doi:10.1016/j.pt.2016.10.008.
- Hemming-Schroeder, E., Lo, E., Salazar, C., Puente, S. & Yan, G. Landscape Genetics: A Toolbox for Studying Vector-Borne Diseases. *Front. Ecol. Evol.* **6**, 21 (2018).
- 772 9. WHO. WHO Chagas disease (American trypanosomiasis). https://www.who.int/news-773 room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (2021).
- To. Schofield, C. J. & Dias, J. C. The Southern Cone Initiative against Chagas disease.
 Adv. Parasitol. 42, 1–27 (1999).

- 11. Hashimoto, K. & Schofield, C. J. Elimination of *Rhodnius prolixus* in Central America.
 Parasit. Vectors 5, 45 (2012).
- 778 12. Ceballos, L. A. *et al.* Hidden Sylvatic Foci of the Main Vector of Chagas Disease
 779 *Triatoma infestans*: Threats to the Vector Elimination Campaign? *PLoS Negl. Trop.* 780 Dis. 5, e1365 (2011).
- 781 13. Fitzpatrick, S., Feliciangeli, M. D., Sanchez-Martin, M. J., Monteiro, F. A. & Miles, M.
 782 A. Molecular genetics reveal that silvatic *Rhodnius prolixus* do colonise rural houses.
 783 *PLoS Negl. Trop. Dis.* 2, e210 (2008).
- 784 14. Rodríguez-Planes, L. I., Gaspe, M. S., Enriquez, G. F. & Gürtler, R. E. Habitat 785 Specific Occupancy and a Metapopulation Model of *Triatoma sordida* (Hemiptera:
 786 Reduviidae), a Secondary Vector of Chagas Disease, in Northeastern Argentina. *J. Med. Entomol.* 55, 370–381 (2018).
- 788 15. Cantillo-Barraza, O., Chaverra, D., Marcet, P., Arboleda-Sánchez, S. & Triana 789 Chávez, O. *Trypanosoma cruzi* transmission in a Colombian Caribbean region
 790 suggests that secondary vectors play an important epidemiological role. *Parasites and Vectors* 7, (2014).
- 792 16. Grijalva, M. J., Villacís, A. G., Ocãa-Mayorga, S., Yumiseva, C. A. & Baus, E. G.
 793 Limitations of selective deltamethrin application for triatomine control in central coastal
 794 Ecuador. *Parasites and Vectors* **4**, 20 (2011).
- 795 17. Villacís, A. G. *et al.* Would tropical climatic variations impact the genetic variability of triatomines: *Rhodnius ecuadoriensis*, principal vector of Chagas disease in Ecuador? *Acta Trop.* **209**, 105530 (2020).
- 18. Brown, J. E. *et al.* Worldwide patterns of genetic differentiation imply multiple
 'domestications' of *Aedes aegypti*, a major vector of human diseases. *Proc. R. Soc. B Biol. Sci.* 278, 2446–2454 (2011).
- Powell, J. R., Gloria-Soria, A. & Kotsakiozi, P. Recent history of *Aedes aegypti*: Vector genomics and epidemiology records. *BioScience* vol. 68 854–860 (2018).
- Soria-Carrasco, V. *et al.* Stick insect genomes reveal natural selection's role in parallel speciation. *Science* (80-.). **344**, 738–742 (2014).
- Zumaya-Estrada, F. A. *et al.* North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. *Parasites and Vectors* 5, 226 (2012).
- Piccinali, R. V. et al. Molecular Population Genetics and Phylogeography of the
 Chagas Disease Vector *Triatoma infestans* in South America. *J. Med. Entomol.* 46,
 796–809 (2009).
- Frantz, L. A. F. *et al.* Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 17231–17238 (2019).
- 813 24. Mesquita, R. D. et al. Genome of Rhodnius prolixus, an insect vector of Chagas

