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Abstract: Recent advances in neuroscience make the extraction of full neuronal morphology at 
whole brain dataset available. To produce quality morphometry at large scale, it is highly desirable 
but extremely challenging to efficiently handle petabyte-scale high-resolution whole brain imaging 
database. Here, we developed a multi-level method to produce high quality somatic, dendritic, 
axonal, and potential synaptic morphometry, which was made possible by utilizing necessary 
petabyte hardware and software platform to optimize both the data and workflow management. 
Our method also boosts data sharing and remote collaborative validation. We highlight a petabyte 
application dataset involving 62 whole mouse brains, from which we identified 50,233 somata of 
individual neurons, profiled the dendrites of 11,322 neurons, reconstructed the full 3-D 
morphology of more than one thousand neurons including their dendrites and full axons, and 
detected million scale putative synaptic sites derived from axonal boutons. Analysis and simulation 
of these data indicate the promise of this approach for modern large-scale morphology applications. 
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RESULTS 
 
We attempted to meet the petabyte (PB)-scale whole-brain computing challenge by introducing a 
technology that involves a hardware platform that is able to handle petabytes of data storage, 
sharing, computing and visualization, a software platform called MorphoHub that can utilize such 
hardware platform, and most importantly, a mechanism to scale up the synergized automated 
computation and multi-user collaboration for effective validation and correction. Our method is 
centered around reconstructing the multi-level information of single neuron’s morphology (Fig. 
1a) at the whole-brain scale for a number of brains. The MorphoHub software package is able to 
streamline the workflow of imaging data management, visualization, reconstruction and 
collaboration, and data sharing (Fig. 1b, Methods). Using this approach, we extended several 
state-of-the-art methods to the PB-scale (Supplementary Table 1) and produced multi-
morphometry data from such massive image database (Fig. 1c). Our method allows a smooth 
transition from manual and interactive morphometry acquisition to increasingly routine work done 
by automatic algorithms as we show below. 
 
A key component of our method is a three-level (L1, L2, and L3) reconstruction approach (Fig. 
1a). We incrementally reconstruct morphological components of neurons, including somata, 
dendrites, axons, spines and boutons, only when such information can be produced faithfully and 
affordably. Specifically, an L1 reconstruction contains the full dendritic arbor and the skeleton of 
all axonal neurite tracts, excluding the fine structures of distal axonal arbors (Fig. 1a). An L2 
reconstruction contains the complete structures of all neuronal arbors (Fig. 1a). An L3 
reconstruction contains the identification of two key elements of synaptic connectivity, dendritic 
spines and axonal boutons, as well as other structures of potential interest (e.g., specific topology 
of axonal branching patterns, modeling of specific neuronal compartments’ shape) (Fig. 1a).  
 
The proposed multi-level reconstruction method is generic and scalable to single neuron datasets 
of arbitrary size if proper data structure and data workflow are in place. To provide such capability 
for a real PB-scale computing environment, we developed MorphoHub to manage all data flow 
and processing procedures in an integrated way (Fig. 1b and Supplementary Fig. 1, Methods). 
MorphoHub handles four heterogeneous data types, including image volumes, neuron morphology, 
meta-data of user interactions, and data management (conversion, storage, transferring/sharing) 
schemas, for a PB-scale database. We also engineered a universal application interface (Fig. 1b 
and Supplementary Fig. 2) in MorphoHub so that it could invoke additional image analysis and 
validation tools when needed.  
 
