
	
	

1 
	
	

Suboptimal proteome allocation during changing environments constrains 
bacterial response and growth recovery 
	

Supplementary Information 
 
Rohan Balakrishnan1, Terence Hwa1,2, Jonas Cremer3  
  

TABLE OF CONTENTS  
Supplementary	Text	..................................................................................................................................	2	

1.	 Experimental	Method	 2	
1.1	 Strain	information	 2	

1.1.1	 	Construction	of	deletion	strains	 2	
1.2	 Media	and	growth	conditions	 2	

1.2.2	 Lag-time	quantification	 3	
1.2.3	Overexpression	experiments	 3	

1.3	 Sample	analysis	 3	
1.3.1	 qPCR	measurements	 3	
1.3.2	 RNA-Seq	sampling	and	analysis	 4	

2	 Modeling	growth-kinetics	during	the	shift	 4	
2.1	Growth	on	one	nutrient	source	 5	
2.2	Modeling	nutrient	consumption	 7	
2.3	Model	parameters	for	growth	on	one	carbon	source	 8	
2.4	Modeling	growth-transitions	 8	
2.5	Model	parameters	 10	
2.6	The	delaying	effect	of	non-needed	protein	expression	on	growth-transition	 11	
2.7	Variation	of	pre-shift	expression	of	required	proteins.	 11	
2.8	Ribosome	content	 12	

Supplementary	Tables	..........................................................................................................................	12	

Table	S1:	Primers	used	in	this	study	 12	
Table	S2:	Strains	used	in	this	study	 13	
Table	S3:	Model	parameters	 13	

Reference	....................................................................................................................................................	14	

 

	  



	
	

2 
	
	

SUPPLEMENTARY TEXT 
1. Experimental Method 

1.1 Strain information 

The	wild-type	strain	we	use	is	the	extensively	characterized	E.	coli	K-12	strain	NCM3722(1,	
2).	This	strain	was	also	used	as	the	parent	for	the	construction	oa	all	the	strains	used	in	this	
study.		
 
1.1.1  Construction of deletion strains 

To obtain the fliC and flhD deletion strains, the corresponding KO strains JW1908 from the Keio 
collection(3) was used and the deletion was subsequently moved into the NCM3722 strain by 
phage P1vir transduction, yielding strains GE029 and NQ1225. All strains are listed in Table S2. 	
 

1.2 Media and growth conditions  
All growth media used in this study were based on the MOPS-buffered minimal medium used by 
Cayley et al. with slight modifications(4). 20 mM NH4Cl was provided as nitrogen source. Trace 
micronutrients were added as indicated in (4). For growth measurements in minimum medium, 
one of the followings was used as the primary carbon source: 20 mM glucose, 30 mM acetate, 20 
mM glycerol, 20 mM sorbitol, 20mM succinate, 6 mM mannose, 4 mM mannose, 20 mM xylose. 
For shift experiments, cells were grown with 0.61mM glucose and the concentration of the second 
carbon source as stated before (e.g. 30mM acetate).  
 
For the titratable strains (NQ1389 for lacZ and NQ1350 for aceBA), different concentrations of 
chlortetracycline (cTc) to induce expression and 15	 ug/ml	 chloramphenicol	 and	 50	 ug/ml	
ampicillin	to	maintain	the	plasmid	construct	were	additionally	provided.	
Cells were grown in a 37°C water bath shaker shaking at 250 rpm. To ensure balance growth, cells 
grew exponentially for at least 7 generations before starting measurements. We measured optical 
density at 600nm (OD600) using a UV-Vis spec. To obtain the growth rate of steadily growing 
cultures, OD600 data points within the range 0.04 to 0.4 (linear range of spectrophotometer) were 
obtained and fitted to an exponential growth curve.  In addition, growth-curves and transitions 
were also quantified in a microplate-reader (200ul per well). A Tecan Spark microplate reader was 
used and absorbance (420nm) was measured every 7 min; incubation temperature was set to 37°C. 
Between measurements, plates were shaking at 132 rpm with an orbital amplitude. Wells loaded 
with only media (no culture) were used to reset absorbance values, and obtained absorbance values 
were subsequently adjusted to obtain OD600 values matching the values obtained with the UV-
Vis spectrophotometer and a pathlength of 1cm. Obtained growth rates for glass-tube cultures and 
incubation in the microplate reader are highly comparable (< ±5%). Growth-rate measurements 
were repeated 2-3 times as indicated in the figure captions. 
 