- disease, reveals unique adaptations to hematophagy and parasite infection. *Proc. Natl. Acad. Sci.* **112**, 14936–14941 (2015).
- Marchant, A. *et al.* Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector *Triatoma brasiliensis*. *PLoS Negl. Trop. Dis.* **10**, (2016).
- Liu, Q. *et al.* A chromosomal-level genome assembly for the insect vector for Chagas disease, *Triatoma rubrofasciata*. *Gigascience* **8**, (2019).
- Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. *Mol. Ecol.* 25, 2144–2164 (2016).
- 822 28. Grijalva, M. J. *et al.* Comprehensive Survey of Domiciliary Triatomine Species
 823 Capable of Transmitting Chagas Disease in Southern Ecuador. *PLoS Negl. Trop. Dis.* 824 9, e0004142 (2015).
- Grijalva, M. J., Suarez-Davalos, V., Villacis, A. G., Ocaña-Mayorga, S. & Dangles, O.
 Ecological factors related to the widespread distribution of sylvatic *Rhodnius* ecuadoriensis populations in southern Ecuador. *Parasit. Vectors* 5, 17 (2012).
- Villacís, A. G., Grijalva, M. J. & Catalá, S. S. Phenotypic Variability of *Rhodnius* ecuadoriensis Populations at the Ecuadorian Central and Southern Andean Region. *J. Med. Entomol.* 47, 1034–1043 (2010).
- Villacís, A. G. *et al.* Pioneer study of population genetics of *Rhodnius ecuadoriensis* (Hemiptera: Reduviidae) from the central coastand southern Andean regions of
 Ecuador. *Infect. Genet. Evol.* 53, 116–127 (2017).
- Ocaña-Mayorga, S., Llewellyn, M. S., Costales, J. A., Miles, M. A. & Grijalva, M. J.
 Sex, Subdivision, and Domestic Dispersal of *Trypanosoma cruzi* Lineage I in
 Southern Ecuador. *PLoS Negl. Trop. Dis.* 4, e915 (2010).
- 33. Costales, J. A. *et al. Trypanosoma cruzi* population dynamics in the Central Ecuadorian Coast. *Acta Trop.* (2015) doi:10.1016/j.actatropica.2015.07.017.
- 34. De Souza, R. D. C. M. *et al.* Population dynamics of *Triatoma vitticeps* (Stål, 1859) in Itanhomi, Minas Gerais, Brazil. *Mem. Inst. Oswaldo Cruz* **103**, 14–20 (2008).
- Kamimura, E. H. *et al.* Drivers of molecular and morphometric variation in *Triatoma brasiliensis* (Hemiptera: Triatominae): The resolution of geometric morphometrics for populational structuring on a microgeographical scale. *Parasites and Vectors* **13**, 455 (2020).
- Flores-Ferrer, A., Marcou, O., Waleckx, E., Dumonteil, E. & Gourbière, S. Evolutionary ecology of Chagas disease; what do we know and what do we need? *Evol. Appl.* **11**, 470–487 (2018).
- Monteiro, F. A., Wesson, D. M., Dotson, E. M., Schofield, C. J. & Beard, C. B. Phylogeny and molecular taxonomy of the rhodniini derived from mitochondrial and nuclear DNA sequences. *Am. J. Trop. Med. Hyg.* **62**, 460–465 (2000).