To demonstrate the capability of this approach, we built an image database called D62 consisting 
of 62 whole mouse brain images. D62 has in total 713.35 teravoxels, 1.43 petabytes in native image 
space, and 973 terabytes in compressed file space (Supplementary Data 1). MorphoHub ran 
smoothly on D62 and allowed us to precisely pinpoint somata of 50,233 neurons using TeraFly 
(100% accuracy validated by independent annotators). For each neuron, we then reconstructed the 
dendrites automatically, followed by feature-based screening and visual validation (Fig. 1c, 
Methods). Using this workflow, we produced traceable dendritic results of 11,322 neurons. Due 
to the scale of the problem, similar results were hard to obtain using other software. 
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All multi-morphometry data produced were also registered to the Allen Common Coordinate 
Framework (CCF)37 to see how the distributions of each data level correlate with others (Fig. 2). 
In this way, various brain regions (the white colored regions), dendrites, axons, and boutons can 
all be identified (Fig. 2a-e). As a result, we output a summary matrix with rows representing 
neurons, columns representing a unique CCF parcel, and numerical entries expressing, for each 
neuron and corresponding parcel, the axonal and dendritic length, the number of boutons, and the 
(binary) presence of soma. Such representation lends itself to highly informative quantitative 
analyses, such as pairwise probability of directional connection between neurons (dot product of 
presynaptic axonal values and postsynaptic dendritic values) and projection similarity (arccosine 
distance between axonal values of two neurons). Fig. 2 shows that the distributions of these 
neuronal entities do not correlate globally. Instead, they exhibit regional enrichment of which the 
pattern is hard to observe when only local brain areas are analyzed. 
 
For PB-scale computing, the speed of data I/O for storage and data sharing across networks 
(Internet or intranets) becomes more critical than in applications at small scale. It is essential to 
reduce data volume without compromising visualization and analysis of such large data. We 
observed that an L1-L2-L3 morphology trio of a neuron will always be sparse and that the spine 
and bouton information in the L3 data could be described using a neighborhood around the neuron 
skeleton in preceding levels. To utilize this observation, we developed a compact L0 representation 
of a neuron for effective imaging data management, sharing, and computation (Fig. 3a, Methods). 
The key idea is that the L0 data of a neuron represents a tightly bounded image region that covers 
the L1-L2-L3 trio area. Because dendritic spines typically attach dendritic fiber orthogonally, and 
axonal boutons scatter along axons, for any given L2 (or L1) skeleton we conveniently extracted 
a series of piecewise 512x512x512-voxel 3-D image-tiles around the skeleton to cover all spines 
and boutons and at the same time to allow fast image file I/O. In this way, an L0 representation 
identifies an image sub-region that contains all parts of a specific neuron.  
 
For R1050 reconstructed from D62, on average the L0 data generated based on an L1 skeleton 
contains more than 77% of that generated based on the corresponding L2 reconstruction (Fig. 3b). 
In addition, the L0 data of a neuron typically occupies three orders of magnitude less image volume 
compared to the whole brain image (Fig. 3c). The L0 data of the largest neuron in this work has 
~80 gigavoxels, while the mean value and standard deviation of the volume of L0 data of 1,050 
fully reconstructed neurons are 6.75 and 5.94 gigavoxels, respectively (Fig. 3d, Supplementary 
Table 2). Practically, even the union of all L0 data of neurons, denoted as Super L0, in a sparsely 
labeled brain still has 1 to 3 orders of magnitude fewer voxels compared to the total volume of the 
brain (Fig. 3c). In this way, the multi-morphometry framework allows thousands of fold better 
efficiency in both storing and transferring the essential image data and quantitative shape 
information of neurons. This utility greatly simplifies the previously challenging data sharing task. 
Indeed, without accelerated content delivery, currently it is possible to transfer the L0 data in 
R1050 between the data production center (SEU-ALLEN) in Asia and one data releasing facility 
(BICCN Image Library, Pittsburgh supercomputing center) in North America (Fig. 3d). This direct 
data sharing replaced a previous way to bulk ship hard drives containing the massive amount data 
back-and-forth across continents. 
 
