
Strong and localized coupling controls
dimensionality of neural activity across brain

areas
David Dahmen1,*, Stefano Recanatesi2,*, Xiaoxuan Jia3, Gabriel K. Ocker3,4, Luke Campagnola3, Tim Jarsky3, Stephanie

Seeman3, Moritz Helias1,5,+, and Eric Shea-Brown2,3,+

1Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany
2University of Washington Center for Computational Neuroscience and Swartz Center for Theoretical Neuroscience, Seattle, WA, USA

3Allen Institute, Seattle, WA, USA
4Department of Mathematics and Statistics, Boston University, MA, USA

5Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
*These authors share first authorship

+These authors share senior authorship

Neurons in the brain interact through a complex network of
recurrent connections, but how complex is their activity? This
is measured by dimensionality: the number of degrees of free-
dom in network activity. We use a novel type of network theory
to identify a regime where network connectivity constrains and
controls dimensionality – the strongly coupled sensitive regime.
Through new analysis of high-density Neuropixels recordings,
we find strong evidence that areas across the mouse brain oper-
ate in this sensitive regime. We then study connectivity within
brain areas via analysis of a massive, newly released synaptic
physiology dataset from both mouse and human. We quantify
the building blocks of this connectivity in terms of network mo-
tifs, and find that cell-type specific synaptic motifs that impact
the sensitive regime are prevalent in both mouse and human
brains. Thus, we propose that local circuitry strongly constrains
and controls the dimensionality of brain networks.

Introduction

A hallmark of neural circuits is their highly complex recur-
rent connectivity. Complexity of dynamics can be measured
by the number of collective degrees of freedom across the
network – the dimensionality of network activity. Dimen-
sionality is tightly linked to the computational properties of
neural systems. Signal classification, for example, generally
benefits from network operations that expand the dimension-
ality of the incoming signals that are to be categorized (1–
5). Generalization of classification or other network com-
putations to new signals, however, benefits from operations
that suitably compress inputs into lower-dimensional activ-
ity patterns (6, 7). Dimensionality has been quantified in di-
verse neural systems (8). In different experimental settings
and protocols, studies have emphasized the relatively high
(5, 9, 10) or low (11, 12) dimensionality of recordings. More-
over, the dimensionality of neural dynamics can change over
time (13), across the processing hierarchy (14), or during
learning (7, 15, 16). Taken together, these findings under-
score the importance of dimensionality as a flexible property
of network activity, and one that will depend on the nature of
the computation performed in a circuit.
A fundamental question is therefore the mechanism by which

a network’s structure – its connectivity – controls the dimen-
sionality of its dynamics (17–21). Here, we address this
question for networks in the widely studied balanced state
believed to characterize cortex (22, 23), where weakly cor-
related activity (24) results from the dominance of inhibitory
recurrent feedback (25). We develop a theory that reduces
vastly complex connectivity patterns to a single number, the
recurrency R, which measures the effective strength of re-
current coupling and directly determines dimensionality via
a fixed, one-to-one relationship (Fig. 1a). We find that strong
coupling leads to not only low dimensionality, but also to its
sensitive dependence to changes in R. Moreover, we quan-
tify how a highly tractable and localized feature of network
connectivity – connectivity motifs among pairs and triplets
of cells (21, 26–34) – can strongly modulate R and hence
dimensionality in the strongly coupled regime (Fig. 1b).
We then present evidence that the brain operates in this
strongly coupled and sensitive regime, through a novel analy-
sis of recent large scale electrophysiology recordings (35, 36)
that use Neuropixels probes to record from more than 30,000
neurons. We find systematic trends in the resulting di-
mensionality across brain areas and across cortical layers
(Fig. 1b). We then analyze vast newly released synaptic
physiology datasets (37, 38), in which synaptic connections
among more than 22,000 pairs of neurons were probed, and
we find that the connectivity motifs implicated by our the-
ory as regulating R are strongly present in both mouse and
human brain. We quantify their predicted contribution to di-
mensionality across brain areas and layers, and show how
previously established patterns of cell-type specific modula-
tion and adaptation can have a new effect: to further regulate
connectivity motifs and hence dimensionality across time and
brain state.