	
	

3 
	
	

1.2.2 Lag-time quantification 

To	quantify	lag-times,	we	first	fit	exponential	growth	behavior	to	the	two	steady	growth	
phases	(growth	on	glucose	and	growth	on	acetate)	using	OD600	ranges	(0.04…0.15)	and	
(0.3…0.4)	for	growth	on	glucose	and	acetate,	respectively.	Plateau	levels	(no	change	in	
OD600)	were	then	determined	by	hand	(OD	value	which	first	derivatives	from	the	
exponential	growth	on	glucose),	and	the	times	𝑡!",$"%&'()		and	𝑡!",+&),+,) 	were	the	
exponential	curves	match	the	plateau	levels	were	calculated.	The	lag-time	is	the	difference	
of	these	times,	𝑡"+$ = 𝑡!",+&),+,) − 𝑡!",$"%&'() .	Times	were	readjusted	before	plotting	(𝑡 → 𝑡 −
𝑡!",$"%&'() ,	such	that	time=0	corresponds	to	the	time	were	the	exponential	growth	on	
glucose	hits	the	plateau	level	(beginning	of	shift).		Lag-time	estimation	is	further	described	
in	Figure	S1A.	Experiments	to	quantify	lag-times	were	repeated	at	least	3	times	as	
indicated	in	the	figure	captions.		
 
1.2.3 Overexpression experiments 

Overnight	pre-cultures	(OD600~0.5)	were	diluted	to	a	starting	OD600	of	~0.02.	To	ensure	
a	simultaneous	entry	into	the	shift	phase	(time	and	density	glucose	runs	out)	for	different	
inducer	levels,	a	main	culture	was	prepared	in	an	Erlenmeyer	flask	and	after	1	hour	of	
incubation	this	main	culture	was	split	into	different	cultures	(glass-tubes	with	6ml	culture	
each).	A	different	amount	of	inducer	stock	(cTc)	was	then	added	for	the	different	cultures	
at	the	moment	of	glucose	runout.	To	ensure	the	addition	of	the	inducer	exactly	at	this	time,	
a	control	culturing	starting	with	slightly	higher	cell	density	was	run	in	addition	which	
entered	the	shift	approximately	30min	earlier.	The	observed	density	value	at	the	shift	was	
used	as	the	indicator	when	to	add	the	inducer	levels	to	the	main	cultures.	Obtained	lag-
times	were	highly	reproducible	for	inducer	levels	up	to	5𝑛𝑔/𝑚𝑙.	For	higher	inducer	levels	
(lag-times	>5h),	variation	was	higher,	presumably	because	the	slightly	late	addition	of	
inducer	levels	leads	to	small	variation	in	bottleneck	enzymes	which	can	have	strong	
consequences	over	long	times.	
	

1.3 Sample analysis 
1.3.1 qPCR measurements 

RNA	was	extracted	using	the	TRIzol	(Thermo	Fisher)	method	combined	with	a	column-
based	purification	step.	In	detail,	2ml	culture	was	collected	30min	after	the	shift	(30min	
after	glucose	run	out)	and	spined	down.	Pellet	was	immediately	resuspended	in	250ul	TMN	
buffer	(10	mM	Tris	pH	8,	10	mM	MgCl2	and	60	mM	NH4Cl)	and	thoroughly	mixed	with	
250ul	Trizol.	After	5	min	incubation,	50ul	chloroform	was	added	and,	after	mixing	and	
another	minute	incubation,		the	sample	was	centrifuged	for	10min	at	4C.	The	clear	phase	
was	collected	and	the	obtained	RNA	was	immediately	washed	using	a	RNA	purification	kit	
(Zymo	Research	RNA	Clean	&	Concentrator-5,	following	the	instructions).	To	remove	
plasmid	DNA,	a	DNAase	digestion	step	on	the	purification	colums	was	added	following	the	
instructions.	To	quantify	transcription,	a	two-step	qPCR	approach	was	chosen.	Reverse	
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transcription	was	first	run	with	random	hexaprimers	to	obtain	cDNA	(azura	genomics,	
AzuraFlex	cDNA	Synthesis	Kit	following	instructions	with	1ul	of	RNA	sample).	Real	time	
PCR	reactions	(10ul	final	volume)	were	prepared	using	a	Sybr	Green	master	mix	(Biorad	
SsoAdvanced	Universal	SYBR@	Green	Supermix),	following	the	instructions	and	using	10x	
diluted	cDNA	sample.	Primer	sets	for	16S	RNA	and	the	genes	aceB,	aceA,	and	lacZ	were	
used	as	listed	in	Table	S1.	300nmol	primer	concentration	were	used,	standard	curves	
confirmed	the	linearity	for	each	of	the	four	primer	sets	chosen,	and	melting	curves	
confirmed	selectivity	of	the	reaction.	The	PCR	was	run	in	a	Biorad	CFX	384	instrument,	
with	the	protocol	following	the	reagent	instructions	provided	with	the	master	mix.	To	
calculate	relative	expression	levels,	obtained	gene	expression	levels	were	normalized	to	the	
16S	RNA	levels	measured	from	the	same	cDNA	sample.	The	expression	level	of,	for	
example,	aceB	was	calculated	as		2-(&!,#$%&-&',()*).	To	compare	the	changes	in	expression	
for	different	inducer	levels,	values	were	in	addition	normalized	by	the	expression	level	
obtained	for	0	inducer	level.	Measurements	were	repeated	at	least	3	times	starting	with	
different	cultures	(biological	repeats).		
	