- 851 38. El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness 852 among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to 853 Morocco. *Theor. Appl. Genet.* **92**, 832–839 (1996).
- Lavore, A., Esponda-Behrens, N., Pagola, L. & Rivera-Pomar, R. The gap gene Krüppel of *Rhodnius prolixus* is required for segmentation and for repression of the homeotic gene sex comb-reduced. *Dev. Biol.* **387**, 121–129 (2014).
- Lavore, A., Pagola, L., Esponda-Behrens, N. & Rivera-Pomar, R. The gap gene giant of *Rhodnius prolixus* is maternally expressed and required for proper head and abdomen formation. *Dev. Biol.* **361**, 147–155 (2012).
- Ribeiro, J. M. . *et al.* Exploring the sialome of the blood-sucking bug *Rhodnius prolixus. Insect Biochem. Mol. Biol.* **34**, 61–79 (2004).
- 42. Hedrick, P. W. A STANDARDIZED GENETIC DIFFERENTIATION MEASURE.
 863 Evolution (N. Y). 59, 1633–1638 (2005).
- Weir, B. S. & Cockerham, C. C. ESTIMATING F -STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE. *Evolution (N. Y).* **38**, 1358–1370 (1984).
- Meirmans, P. G. USING THE AMOVA FRAMEWORK TO ESTIMATE A
 STANDARDIZED GENETIC DIFFERENTIATION MEASURE. *Evolution (N. Y).* 60,
 2399–2402 (2006).
- Peterman, W. E. ResistanceGA□: An R package for the optimization of resistance surfaces using genetic algorithms. *Methods Ecol. Evol.* **9**, 1638–1647 (2018).
- McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. USING CIRCUIT THEORY
 TO MODEL CONNECTIVITY IN ECOLOGY, EVOLUTION, AND CONSERVATION.
 Ecology 89, 2712–2724 (2008).
- Kivimäki, I., Shimbo, M. & Saerens, M. Developments in the theory of randomized shortest paths with a comparison of graph node distances. *Phys. A Stat. Mech. its Appl.* **393**, 600–616 (2014).
- 48. Paucar, R., Moreno-Viguri, E. & Pérez-Silanes, S. Challenges in Chagas Disease Drug Discovery: A Review. *Curr. Med. Chem.* **23**, 3154–3170 (2016).
- Olivera, M. J. *et al.* Risk factors for treatment interruption and severe adverse effects to benznidazole in adult patients with Chagas disease. *PLoS One* **12**, (2017).
- Sosa-Estani, S. Advances and challenges in the treatment of Chagas disease a global perspective. *Int. J. Infect. Dis.* **73**, 51 (2018).
- Kilpatrick, A. M. *et al.* Genetic Influences on Mosquito Feeding Behavior and the Emergence of Zoonotic Pathogens. *Am J Trop Med Hyg* **77**, 667–671 (2007).
- Gillies, M. T. Selection for host preference in *Anopheles gambiae*. *Nature* 203, 852–854 (1964).

- Panzera, F. *et al.* Evolutionary and dispersal history of *Triatoma infestans*, main vector of Chagas disease, by chromosomal markers. *Infect. Genet. Evol.* **27**, 105–113 (2014).
- Santiago, P. B. *et al.* Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity a review. *Parasites and Vectors* vol. 10 1–20 (2017).
- Guerenstein, P. G. & Lazzari, C. R. Host-seeking: How triatomines acquire and make use of information to find blood. *Acta Trop.* **110**, 148–158 (2009).
- Sterkel, M. *et al.* Tyrosine Detoxification Is an Essential Trait in the Life History of Blood-Feeding Arthropods. *Curr. Biol.* **26**, 2188–2193 (2016).
- Ocaña-Mayorga, S. *et al.* Triatomine feeding profiles and *Trypanosoma cruzi* infection, implications in domestic and sylvatic transmission cycles in Ecuador.
 Pathogens 10, 1–17 (2021).
- Vazquez-Prokopec, G. M., Ceballos, L. A., Kitron, U. & Gürtler, R. E. Active dispersal
 of natural populations of *Triatoma infestans* (Hemiptera: Reduviidae) in rural
 northwestern Argentina. *J. Med. Entomol.* 41, 614–21 (2004).
- 903 59. Huestis, D. L. *et al.* Windborne long-distance migration of malaria mosquitoes in the Sahel. *Nature* vol. 574 404–408 (2019).
- 905 60. Brown, J. E. *et al.* HUMAN IMPACTS HAVE SHAPED HISTORICAL AND RECENT EVOLUTION IN *AEDES AEGYPTI*, THE DENGUE AND YELLOW FEVER MOSQUITO. *Evolution (N. Y).* **68**, 514–525 (2014).
- 908 61. Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. *Mol. Ecol.* **24**, 284–295 910 (2015).
- 911 62. Peterman, W. E. *et al.* A comparison of popular approaches to optimize landscape resistance surfaces. *Landsc. Ecol.* **34**, 2197–2208 (2019).
- 913 63. Castro-Arroyave, D., Monroy, M. C. & Irurita, M. I. Integrated vector control of Chagas 914 disease in Guatemala: a case of social innovation in health. *Infect. Dis. Poverty* **9**, 25 915 (2020).
- 916 64. Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality 917 genomic DNA for PCR-based techniques. *Nucleic Acids Res.* **25**, 4692–4693 (1997).
- 918 65. Hernandez-Castro, L. E. *et al.* 2b-RAD genotyping for population genomic studies of Chagas disease vectors: *Rhodnius ecuadoriensis* in Ecuador. *PLoS Negl. Trop. Dis.* 920 **11**, e0005710 (2017).
- 921 66. Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: a simple and flexible method for genome-wide genotyping. *Nat. Methods* **9**, 808–10 (2012).
- 923 67. DeAngelis, M. M., Wang, D. G. & Hawkins, T. L. Solid-phase reversible immobilization

