Supplementary Information: Long read sequencing reveals novel isoforms and insights into splicing regulation during cell state changes

David J Wright¹, Nicola Hall^{2,3}, Naomi Irish¹, Angela L Man¹, Will Glynn¹, Arne Mould^{2,3}, Alejandro De Los Angeles^{2,3}, Emily Angiolini¹, David Swarbreck¹, Karim Gharbi¹, Elizabeth M Tunbridge^{2,3}, Wilfried Haerty¹*

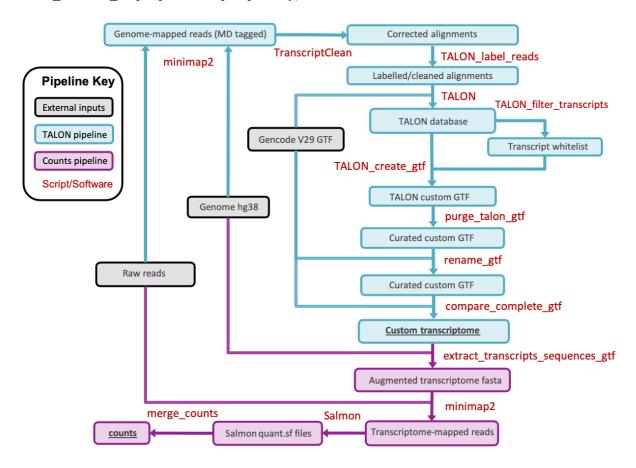
³National Institute for Health Research, Oxford Health Biomedical Research Centre, Oxfordshire OX3 7JX, UK

Supplementary Results & Discussion

Gene & transcript-level differential expression at more stringent log fold change thresholds

Using more stringent threshold criteria (logFC \geq 1.5), 503 genes were upregulated in the differentiated cells, and 524 downregulated (Table S3), compared to the undifferentiated state (Fig 3A). These upregulated genes also showed greatest overlap with those up-regulated in the brain, compared with other tissue types (p_{adj} = 1.2 x 10⁻²³). Whilst the permissive data showed significant overlap with genes down-regulated in brain, this relationship was not observed at the more stringent threshold (p_{adj} = 1).

At the transcript-level, we found a total of 884 transcripts significantly upregulated and 875 significantly downregulated in the differentiated cells (Fig 3C). These include 28 upregulated and 21 downregulated novel TALON transcripts respectively (Table S3).

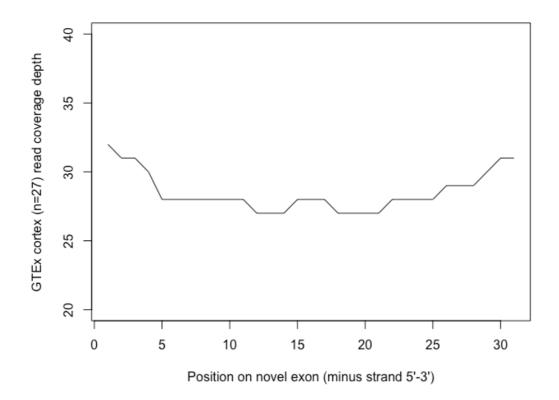

¹Earlham Institute, Norwich Research Park, Norfolk NR5 0PB, UK

²Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxfordshire OX3 3JX, UK

^{*} corresponding author: Wilfried.Haerty@earlham.ac.uk

Supplementary Figures and Tables


Figure S1 Schematic representation of the custom annotation pipeline, utilising TALON software (Wyman et al. 2020) with custom bash, python and perl auxiliary and processing scripts (collated in clean TALON output.pl, see script repository).


Fig S2 Schematic representation of *CACNA2D2* (ENSG00000007402) transcripts, showing the novel transcript TALONT000703030. Figure modified from IsoformSwitchAnalyzeR output (Vitting-Seerup and Sandelin 2019).

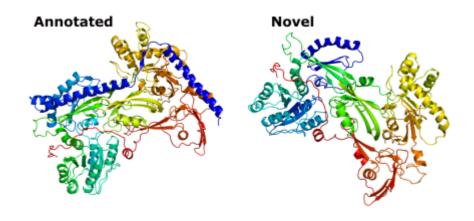

Fig S3 Short read (Illumina paired-end) coverage plot of novel first exon (31bp) of CACNA2D2 (ENSG00000007402) transcript TALONT000703030 from all 10 sequencing runs (see Table S1).