With the L0-L1-L2-L3 quadruple data, we further enhanced the scale and faithfulness of our multi-
morphometry produced in two ways. First, since the L0 data has a much smaller volume and thus 
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is much easier to share across network, we developed a collaborative mode that interconnects a 
number of formerly autonomous TeraFly/TeraVR users to synergistically work on the L0 data 
directly (Supplementary Fig. 3). This method parallelizes the workflow and thus improves the 
data production rate. The cooperative work of multiple annotators also elevates the faithfulness of 
the resultant morphometry. Second, we used a deep learning network to learn from the L0-Lx (x = 
1,2,3) pair. The trained model was used to detect specific neuronal features, such as neurite 
skeleton or axonal terminals (Supplementary Fig. 4). This process can be repeatedly optimized 
based on progressively more and more accurate L0-L1-L2-L3 quadruple data. Such automation 
also increases the data production rate for PB-scale computing. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.01.09.426010doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.09.426010


 5 

DISCUSSION 
 
In this study, we demonstrated a robust PB-scale informatics platform to generate large-scale 
single neuron reconstructions suitable for multi-scale biological analysis. Our approach has several 
advantages: (1) efficient multi-level production and management of whole-brain neuron 
reconstructions; (2) conducting morphological analysis and cell typing globally and at multi-
resolution; (3) enabling the investigation of the convergence or divergence of neuronal projections 
by analyzing distribution of neuronal arbors across brain regions; (4) comparison of various 
neuronal elements and sub-structures with respect to the types of cells. Taken altogether, our 
whole-brain multi-morphometry approach provides a framework to produce hierarchical datasets 
that synchronize brain anatomy, single neuron morphology, sub-neuronal structures, and potential 
pre-synaptic sites, all mapped onto a standardized atlas. Our method will be useful for further 
studies of neuronal circuits based on whole-brain imaging, not only for mouse brains but also for 
other model systems such as monkey brains.  
 
Our work furthers previous effort to use light microscopy (LM) to visualize and detect synapses 
around neurite tracts labeled by genetic markers1,2 or antibodies3, which were limited to partial 
neuronal structures in local brain regions. In this study we used fMOST data as a showcase and 
for putative synaptic sites we have focused on axonal boutons. As a generic computational 
framework, our approach is applicable to various datasets produced with different methods and 
collected with different imaging modalities.  
 
The multi-level reconstruction approach is being enhanced in various ways. In addition to various 
workstation/PC clients, virtual reality consoles, super-computing, and big-display walls that are 
already integrated in our software MorphoHub, mobile applications (APPs) for more intelligent 
and automated neuron tracing are being developed and added onto our software. We are also 
deploying MorphoHub for data servers in the cloud and scaling up the capability for concurrent 
data serving of distributed users. We hope these engineering efforts would lead to a new globally 
accessible platform that has potential to bring the current productivity to the next level, especially 
addressing challenges in completing neuron morphometry more efficiently, producing more fine-
scale morphometry such as synapses with their shapes and statistics, integrating more automation 
through the use of AI, sharing of imaging data remotely at affordable cost, and international 
collaboration of neuroanatomists and other interested users.
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CONCLUSION 
 
Neuronal morphology is an essential component of cell type identity in the brain and an essential 
determinant of connectivity and circuit function. Large scale accurate neuronal profiling 
necessitates advanced methods in computational processing to effectively manage storage and 
bandwidth for collaborative segmentation and annotation. The data in this study shows our 
petabyte-scale computing framework is able to provide a solution to modern anatomic workflow 
requirements that are now demanded for very large-scale morphometry.  
 
DATA AND CODE AVAILABILITY 
 
The whole brain image datasets are released under BICCN’s Brain Image Library (BIL) at 
Pittsburgh Supercomputing Center.  
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METHODS 
 
Hardware and software platform 
Our system is designed for the task of multi-morphometry data generation from petabyte-scale 
whole-brain imaging database. Built upon customized hardware infrastructure and software tools, 
the system is capable of organizing whole-brain imaging datasets, generating multi-morphometry 
data, managing data and workflow, and visualization and analysis of the generated data 
(Supplementary Figure 1).  
 