- 924 for the isolation of PCR products. *Nucleic Acids Res.* **23**, 4742–3 (1995).
- 925 68. O'Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M. & Portnoy, D. S. These 926 aren't the loci you'e looking for: Principles of effective SNP filtering for molecular 927 ecologists. *Mol. Ecol.* **27**, 3193–3206 (2018).
- 928 69. Franzén, O. *et al.* Shotgun Sequencing Analysis of *Trypanosoma cruzi* I Sylvio X10/1 and Comparison with T. cruzi VI CL Brener. *PLoS Negl. Trop. Dis.* **5**, e984 (2011).
- 930 70. Schmieder, R. & Edwards, R. Fast Identification and Removal of Sequence 931 Contamination from Genomic and Metagenomic Datasets. *PLoS One* **6**, e17288 932 (2011).
- 933 71. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome Biol.* **15**, R46 (2014).
- 935 72. Mastretta-Yanes, A. *et al.* Restriction site-associated DNA sequencing, genotyping 936 error estimation and de novo assembly optimization for population genetic inference. 937 *Mol. Ecol. Resour.* **15**, 28–41 (2015).
- 938 73. Paris, J. R., Stevens, J. R. & Catchen, J. M. Lost in parameter space: a road map for stacks. *Methods Ecol. Evol.* **8**, 1360–1373 (2017).
- 940 74. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. *Mol. Ecol.* **22**, 3124–40 (2013).
- 942 75. Danecek, P. et al. The variant call format and VCFtools. *Bioinformatics* **27**, 2156–943 2158 (2011).
- 944 76. Money, D. *et al.* LinkImpute: Fast and Accurate Genotype Imputation for Nonmodel Organisms. *G3 (Bethesda)*. **5**, 2383–90 (2015).
- 946 77. Bradbury, P. J. *et al.* TASSEL: software for association mapping of complex traits in diverse samples. *Bioinformatics* **23**, 2633–2635 (2007).
- 948 78. GOUDET, J. hierfstat, a package for r to compute and test hierarchical F-statistics. 949 *Mol. Ecol. Notes* **5**, 184–186 (2005).
- 950 79. Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. *Bioinformatics* **26**, 419–420 (2010).
- 952 80. R Development Core Team. R: A language and environment for statistical computing. (2016).
- 954 81. Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. *Methods Ecol. Evol.* **5**, 384–387 (2014).
- 956 82. Bilton, T. P. *et al.* Linkage disequilibrium estimation in low coverage high-throughput sequencing data. *Genetics* **209**, 389–400 (2018).
- 958 83. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* **4**, 406–425 (1987).