Fig S4 Coverage plot of novel first exon (31bp) of CACNA2D2 (ENSG00000007402) transcript TALONT000703030 from N=27 human cortex RNA-seq GTEx accessions from N=21 individuals: SRR1310008, SRR1311400, SRR1311575, SRR1315866, SRR1316815, SRR1317344, SRR1320963, SRR1323043, SRR1326179, SRR1331579, SRR1333930, SRR1337564, SRR1339651, SRR1343481, SRR1353176, SRR1354446, SRR1364676, SRR1368772, SRR1382732, SRR1383059, SRR1387809, SRR1418837, SRR1418992, SRR1433971, SRR1435293, SRR1444580, SRR1468514.

Fig S5 Comparison of an example annotated coding transcript (ENST00000479441) of *CACNA2D2* (ENSG0000007402) with the novel transcript TALONT000703030, demonstrating key differences and initial 3D structure rendered using Phyre2 (Kelley et al. 2015).

Table S1 Summary statistics of the Oxford Nanopore Technologies (ONT) after quality checking and Illumina paired-end short read sequencing (SRS) of 10 replicate samples of human neuronal cell line SH-SY5Y. D = differentiated cell and U = undifferentiated cell samples.

Sample ID	Reads	Bases	Median Length	Read N50	Median Quality	Illumina Reads
D1	11,449,796	9,927,703,599	746	983	11.53	109,360,175
D2	9,792,869	7,733,291,052	675	951	11.59	119,690,149
D3	11,255,431	9,564,769,304	723	981	11.53	116,001,216
D4	14,236,128	12,584,438,699	732	1016	11.59	61,118,341
D5	11,503,329	9,379,344,639	707	961	11.64	98,946,695
U1	9,171,036	7,737,779,710	701	1003	11.49	109,699,478
U2	10,753,125	9,199,369,288	723	975	11.50	113,071,934
U3	7,654,475	6,240,728,116	691	980	11.61	120,907,938
U4	9,805,641	8,331,498,610	720	989	11.53	105,973,868
U5	11,293,547	9,835,274,972	717	1023	11.54	98,721,393

Table S2 Comparison of limit of quantification (LOQ) of Oxford Nanopore Technologies (ONT) sequencing, Illumina short read sequencing (SRS) and Illumina reads down-sampled to average nucleotide coverage of ONT reads. LOQ calculated by Anaquin (Wong et al. 2017).

Sequencing Approach	LOQ genes	(attoml/μl)	LOQ isoforms (attoml/µl)		
	Sequin MixA	Sequin MixB	Sequin MixA	Sequin MixB	
Illumina reads (SRS)	-	-	-	0.0197	
Down-sampled Illumina	0.118	0.118	0.059	0.0674	
Nanopore reads (ONT)	0.118	0.472	0.059	0.270	

Table S3 Differential gene and transcript expression at a stringent filter of logFC \gtrsim 1.5, FDR q-value < 0.05 (see also Figures 3A and 3C). Bracketed numbers refer to the portion of total that are TALON-identified novel transcripts. U = undifferentiated and D = differentiated cells, with arrows displaying expression directionality.

Metric	Count			
	Gene level	Transcript level (Talon)		
\uparrow U \downarrow D (\geq +1.5 logFC)	524	875 (21)		
↑D ↓U (≤ -1.5 logFC)	503	884 (28)		

Table S4 N=104 Differential transcript usage switches with functional consequence ranked by q-value. Output from IsoformSwitchAnalyzeR (Vitting-Seerup and Sandelin 2019). See main methods for functional analysis.

Ensembl_geneID	gene_name	condition_1	condition_2	gene_switch_q_value
ENSG00000086848	ALG9	Differentiated	Undifferentiated	1.51E-26
ENSG00000118363	SPCS2	Differentiated	Undifferentiated	1.83E-21
ENSG00000221838	AP4M1	Differentiated	Undifferentiated	9.67E-18
ENSG00000088986	DYNLL1	Differentiated	Undifferentiated	4.99E-12
ENSG00000167113	COQ4	Differentiated	Undifferentiated	1.25E-11
ENSG00000112769	LAMA4	Differentiated	Undifferentiated	1.41E-11
ENSG00000164117	FBXO8	Differentiated	Undifferentiated	1.95E-10
ENSG00000101460	MAP1LC3A	Differentiated	Undifferentiated	1.57E-08
ENSG00000108384	RAD51C	Differentiated	Undifferentiated	4.19E-08
ENSG00000172053	QARS	Differentiated	Undifferentiated	1.08E-07
ENSG00000169738	DCXR	Differentiated	Undifferentiated	2.91E-07
ENSG00000160789	LMNA	Differentiated	Undifferentiated	3.67E-07
ENSG00000140416	TPM1	Differentiated	Undifferentiated	7.53E-07
ENSG00000172081	MOB3A	Differentiated	Undifferentiated	1.23E-06