1.3.2 RNA-Seq sampling and analysis 

Steady	state	cultures	were	grown	to	OD600	of	0.5.	10	ml	samples	were	spun	and	cells	were	
resuspended	in	200ul	TMN	buffer	(10	mM	Tris	pH	8,	10	mM	MgCl2	and	60	mM	NH4Cl).	RNA	
was	extracted	using	200ul	TRIzol	reagent	followed	by	ethanol	precipitation.	Ribosomal	
RNA	was	removed	using	the	Ribo-Zero	kit	(Illumina)		and	barcoded	RNA-seq	libraries	were	
generated	using	the	TruSeq	stranded	kits	(Illumina)	as	per	the	vendor’s	protocol.		The	
libraries	were	sequenced	using	Illumina’s	Hiseq4000	platform.	Typically,	around	20	million	
reads	were	obtained	per	sample,	except	for	the	WT	sample	5	minutes	post	shift,	which	had	
5	million	reads.	Reads	were	de-multiplexed	and aligned to the E.coli MG1655 U00096.3 
genome using bowtie v2.2.6(5). Read counts were obtained using Python HTSeq-count (HTSeq 
v0.6.1p2)(6).	

2 Modeling growth-kinetics during the shift  
Modeling	growth-transitions	is	challenging	because	one	needs	to	analyze	how	core	growth-
processes	change	with	current	growth-conditions	which	depends	on	the	metabolic	state	of	
the	cell.	More	recently,	several	modeling	approaches	have	been	formulated	to	overcome	
these	challenges	and	to	investigate	growth	transitions	in	different	changing	environments,	
including	defined	down-	and	up-shifts	to	carbon	sources	supplying	faster	or	slower	growth.		
These	models	consider	the	growth-conditions	during	growth-transitions	focusing	on	the	
link	to	observed	steady	state	growth	behavior,	parameterizing	for	example	the	fluxes	such	
that	they	merge	with	steady	state	conditions(7,	8).	These	approaches	extended	the	logic	of	
growth-laws	from	steady	state	considerations	to	also	describe	the	growth	kinetics	during	
the	transition.	To	explicitly	analyze	the	promoting	effect	of	required	metabolic	proteins	and	
the	inhibiting	effect	of	non-required	genes	on	growth-transitions,	we	built	on	these	models	
but	chose	a	more	explicit	approach	and	specifically	considered	the	expression	of	required	
and	non-required	enzymes	during	the	shift.	Model	logic	and	details	are	provided	in	the	
following.	Model	results	are	shown	in	Figs.	3	&	S4.		
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2.1 Growth on one nutrient source 

To	a	model	for	growth-kinetics	we	first	introduce	a	simpler	model	for	the	growth	on	one	
carbon	source.	The	model	focuses	on	novel	protein	synthesis,	the	most	resource	
demanding	cellular	component,	and	considers	the	allocation	of	ribosome	activity	to	
different	protein	classes	as	introduced	in	Fig.	S3.	We	specifically	build	on	the	rationale	
introduced	in	Scott	et	al(9)	to	first	consider	balanced	growth	on	one	carbon	source.	
Proteins	are	synthesized	by	ribosomes	and	the	increase	of	total	protein	mass	in	the	culture	
(variable	𝑀)	depends	on	the	number	of	ribosomes	𝑁01	in	the	culture	and	their	average	
translation	speed	𝑘01	(how	many	new	amino-acids	a	ribosome	is	synthesizing	per	time):	
	

𝑑𝑀
𝑑𝑡 = 	𝑘01𝑁01	

	
For	convenience,	we	measure	protein	mass	in	numbers	of	amino	acids	such	that	no	extra	
conversion	factor	is	needed.	Instead	of	the	number	of	ribosomes	we	can	also	consider	their	
mass	(variable	𝑀0)	writing:	
	

𝑑𝑀
𝑑𝑡 = 𝛾𝑀0 	

	
With	the	translation	efficiency	𝛾01 ≡ 𝑘01/𝑚01	being	a	rate	(unit	1/time)	and	𝑚0 =
7459𝐴𝐴	the	number	of	amino	acids	per	ribosome.		
	
The	increase	of	ribosomal	mass	depends	in	turn	on	how	fast	proteins	are	synthesized,	and	
to	which	extend	the	cell	is	allocation	translation	resources	towards	the	synthesis	of	novel	
ribosomes	(the	thickness	of	arrow	3	in	Fig.	S3A).	We	write:	
	

𝑑𝑀0

𝑑𝑡 = 𝛼01
𝑑𝑀
𝑑𝑡 	

	
and	call	𝛼01 ,	a	number	between	0	and	1,	the	allocation	coefficient	towards	ribosome	
synthesis.		
	