- 960 84. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics* **35**, 526–528 (2019).
- 962 85. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. *BMC Genet.* **11**, 94 (2010).
- 965 86. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. 966 *Bioinformatics* **24**, 1403–5 (2008).
- 967 87. Nei, M. Analysis of gene diversity in subdivided populations. *Proc. Natl. Acad. Sci. U.* 968 S. A. **70**, (1973).
- 969 88. Benjamini, Y. & Hochberg, Y. Benjamini-1995.pdf. *Journal of the Royal Statistical Society B* vol. 57 289–300 (1995).
- 971 89. Brieuc, M. S. O., Ono, K., Drinan, D. P. & Naish, K. A. Integration of Random Forest 972 with population-based outlier analyses provides insight on the genomic basis and 973 evolution of run timing in Chinook salmon (*Oncorhynchus tshawytscha*). *Mol. Ecol.* 974 **24**, 2729–2746 (2015).
- 97. Laporte, M. *et al.* RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels. *Mol. Ecol.* **25**, 219–237 (2016).
- 978 91. Brieuc, M. S. O., Waters, C. D., Drinan, D. P. & Naish, K. A. A practical introduction to 979 Random Forest for genetic association studies in ecology and evolution. *Mol. Ecol.* 980 *Resour.* **18**, 755–766 (2018).
- 981 92. Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. *Mol. Ecol.* **27**, 2215–2233 (2018).
- 984 93. Whitlock, M. C. & Lotterhos, K. E. Reliable detection of loci responsible for local adaptation: Inference of a null model through trimming the distribution of FST. *Am. Nat.* **186**, S24–S36 (2015).
- 987 94. Flanagan, S. P. & Jones, A. G. Constraints on the FST–Heterozygosity Outlier 988 Approach. *J. Hered.* **108**, 561–573 (2017).
- 989 95. Breiman, L. Random Forests. *Mach. Learn.* **45**, 5–32 (2001).
- 990 96. Liaw, A. & Weiner, M. Classification and Regression by randomForest. *R news 2(3)* 18–22 https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf (2002).
- 992 97. Holliday, J. A., Wang, T. & Aitken, S. Predicting Adaptive Phenotypes From Multilocus
 993 Genotypes in Sitka Spruce (*Picea sitchensis*) Using Random Forest. (2012)
 994 doi:10.1534/g3.112.002733.
- 995 98. Legendre, P. & Legendre, L. Canonical analysis. in *Developments in Environmental Modelling* vol. 24 625–710 (2012).