ENSG00000151148	UBE3B	Differentiated	Undifferentiated	1.52E-06
ENSG00000146282	RARS2	Differentiated	Undifferentiated	2.19E-06
ENSG00000221926	TRIM16	Differentiated	Undifferentiated	6.06E-06
ENSG00000163738	MTHFD2L	Differentiated	Undifferentiated	2.28E-05
ENSG00000108591	DRG2	Differentiated	Undifferentiated	3.53E-05
ENSG00000179632	MAF1	Differentiated	Undifferentiated	3.79E-05
ENSG00000158604	TMED4	Differentiated	Undifferentiated	4.45E-05
ENSG00000068024	HDAC4	Differentiated	Undifferentiated	9.36E-05
ENSG00000285437	POLR2J3	Differentiated	Undifferentiated	0.000105381
ENSG00000125755	SYMPK	Differentiated	Undifferentiated	0.000216866
ENSG00000056972	TRAF3IP2	Differentiated	Undifferentiated	0.000341384
ENSG00000089486	CDIP1	Differentiated	Undifferentiated	0.000365387
ENSG00000163053	SLC16A14	Differentiated	Undifferentiated	0.000516673
ENSG00000171469	ZNF561	Differentiated	Undifferentiated	0.000538662
ENSG00000055044	NOP58	Differentiated	Undifferentiated	0.000654218
ENSG00000107317	PTGDS	Differentiated	Undifferentiated	0.000728674
ENSG00000165792	METTL17	Differentiated	Undifferentiated	0.000728674
ENSG00000127125	PPCS	Differentiated	Undifferentiated	0.00074317
ENSG00000184347	SLIT3	Differentiated	Undifferentiated	0.000875632
ENSG00000104870	FCGRT	Differentiated	Undifferentiated	0.000913016
ENSG00000180596	HIST1H2BC	Differentiated	Undifferentiated	0.000978953
ENSG00000131711	MAP1B	Differentiated	Undifferentiated	0.0010522
ENSG00000179029	TMEM107	Differentiated	Undifferentiated	0.0010522
ENSG00000140995	DEF8	Differentiated	Undifferentiated	0.001148515
ENSG00000135931	ARMC9	Differentiated	Undifferentiated	0.001238557

ENSG00000161800	RACGAP1	Differentiated	Undifferentiated	0.001494161
ENSG00000146540	C7orf50	Differentiated	Undifferentiated	0.001536413
ENSG00000183092	BEGAIN	Differentiated	Undifferentiated	0.001547641
ENSG00000123178	SPRYD7	Differentiated	Undifferentiated	0.001966476
ENSG00000003756	RBM5	Differentiated	Undifferentiated	0.00235666
ENSG00000166444	ST5	Differentiated	Undifferentiated	0.00235666
ENSG00000124222	STX16	Differentiated	Undifferentiated	0.002830477
ENSG00000196704	AMZ2	Differentiated	Undifferentiated	0.002854375
ENSG00000164466	SFXN1	Differentiated	Undifferentiated	0.00306238
ENSG00000198408	OGA	Differentiated	Undifferentiated	0.003637501
ENSG00000197372	ZNF675	Differentiated	Undifferentiated	0.004074968
ENSG00000099330	OCEL1	Differentiated	Undifferentiated	0.004090568
ENSG00000257591	ZNF625	Differentiated	Undifferentiated	0.00422435
ENSG00000064490	RFXANK	Differentiated	Undifferentiated	0.004622242
ENSG00000136490	LIMD2	Differentiated	Undifferentiated	0.006030149
ENSG00000131477	RAMP2	Differentiated	Undifferentiated	0.006540547
ENSG00000184787	UBE2G2	Differentiated	Undifferentiated	0.006598612
ENSG00000196465	MYL6B	Differentiated	Undifferentiated	0.007142517
ENSG00000132692	BCAN	Differentiated	Undifferentiated	0.007231216
ENSG00000138606	SHF	Differentiated	Undifferentiated	0.007762126
ENSG00000151353	TMEM18	Differentiated	Undifferentiated	0.007989728
ENSG00000197122	SRC	Differentiated	Undifferentiated	0.008177219
ENSG00000160013	PTGIR	Differentiated	Undifferentiated	0.008905808
ENSG00000111581	NUP107	Differentiated	Undifferentiated	0.009183614
ENSG00000197771	MCMBP	Differentiated	Undifferentiated	0.009700325