To	understand	how	biomass	is	increasing,	we	next	have	to	consider	translation	in	more	
detail.	Notably,	the	translation	efficiency	𝛾	is	not	a	constant	rate	but	it	is	changing	with	the	
tRNA-	precursor	concentrations	ribosomes	encounter	within	the	cells;	ribosomes	rely	on	a	
sufficiently	high	concentration	of	charged	tRNA	to	work	efficiently.	Let	us	thus	introduce	a	
variable	𝑝	describing	precursor	concentrations	within	the	cell.			If	𝑝	falls	to	low	levels,	
translation-speeds	and	thus	biomass	accumulation	drops.	In	a	first	proxy,	this	can	be	
described	by	a	simple	Michaelis-Menten	relation:	
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𝛾 = 𝛾(𝑝) = 𝛾2+3
𝑝

𝑝 + 𝑝4
	

	
The	Michaelis-Menten	constant	𝑝4	can	be	taken	from	measurements	characterizing	how	
translation	falls	with	tRNA	concentrations.		To	calculate	precursor	concentrations	𝑝	we	
consider	the	total	precursor	mass	𝑀!& 	and	compare	it	to	the	total	protein	mass	𝑀	in	the	
culture	in	the	cell	as	total	precursor	mass	𝑀!& 	in	the	culture	per	total	protein	mass	in	the	
culture:	𝑝 ≡ 𝑀!&/𝑀	(a	conversion	can	give	precursors	per	cell	volume	or	dry	mass).	To	
investigate	how	the	precursor	concentrations	change	(over	time	and	depending	on	
parameters),	we	consider	the	change	of	total	mass	of	precursors:	
	

𝑑𝑀!&

𝑑𝑡 = 𝐽!&,56 −
𝑑𝑀
𝑑𝑡 	

	
Precursor	mass	is	given	by	a	balance	of	novel	precursor	synthesis	(flux	𝐽56)	and	the	
utilization	by	the	ribosomes	increasing	the	total	protein	mass	(𝑑𝑀/𝑑𝑡).	The	supply	of	
precursors	depends	on	the	joint	activity	of	metabolic	enzymes	which	take	up	nutrients	and	
make	sure	they	are	converted	to	amino	acids,	energy,	and	finally	charged	tRNAs	(the	
precursors	ribosomes	need	to	grow).	This	is	a	complex	process	which	we	describe	here	in	
first	order	by	jointly	considering	all	metabolic	enzymes	as	one	major	protein	class	and	a	
simple	1st	order	reaction,	writing	𝐽!&,56 = 𝑘71𝑀71 . 	𝑀71𝑖𝑠	the	mass	of	the	metabolic	protein	
class.	𝑘71is	an	effective	rate	describing	how	fast	these	proteins	generate	pre-cursors	which	
we	here	call	metabolic	efficiency.	For	the	precursor	mass	in	the	culture,	we	thus	have:	
	

𝑑𝑀!&

𝑑𝑡 = 𝑘71		𝑀71 −
𝑑𝑀
𝑑𝑡 	

	
Similarly	as	for	the	ribosomes,	the	increase	of	metabolic	proteins	depends	on	the	allocation	
of	translation	activity	towards	these	enzymes.	We	write:	
	

	 87+,
8,

= 𝛼71
87
8,
	

	
Here,	𝛼71	denotes	the	allocation	parameter	towards	the	pool	of	metabolic	enzymes.	
Notably,	ribosomes	can	only	translate	one	protein	at	a	time,	which	leads	to	the	overall	
constraint	that	the	allocation	parameters	need	to	add	up	to	1.	In	the	simplest	case,	
assuming	the	cell	only	needs	to	generate	metabolic	enzymes	and	ribosomes:	
	

𝛼71 + 𝛼01 = 1.	
	
Since	cells	also	need	to	synthesize	many	other	enzymes	needed	for	growth	which	are	not	
directly	involved	in	precursor	supply	and	translation(10),	we	extend	this	to:	
	

𝛼71 + 𝛼01 + 𝛼4 = 1	
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with	𝛼4	denoting	the	allocation	towards	synthesizing	all	other	proteins.	All	three	protein	
classes	and	the	allocation	of	protein	synthesis	towards	those	are	illustrated	in	Fig.	S3A.	The	
constraint	is	described	by	the	relative	thickness	of	the	3	arrows.		
	