The hardware infrastructure includes the following parts. VR-equipped annotation workstations 
are used for data visualization, interactive neuron reconstruction, proofreading, etc. A petabyte-
scale storage is configured to store the whole-brain imaging datasets, while the multi-morphometry 
data is managed using cloud-based storage. A computing cluster is deployed for parallel execution 
of batch work assignments. Moreover, a wall-mounted display array is also available for 
monitoring the data generation status. The storage server and the computing cluster are connected 
with a 100 Gbps wired local area network for peta-scale data storage and parallel computing. The 
annotation workstations, cloud storage, and monitor system reside in a 10 Gbps local area network. 
 
There are four major software components in the MorphoHub software package. The MorphoHub-
DBMS is the core of the entire system which is responsible for the coordination of the overall data 
generation process. The DendriteGenerator is in charge for parallel generation of dendritic arbors. 
The L0Generator is useful for creating compact image representation of the reconstructions. The 
BoutonGenerator is capable of automatically detection of the synaptic boutons located on axons. 
These components are developed as plugins of Vaa3D44,45, thus making MorphoHub cross-
platform and deployable on various operating systems. 
 
MorphoHub-DBMS 
The MorphoHub-DBMS manages the generation of multi-morphometry data by either 
collaborating teams or automatic routines. All the morphometry data files are organized in the 
MorphoHub-Database, where they follow consistent naming rule and are assigned with unique 
IDs. The validity of the database is monitored by an error checking routine running in the 
background. Should there be any issue regarding to the morphometry data files, and error message 
would be generated and displayed on the screen wall system. 
 
During the multi-level generation of the neuron morphometry data, multiple brains, neurons, 
annotators are involved. Also, for each neuron, the L1, L2, and L3 data, together with a number of 
intermediate data levels are produced. The MorphoHub-DBMS maintains the correct working state 
for all the neurons and supports a number of operations, including commit (submitting a 
reconstruction to a higher level), rollback (sending a reconstruction to a previous level), 
proofreading (requesting for quality check of the reconstruction), etc. Besides, the MorphoHub-
DBMS also provides supports for user management and task assignment. All the data are 
periodically synchronized with private or public cloud-based storages for version control, data 
sharing and collaboration. 
 
A screen wall display system is connected with MorphoHub to present useful information for the 
ongoing morphometry generation. On the display array, some of the latest reconstructed neurons 
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are displayed; the status of the data repository is tracked; preliminary analysis results are also 
generated dynamically to provide potential insights of the data. 
 
Generation of somata and dendritic arbors (DendriteGenerator) 
The annotators browsed each whole brain image in D62 using TeraFly and pinpointed soma 
locations. 2-D maximum intensity projection (MIP) images were generated for each soma-centered 
region for further validation. Then, centering at each identified soma, a local image volume of 
1024x1024x512 was cropped from the from highest resolution of whole brain image. Next, the 
APP246 algorithm was invoked for the tracing of dendritic arbors. In particular, a number of 
background thresholds (15, 20, …, 40) were adopted for each tracing routine. The tasks were 
submitted to the cluster server for parallel computation. The results were retrieved and stored only 
if the execution time was under 30 seconds. Then, we leveraged the gold-standard datasets, e.g., a 
set of manually annotated and validated dendritic arbors, to form rules for further screening the 
automatic reconstruction results. The [min, max] interval of the following five features of the 
dendritic arbors were considered, including 'Tips', 'Length', 'Max Path Distance', 'Average 
Bifurcation Angle Remote', and 'Max Branch Order'. An automatic tracing result qualified if more 
than four features conformed with the gold-standard. In case more than one tracing qualified for a 
certain soma location, the result with larger overall tracing length was selected. In visual screening, 
tracing results were removed when multiple cells were connected.  
 