ENSG00000137434	C6orf52	Differentiated	Undifferentiated	0.009711457
ENSG00000198551	ZNF627	Differentiated	Undifferentiated	0.00989504
ENSG00000066379	ZNRD1	Differentiated	Undifferentiated	0.01087531
ENSG00000062194	GPBP1	Differentiated	Undifferentiated	0.011249117
ENSG00000166471	TMEM41B	Differentiated	Undifferentiated	0.011305356
ENSG00000174628	IQCK	Differentiated	Undifferentiated	0.012469732
ENSG00000227051	C14orf132	Differentiated	Undifferentiated	0.013453422
ENSG00000141298	SSH2	Differentiated	Undifferentiated	0.013885209
ENSG00000121413	ZSCAN18	Differentiated	Undifferentiated	0.014960611
ENSG00000151617	EDNRA	Differentiated	Undifferentiated	0.016912634
ENSG00000166407	LMO1	Differentiated	Undifferentiated	0.017290737
ENSG00000100888	CHD8	Differentiated	Undifferentiated	0.01754742
ENSG00000276234	TADA2A	Differentiated	Undifferentiated	0.018780264
ENSG00000198663	C6orf89	Differentiated	Undifferentiated	0.020507021
ENSG00000205339	IPO7	Differentiated	Undifferentiated	0.020514719
ENSG00000136146	MED4	Differentiated	Undifferentiated	0.02127913
ENSG00000004897	CDC27	Differentiated	Undifferentiated	0.022166596
ENSG00000119559	C19orf25	Differentiated	Undifferentiated	0.024137326
ENSG00000060982	BCAT1	Differentiated	Undifferentiated	0.024277036
ENSG00000196482	ESRRG	Differentiated	Undifferentiated	0.027583627
ENSG00000139182	CLSTN3	Differentiated	Undifferentiated	0.027739353
ENSG00000204653	ASPDH	Differentiated	Undifferentiated	0.028996139
ENSG00000106635	BCL7B	Differentiated	Undifferentiated	0.029720469
ENSG00000144401	METTL21A	Differentiated	Undifferentiated	0.029949427
ENSG00000135090	TAOK3	Differentiated	Undifferentiated	0.033871798

ENSG00000149292	TTC12	Differentiated	Undifferentiated	0.033913158
ENSG00000171953	ATPAF2	Differentiated	Undifferentiated	0.034218455
ENSG00000080986	NDC80	Differentiated	Undifferentiated	0.034297085
ENSG00000105321	CCDC9	Differentiated	Undifferentiated	0.034903122
ENSG00000135541	AHI1	Differentiated	Undifferentiated	0.035365825
ENSG00000122490	PQLC1	Differentiated	Undifferentiated	0.036240151
ENSG00000174353	STAG3L3	Differentiated	Undifferentiated	0.038682053
ENSG00000140939	NOL3	Differentiated	Undifferentiated	0.04412664
ENSG00000147548	NSD3	Differentiated	Undifferentiated	0.044278588
ENSG00000104231	ZFAND1	Differentiated	Undifferentiated	0.044308667
ENSG00000107951	MTPAP	Differentiated	Undifferentiated	0.044598461
ENSG00000166398	KIAA0355	Differentiated	Undifferentiated	0.046626246
ENSG00000259431	THTPA	Differentiated	Undifferentiated	0.047528021
ENSG00000135249	RINT1	Differentiated	Undifferentiated	0.047949428
ENSG00000136574	GATA4	Differentiated	Undifferentiated	0.048524879

CITATIONS

- Kelley, Lawrence A., Stefans Mezulis, Christopher M. Yates, Mark N. Wass, and Michael J. E. Sternberg. 2015. "The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis." *Nature Protocols* 10 (6): 845–58.
- Vitting-Seerup, Kristoffer, and Albin Sandelin. 2019. "IsoformSwitchAnalyzeR: Analysis of Changes in Genome-Wide Patterns of Alternative Splicing and Its Functional Consequences." *Bioinformatics* 35 (21): 4469–71.
- Wong, Ted, Ira W. Deveson, Simon A. Hardwick, and Tim R. Mercer. 2017. "ANAQUIN: A Software Toolkit for the Analysis of Spike-in Controls for next Generation Sequencing." *Bioinformatics* 33 (11): 1723–24.
- Wyman, Dana, Gabriela Balderrama-Gutierrez, Fairlie Reese, Shan Jiang, Sorena Rahmanian, Stefania Forner, Dina Matheos, et al. 2020. "A Technology-Agnostic Long-Read Analysis Pipeline for Transcriptome Discovery and Quantification." *bioRxiv*. https://doi.org/10.1101/672931.