With	this	formulation	we	can	analyze	the	balanced	exponential	growth	which	emerges:	

1
𝑀
𝑑𝑀
𝑑𝑡 = 𝜆 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	

when	the	cellular	concentrations	and	fractions	are	not	changing	over	time,	8!
8,
= 9

7
87-,
8,

=	
9
7
87+,
8,

= 0	and	7-,
7

= 𝛼01	and	
7+,
7

= 𝛼71 .	The	growth	rate	𝜆	depends	on	the	rates	
(translation	efficiency	𝛾2+3	and	metabolic	efficiency	𝑘71),	as	well	as	the	allocation	
parameters	𝛼01	and	𝛼71	.	It	can	be	calculated	by	the	solution	of	a	quadratic	equation.	
Notably,	the	cell	appears	to	control	novel	ribosome	synthesis	and	adjusts	the	allocation	
parameter	𝛼01	towards	optimizing	growth-rates:	ribosome	synthesis	is	regulated	such	that	
precursor	levels	are	optimal,	and	ribosomes	can	translate	close	to	full	speed(2).	For	our	
purpose	this	means	that	we	know	the	allocation	towards	ribosomes	for	steady	growth	on	
glucose	(or	other	carbon	sources)	and	we	can	parametrize	the	model	for	steady	state	
growth	and	subsequently	extend	this	description	to	analyze	growth-transitions.	
	

2.2 Modeling nutrient consumption 

Up	to	now	we	have	not	explicitly	considered	nutrient	consumption	but	assumed	that	
precursor	influx	via	the	metabolic	enzymes	is	described	by	a	constant	metabolic	efficiency	
𝑘71 .	To	consider	nutrient	availability,	a	crucial	step	towards	describing	shifts,	we	model	
the	metabolic	efficiency	𝑘71	to	be	dependent	on	the	nutrient	concentration	(say	glucose,	
𝑛$"%)	in	the	culture:	
	

𝑘71(𝑛$"%) = 𝑘71,2+3
𝑛$"%

𝑛$"% + 𝐾7,$"%
	

	
𝑘71,2+3	denotes	the	maximum	efficiency	when	nutrients	are	not	limiting.	𝐾2,$"%	is	the	
Monod	constant	for	growth	on	glucose.	To	describe	the	change	of	nutrient	availability,	we	
consider	the	consumption	of	all	nutrient	molecules	in	the	culture	(nutrient	mass	𝑁$"%	)	and	
write:		
	

𝑑𝑁
𝑑𝑡 = −𝑘71𝑀71/𝑌$"%	

	
Here,	the	yield	𝑌$"%	describes	the	conversion	from	nutrients	(glucose)	to	precursors	
(charged	tRNA).	To	obtain	the	yield	in	units	of	amino-acids	one	can	take	measured	yield	
value	in	units	of	dry	weight	per	nutrient	weight	and	then	convert	assuming	a	fraction	of	
60%	dry-weight	content	being	proteins	made	up	of	amino	acids	with	an	average	weight	of	
118.9𝑔/𝑚𝑜𝑙.	
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2.3 Model parameters for growth on one carbon source 

To	further	parametrize	the	model,	we	can	take	translation	speeds	from	in-vivo	
measurements,	and	the	allocation	parameters	from	steady	state	growth	analysis	across	
growth-conditions	(see	above).	With	that,	the	metabolic	efficiency	𝑘71	is	the	only	
parameter	remaining	and	we	adjust	this	parameter	such	that	the	emerging	growth-rate	
matches	the	one	experimentally	observed	for	growth	on	glucose.	Parameters	are	provided	
in	Table	S3.	The	resulting	dynamics	is	shown	in	Fig.	S4A-E	(brown	dashed	lines	which	
initially	follow	the	black	lines)	for	a	culture	starting	with	a	glucose	concentration	of	0.6mM.	
Cells	grow	steadily	with	a	constant	growth-rate	before	glucose	runs	out,	precursor	
concentrations	drop,	and	cell-growth	stops.	
	

2.4 Modeling growth-transitions 

To	describe	growth-transition	from	growth	on	glucose	towards	growth	on	acetate	we	build	
on	the	formulation	for	growth	on	glucose	described	before	and	consider	how	cells	start	to	
express	the	required	enzymes	(e.g.	AceB)	to	replenish	precursors	once	glucose	is	depleted.	
To	do	this,	we	introduce	a	second	class	of	metabolic	enzymes	with	mass	𝑀71,+&) 	(Fig.	S3B).	
Notably,	this	class	of	enzymes	includes	only	those	enzymes	which	are	needed	to	ensure	a	
recovery	of	the	precursors	influx	(glyoxylate	shunt	and	gluconeogenesis	genes,	Fig.	S1B)	
and	not	those	metabolic	enzymes	which	are	also	needed	for	growth	on	glucose	and	thus	
already	available	and	working	(like	TCA	enzymes	or	enzymes	of	the	respiratory	chain	to	
provide	energy).	𝑀71,+&)describes	thus	a	much	smaller	pool	of	proteins	than	what	is	
eventually	needed	for	balanced	growth	on	acetate.	Since	we	are	interested	in	explaining	
lag-times	until	precursor	levels	recover,	we	here	consider	the	requirements	for	those	latter	
enzymes	only	indirectly	by	limiting	the	relative	fraction	of	the	enzyme	class	proteins	
(𝑀71,+&)/𝑀)	to	a	maximum	value	(more	below).		
	