- 997 99. Oksanen, J. *Multivariate Analysis of Ecological Communities in R: vegan tutorial.* 998 http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf (2015).
- 999 100. Oksanen, J. et al. vegan: Community Ecology Package. (2019).
- 1000 101. Forester, B. R., Jones, M. R., Joost, S., Landguth, E. L. & Lasky, J. R. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. *Mol. Ecol.* 1002 **25**, 104–120 (2016).
- 1003 102. Capblancq, T., Luu, K., Blum, M. G. B. & Bazin, E. Evaluation of redundancy analysis to identify signatures of local adaptation. *Mol. Ecol. Resour.* **18**, 1223–1233 (2018).
- 1005 103. Hijmans, R. J. & Van Etten, J. raster: Geographic analysis and modeling with raster data. (2012).
- 1007 104. Mantel, N. The Detection of Disease Clustering and a Generalized Regression Approach. *Cancer Res.* **27**, 209–220 (1967).
- 1009 105. Goslee, S. C. & Urban, D. L. The ecodist Package for Dissimilarity-based Analysis of Ecological Data. *J. Stat. Softw.* **22**, 1–19 (2007).
- 101. Clarke, R. T., Rothery, P. & Raybould, A. F. Confidence limits for regression
 1012 relationships between distance matrices: Estimating gene flow with distance. *J. Agric.* 1013 *Biol. Environ. Stat.* 7, 361–372 (2002).
- 1014 107. MEIRMANS, P. G. & HEDRICK, P. W. Assessing population structure: FST and related measures. *Mol. Ecol. Resour.* **11**, 5–18 (2011).
- 1016 108. MEIRMANS, P. G. & VAN TIENDEREN, P. H. genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. *Mol. Ecol. Notes* **4**, 792–1018 794 (2004).
- 1019 109. Parra-Henao, G., Suárez-Escudero, L. C. & González-Caro, S. Potential Distribution
 1020 of Chagas Disease Vectors (Hemiptera, Reduviidae, Triatominae) in Colombia, Based
 1021 on Ecological Niche Modeling. J. Trop. Med. 2016, (2016).
- 1022 110. Grijalva, M. J., Terán, D. & Dangles, O. Dynamics of sylvatic chagas disease vectors
 1023 in coastal Ecuador is driven by changes in land cover. *PLoS Negl. Trop. Dis.* 8, e2960
 1024 (2014).
- 1025 111. Cohen, J. A power primer. *Psychol. Bull.* **112**, 155–159 (1992).
- 1026 112. Scrucca, L. GA: A package for genetic algorithms in R. *J. Stat. Softw.* **53**, 1–37 (2013).
- 1028 113. Peterman, W. E. *et al.* A comparison of popular approaches to optimize landscape resistance surfaces. *Landsc. Ecol.* 1–12 (2019) doi:10.1007/s10980-019-00870-3.
- 1030 114. Fouss, F., Pirotte, A., Renders, J. M. & Saerens, M. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. *IEEE Trans. Knowl. Data Eng.* **19**, 355–369 (2007).

1033

1034

103510361037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

115. Shah, V. B. & Mcrae, B. Circuitscape: A Tool for Landscape Ecology, in *Proceedings* of the 7th Python in Science Conference (SciPy 2008) (eds. Varoquaux, G., Vaught, T. & Millman, J.) 62-66 (2008). **Acknowledgements** We thank P. Johnson for advice in statistical analyses, W. Peterman for helpful advice on ResistanceGA analysis, the entomological team at CISeAL for sample collection and M. Babbucci for proving custom scripts for 2b-RAD raw data cleaning. This work was possible thanks to the Mexican Council of Science and Technology doctorate scholarship (CVU Number 613766) awarded to L.E.H.C., the National Institutes of Health (NIH) grant number R15 Al105749-01A1 allocated to MJG who is PI, as well as RCUK Engagment Network (EP/Too3782/1) which supported co-author interactions. Funding was also received from Pontifical Catholic University of Ecuador to MJG (grant # C13025, E13027, E13037, H13174, I13048). ELL was supported by the National Institute of General Medical Sciences of the NIH, United States (Award Numbers P20GM130418). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

L.E.H.C., M.S.L., and M.J.G. designed the study. L.E.H.C. and M.S.L. wrote the manuscript with contributions from M.J.G., J.A.C., and E.L.L. A.G.V., A.J., B.C., C.C.D., S.O.M., C.A.Y., A.B., B.A., L.M., E.L.L. revised and edited the manuscript. A.G.V., S.O.M., C.A.Y., and J.A.C. collected and provided triatomine samples from Loja Ecuador. L.E.H.C performed DNA extraction and 2b-RAD library preparation. B.A. performed NGS Illumina HiSeq. L.E.H.C analysed the data with contributions from A.J. in the association analysis, B.C. in data decontamination/bioinformatics, C.C.D., and E.L.L in the landscape genomic analyses. **Competing interests** The authors declare no competing interests. **Supplementary information** Supplementary Table 1 (excel file) Supplementary Methods (docx file) Figures 1 - 4

Figures in the order of appearance in main text.