Generation of the L0 imaging data (L0Generator) 
The L0 imaging data is generated based on the corresponding morphometry data, e.g., L1 data, L2 
data, or even a dendritic arbor. The L0 data contains the image regions that cover all the anatomical 
structures of the morphometry and is organized in a TeraFly-compatible hierarchical form, just as 
the whole-brain imaging data. The approach to generate L0 data is described below. For a given 
neuron, each fundamental morphological element, i.e., nodes and edges, is examined. The local 
image block in the whole-brain dataset that contains the element is found and marked as “relevant”. 
Then, all the “relevant” images are combined into the union set from which the compact L0 data 
are finally generated by building a multi-resolution image hierarchy. 
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FIGURES 

 
Fig 1. Multi-morphometry data generation from whole-brain imaging datasets. a An illustration 
of the multi-level reconstruction approach. From a whole-brain image containing trillions of 
voxels (top left), the Level-1 (L1), Level-2 (L2), and Level-3 (L3) data are reconstructed in 
sequence (bottom). Moreover, a concise Level-0 (L0) imaging data is also generated based on the 
reconstructed morphometry (top right). b The MorphoHub system for the generation of multi-
morphometry data, management and visualization of all related data and workflow, data sharing 
and extended functions. c Examples of the multi-morphometry data reconstructed from one Brain 
(Brain id: 18454). From top to bottom are the somata, dendrites, L1, L2, and L3 data, respectively, 
with zoom-in panels for red arrows shown on the right. 
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Fig 2. Visualization of the multi-morphometry data in R1050. a The color-coded joint distribution 
of dendrites, axons, and boutons. From top to bottom: horizontal view (slice no. 165), coronal 
view (slice no. 335), and sagittal view (slice no. 148). Colors indicate the densities of dendrites, 
axons, and boutons normalized to the standard RGB color space. Scale bar: 2mm. b Individual 
distributions of somata in R1050. Each inset corresponds to the combination of 25 consecutive 
coronal slices, in which the brain regions were colored according to the densities of somata. The 
darker the color, the higher the density. c-e Similar visualizations for dendrites, axons, and 
boutons in R1050, respectively. 
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Fig 3. The L0 representation of imaging data. a The L0 image (shown in horizontal, coronal, and 
sagittal views) for neuron 17782_00004, overlaid with its L2 reconstruction. b For neurons in 
R1050, the ratio of L0 image volume generated from L1 data over that generated from L2 data. c 
Comparisons of the size of whole-brain images, the average size of L0 data, and the size of the 
“super L0-data” (union of all L0 data of neurons). Error bar: SD. d Time for transferring 1050 
L0 images between two research centers in Asia (SEU-ALLEN) and America (BIL).  
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SUPPLEMENTARY TABLES 
 
 
Supplementary Table 1. Comparisons between MorphoHub and relevant software for whole 
mouse-brain imaging data 
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SUPPLEMENTARY FIGURES  

 
 
 

 
Supplementary Figure 1. An illustration of our system. A petabyte hardware platform is 
constructed (bottom row), upon which the MorphoHub software package is developed (upper row). 
There are four major modules in MorphoHub, which are the MorphoHub-DBMS, 
DendriteGenerator, L0Generator, and BoutonGenerator, respectively. 
 
 
 
 
 
 

 
Supplementary Figure 2. Extended functions via the universal application interface of MorphoHub. 
a Version control tool for comparing the structural difference of two reconstruction versions. 
(white: identical structures, green: different structures). b Sholl analysis for neurons of the same 
cell type. c Monitoring of the morphometry data production. The numbers of generated neurons 
are shown for each brain and each release date. 
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Supplementary Figure 3. Collaborative neuron reconstruction among several TeraFly/TeraVR 
clients. a-d. L2 neurons that are reconstructed and proofread by a group of annotators. The 
portion reconstructed by each annotator is represented by a different color. The pie chart 
corresponds to the reconstruction length of distinct annotators.  
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Supplementary Figure 4. 3D-CNN based tip detection. MorphoHub is compatible for integrating 
various AI components to assist with data production, proofreading and analysis. For example, 
DeepTip is a deep learning-based component that is integrated in MorphoHub for differentiating 
true terminal tips of neurites and even automatically correcting the false ones. 
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