With	the	two	metabolic	fluxes	the	precursor	turnover	before	and	during	the	shifts	is	given	
by:	

𝑑𝑀!&

𝑑𝑡 = 𝑘i𝑛$"%j ⋅ 𝑀71,$"% + 𝑘71,+&)(𝑛+&)) ⋅ 𝑀71,+&) −
𝑑𝑀
𝑑𝑡 	

	
Nutrient	concentrations	in	the	culture	changes	accordingly:	
	

𝑑𝑁$"%
𝑑𝑡 = −𝑘71,$"%i𝑛$"%j	𝑀71,$"%/𝑌$"%	

	
𝑑𝑁+&)
𝑑𝑡 = −𝑘71,+&)(𝑛+&))	𝑀71,+&)/𝑌+&) 	
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Here,	the	metabolic	efficiencies	depend	on	the	abundance	of	glucose	and	acetate	
respectively.	As	for	growth	on	glucose	alone,	we	model	a	Monod	type	relation	with	Monod	
constants	𝐾7,$"%	and	𝐾7,+&) 	to	describe	how	influx	stops	at	low	nutrient	concentrations.		
	
The	synthesis	of	new	metabolic	enzymes	depends	on	the	allocation	coefficients:		
	

𝑑𝑀71,$"%

𝑑𝑡 = 𝛼71,$"%
𝑑𝑀
𝑑𝑡 	

	
𝑑𝑀71,+&)

𝑑𝑡 = 𝛼71,+&)
𝑑𝑀
𝑑𝑡 	

	
Depending	on	the	availability	of	nutrients	the	cell	is	adjusting	the	allocation	to	these	
enzyme	classes	and	to	model	growth-transitions	we	thus	have	to	formulate	relations	
describing	how	the	allocation	coefficients	depend	on	the	availability	of	both	nutrient	
sources.		
	
The	allocation	to	enzymes	required	for	growth	on	glucose	is	high	during	steady	state	
growth	on	glucose	but	we	assume	that	their	expression	reduces	to	lower	levels	when	
glucose-concentrations	drop,	we	thus	model:	

𝛼71,$"% = 𝛼71,$"%,256 + 𝛼71,$"%,2+3 l
𝑛$"%

𝑛$"% + 𝐾7
m	

	
Here,	𝛼71,$"%,2+3 + 𝛼71,$"%,256	is	the	same	allocation	coefficient	we	use	to	describe	steady	
growth	on	glucose	alone.	In	contrast,	the	allocation	towards	the	required	enzymes	to	
recover	precursor	supply	from	acetate	is	only	high	once	glucose	runs	out	and	this	enzyme	
class	is	hardly	expressed	when	glucose	is	still	available.	To	account	for	this	behavior,	we	
use	the	following	dependence	on	glucose	concentrations:	
	

𝛼71,+&) = 𝛼71,+&),2+3 l1 −
𝑛$"%

𝑛$"% + 𝐾7
mo1 −

𝑀+&)/𝑀
𝑀+&)
𝑀 + 𝛼71,+&),(,)+8:

p

+ 𝛼71,+&),!;)(<5=, l
𝑛$"%

𝑛$"% + 𝐾7
m	

	
	
That	is,	the	synthesis	of	the	novel	metabolic	enzymes	required	to	provide	precursors	via	
acetate	consumption	is	occurring	by	a	certain	fraction	of	translating	ribosomes	
(𝛼71,+&),2+3)	once	glucose	is	consumed.	But	this	high	rate	falls	again	to	the	final	steady	
state	levels	for	growth	on	acetate	once	that	fraction	is	reached.	This	limitation	of	the	
metabolic	enzymes	to	a	lower	fraction	allows	us	to	indirectly	consider	that	cells	have	to	
start	synthesizing	a	broad	class	of	metabolic	proteins	(like	TCA	cycle	proteins)	to	grow	
once	pre-cursor	supply	have	been	reestablished	(and	not	only	the	glycolytic	shunt	and	
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gluconeogenesis	genes	required	immediately	to	rescue	precursor	influx).	Finally,	to	study	
the	role	of	pre-shift	expression	we	also	included	an	expression	term	𝛼71,+&),!;)-(<5=,which	
describes	expression	when	glucose	is	still	abundant	(in	the	reference	condition	this	
constant	is	0).		
	
As	previously,	the	growth-kinetics	is	described	by	how	the	ribosomes	synthesize	new	
biomass:	
	

𝑑𝑀
𝑑𝑡 = 𝛾(𝑝)	𝑀0 	

	
Translation	and	thus	growth	depends	on	precursor	levels	which	in	turn	depend	on	the	
abundance	and	activity	of	the	metabolic	activities.	
	

2.5 Model parameters 

We	modeled	growth	transitions	for	a	reference	parameter	set	listed	in	Table	S3.	Here	we	
provide	further	context.	
	
To	describe	nutrient	uptake	towards	precursor	synthesis	we	used	yield	values	(𝑌$"%, 𝑌+&))	
and	Monod	constants	(𝐾2,$"%, 𝐾2,+&))	known	for	growth	on	glucose	and	acetate.		To	
determine	the	allocation	parameters	towards	synthesis	of	the	metabolic	enzymes	required	
to	provide	pre-cursers	when	growing	on	acetate	(𝛼71,+&),!;)(<5=, ,	𝛼71,+&),2+3 ,	𝛼71,+&),(,)+8:)	
we	used	the	transcriptomics	measurements	we	collected	during	the	shift	(Fig.	S5).	Given	
the	fast	turnover	of	mRNA	this	data	provides	a	direct	readout	of	the	allocation	behavior	at	
different	timepoints	during	the	shift.	We	specifically	calculated	the	relative	mRNA	fraction	
of	all	glyoxylate	and	gluconeogenesis	genes	which	are	required	for	the	continuous	influx	of	
precursors	when	glucose	runs	out	(Fig.	S1B),	and	thus	used	3%	and	1%	as	reference	values	
for	𝛼71,+&),2+3	and		𝛼71,+&),(,)+8:	respectively.	We	initially	neglected	pre-shift	expression	
levels	as	those	are	very	low,	𝛼71,+&),!;)(<5=, = 0.	
	
With	the	allocation	parameters	defined,	only	one	fitting	parameter	remains,	the	rate	
𝑘71,+&)describing	how	fast	metabolic	enzymes	recover	pre-cursors	from	acetate.	We	
adjusted	this	rate	such	that	the	lag-time	of	the	modeled	growth-transition	approximately	
matches	the	lag-time	in	the	experiments	(3.5h	for	the	shift	of	WT	cells	from	growth	in	
glucose	to	growth	acetate,	Fig.	1A).	With	these	parameters,	the	post-shift	growth	which	
emerges	also	resembles	the	growth-rate	observed	during	the	experiments.	The	simulated	
growth-transition	for	this	reference	parameter	set	is	shown	in	Fig.	S4A-E	(black	lines).	
Growth	is	fast	in	glucose,	then	stops	temporarily	and	after	a	lag	growth	recovers	by	using	
acetate.		
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2.6 The delaying effect of non-needed protein expression on growth-transition 

With	the	formulated	model	and	the	given	parameters,	we	can	now	investigate	how	growth-
transitions	are	changing	when	the	cell	is	allocating	varying	fractions	of	its	translation	
activity	during	the	shift	to	the	required	metabolic	enzymes.	Mathematically,	this	means	
varying	the	allocation	parameter	𝛼71,+&),2+3 .	The	results	are	shown	in	Fig.	S5F-J.	The	lag-
time	falls	strongly	with	a	higher	allocation	towards	the	required	enzymes,	with	the	
reciprocal	relation	shown	in	Fig.	3B.	As	discussed	in	Fig.	S5,	different	allocations	lead	to	
varying	drops	of	precursor	levels	during	the	shift	which	changes	the	ability	to	recover	
growth.		
	

2.7 Variation of pre-shift expression of required proteins. 

Our	transcription	results	show	that	the	enzymes	required	to	recover	growth	once	glucose	
runs	out	are	hardly	expressed	when	glucose	is	still	abundant	(Fig.	S6),	suggesting	that	pre-
shift	expression	levels	do	not	play	a	major	role	in	shaping	lag-times	for	WT	E.	coli	cells	for	
these	growth-conditions.	But	a	higher	pre-shift	expression	might	occur	in	specific	growth	
conditions	and	has	been	shown	to	support	faster	transition	in	a	synthetic	strain	were	pre-
expression	of	the	required	genes	aceB/aceA	was	controlled	by	an	inducer	construct(10).	To	
investigate	the	role	of	pre-shift	expression	compared	to	expression	during	the	shift	we	
determined	the	emerging	lag-times	when	both,	the	allocation	before	the	shift	
(𝛼71,+&),!;)(<5=,)	and	during	the	shift	(𝛼71,+&),2+3)	are	varied	(Fig.	N1).	
	

	
Fig.	N1:	Lag-times	when	varying	pre-shift	and	during	shift	expression	of	the	genes	
required	to	recover	precursor	influx	when	growing	on	acetate.	We	varied	both	
allocation	parameters	𝛼71,+&),!;)(<5=,	and	𝛼71,+&),2+3	independently.	Pre-shift	expression	
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of	the	enzymes	can	clearly	lead	to	a	faster	lag-times.	Notably,	however,	lag-times	can	also	
be	short	without	pre-shift	expression	if	cells	response	to	the	shift	with	a	strong	expression	
of	required	genes	instead	of	the	expression	of	other	genes.	The	previously	described	
tradeoff	between	fast	pre-shift	growth	and	fast	shift	thus	appears	to	be	a	secondary	
tradeoff	effect	important	when	there	are	long	lag-times	in	the	first	place	because	cells	
response	by	the	expression	of	non-required	enzymes.		
	

2.8 Ribosome content 

Up	to	now,	we	have	not	explicitly	modeled	the	change	of	ribosomes	synthesis	during	the	
shift.	An	explicit	consideration	of	ribosome	synthesis	is	not	required	to	investigate	the	
origin	of	lag-times	since	ribosomes	are	highly	abundant	at	the	moment	glucose	runs	out	
and	they	do	not	contribute	to	a	bottleneck	in	precursor	influx.	And	since	ribosome	
synthesis	abruptly	stops	at	the	shift	(Fig.	S5G)	we	do	not	have	to	consider	the	role	of	novel	
ribosome	synthesis	as	a	process	competing	for	the	same	limited	precursors	required	to	
synthesize	the	required	enzymes	to	recover	metabolic	flux.	Indeed,	when	explicitly	
modeling	the	change	of	novel	ribosome	synthesis	lag-times	do	not	change	(data	not	
shown).	Particularly	we	modeled	that	ribosomes	are	only	synthesized	when	precursor	
levels	are	above	a	threshold	value,	in	line	with	what	is	currently	known	about	the	control	of	
ribosome	synthesis	mediated	by	central	regulators	like	the	alarmone	ppGpp.	The	allocation	
we	modeled	is:	
	

𝛼01(𝑝) = 𝛼01,(,)+8: ⋅ 𝑝/(𝑝 + 	𝑝4).	
	

SUPPLEMENTARY TABLES 
 

Table S1: Primers used in this study 

Name  Sequence  Notes 

aceA-qpcr-F GCGTTGGGAAGGCATTACTCGC qPCR 

aceA-qpcr-R GCCTGACCGCCAGTCAGTGC qPCR 

aceB-qpcr-F GGCAACAACAACCGATGAACTGGC qPCR 

aceB-qpcr-R GCTCAGTCAGAAATTCTACCGC qPCR 

lacZ-qpcr-F GGCAATTTAACCGCCAGTCAG     qPCR 

lacZ-qpcr-R GTGCACGGGTGAACTGATC qPCR 
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16S-qpcr-F CCTAGGCGACGATCCCTAGC qPCR 

16S-qpcr-R CATACACGCGGCATGGCTGC qPCR 

fliC-F CAGGGTTGACGGCGATTGAG Confirmation KO 

fliC-R CAATTTGGCGTTGCCGTCAG Confirmation KO 

k1 CAGTCATAGCCGAATAGCCT Confirmation KO(1) 

k2 CGGTGCCCTGAATGAACTGC Confirmation KO (1) 

kt  CGGCCACAGTCGATGAATCC Confirmation KO (1) 

	
 

Table S2: Strains used in this study 

Strain name Description Details (genotype, 
plasmid) 

Ref 

NCM3722 Wild type (K12), genetic 
background for all strains 
used in this study 

 (1) 

NQ1389  lacZ over-expression strain Ptet-tetR on pZA31; 
Ptetstab-lacZ on pZE1 

(11) 

NQ1350 aceBA induction aceBA promotor controlled 
by Ptet 

(10) 

 

GE029 !"#$%  This study 

NQ1225 !"#&'  (12) 

 
 
 
Table S3: Model parameters 

Symbol  Description  Value 

𝛼!",$%&	 Allocation to translation (ribosomes) 0.2	

𝛼!",$%&	 Allocation to metabolic proteins 0.45	

𝑘'",$%&	 Metabolic efficiency glucose 2.4	1/ℎ	
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𝑌$%&	 Yield in glucose 0. 377	𝑂𝐷'((/𝑚𝑚𝑜𝑙 

𝐾',$%&	 Monod constant, glucose 5𝜇𝑚𝑜𝑙	

𝛼!",()*,+,*(-.	 Allocation to translation (ribosomes) 0.2	

𝛼'",()*,/(0	 Allocation to required enzymes at shift (or varied) 0.03	

𝛼'",()*,+,*(-.	 Allocation to required enzymes at shift at steady 
growth 

0.01	

𝑘'",()* 	 precursor-rate for bottleneck enzymes (when other 
metabolic enzymes are ready) 

30	1/ℎ	

𝑌()* 	 Yield in acetate 𝑌$%&/2	

𝐾',()* 	 Monod constant 5𝜇𝑚𝑜𝑙	

𝑇𝑦𝑝𝑒	𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	ℎ𝑒𝑟𝑒.	Conversion between OD and AA. Based on known 
conversion between OD and biomass, 0.63% of dry 
mass being proteins. 

7.69	10)*+	𝑂𝐷'((
⋅ 𝑚𝑙/𝐴𝐴	

𝑓!"	 fraction active ribosomes 0.65	

𝑘!"	 Max. translation elongation rate 20	1/𝑠	

𝑝(	 Michaelis Menten constant for translation. In units of 
charged tRNA per mass amino acids. 

0.026	
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