Electrophysiology recordings display signa-
tures of strongly recurrent dynamics across
brain areas
Do brain networks operate in a strongly recurrent regime?
Recent theoretical work has developed a robust way to as-
sess the strength of recurrent coupling based on activity
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Fig. 1. Sensitive regime of balanced networks. a) We find that dimensionality
decreases as recurrency increases in balanced networks. Electrophysiology and
synaptic physiology datasets point to neural networks operating in a strongly cou-
pled sensitive regime where network connectivity is strongly recurrent and the di-
mensionality is highly sensitive to the strength of recurrency. b) Computational ad-
vantages of the sensitive regime: I) Top: brain circuits along functional pathways
can regulate the dimensionality of their responses. II) Bottom: the dimensionality
can be tightly controlled by local synaptic features such as reciprocal connections.

measurements from neural circuits (18). We start by using
this method, previously applied only to a single brain area
(macaque motor cortex), to analyze large-scale neural activ-
ity data recorded across multiple regions of the mouse brain.
These data were recorded by the Allen Institute for Brain
Science using recently developed, high density Neuropixels
probes, Fig. 2b (for details see (35, 36)). We analyzed 32,043
neurons across 15 brain areas (Table S1), recorded during
sessions lasting on average more than 3 hours (cf. sample
of 2 minutes of recorded activity, Fig. 2c). We focused on
periods where either no stimulus was presented to the ani-
mal (spontaneous condition) or where drifting gratings were
displayed (evoked condition), cf. Methods and Fig. S1.
The method builds on the assumption that neural networks
of cortical and subcortical circuits operate in the so-called
balanced state (22, 23), where excitatory and inhibitory
synaptic currents dynamically cancel each other to pro-
duce fluctuation-driven asynchronous irregular spiking activ-
ity (22, 24). In this regime the strength of the recurrent cou-
pling, theoretically corresponding to the radius R of the ef-
fective connectivity spectrum underlying the neural dynam-
ics (Fig. 3b), can be assessed by measuring the statistics of
the network’s variability (18)

R=
√

1−
√

1/(1 +Ns2). (1)

Specifically, s = δc
ā = O(1/

√
N) is the ratio between the

standard deviation δc of cross-covariances and the average
auto-covariance ā, Fig. S2a. While the radius R is indepen-
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Fig. 2. Estimation of recurrent coupling strength in electrophysiology recordings.
a) Figure focus: network recurrency inferred via electrophysiology recordings. b)
Sites of Neuropixels recordings colored by brain region. c) Raster plot example of
Neuropixels recordings for one experimental session (session id=715093703). d)
Top panels: Schematic of Latent Factor Analysis decomposition of the full covari-
ance into shared and intrinsic covariances (cf. Fig. S3a). Bottom panels: distribution
of cross-covariances for the three matrices. e) Neural activity of example session
for spontaneous (green) and evoked (red) condition in the coordinate axes given
by the top Principal Components (PC) determined across both conditions. Evoked
condition corresponds to drifting grating stimuli with 75 repeats per stimulus orienta-
tion. The three panels represent respectively the total, shared and intrinsic activity
(cf. Methods, Fig. S3). Operating points are defined as the average activity per
condition. f) Strength of recurrent coupling. Left: Average spectral radius inferred
from neural data, as a function of the network size. Inset: eigenvalue spectrum
of connectivity matrix. Right: inferred spectral radius for network size 106 across
conditions and brain regions.
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dent of network size, its inference from measured covariance
statistics s using Eq. (1) requires additional knowledge of the
underlying network size N . Therefore, in the following we
employ N as a free parameter and use anatomical data on
neuron densities as constraints to obtain a lower bound on R.
Importantly, the above theoretical result for R relies on the
internally generated intrinsic variability s, which is due to
the reverberation of ongoing fluctuations through the network
(cf. the histogram of intrinsic cross-covariances in Fig. 2d).
In electrophysiology recordings there is, however, typically
a second contribution to covariances due to shared variabil-
ity across neurons that is often linked to input signals to the
network or behavioral low-rank components of the activity
(10). Assessing the statistics of intrinsic variability from elec-
trophysiology recordings is therefore challenging. Here we
build a two-step procedure to estimate s, and thus R.
First, to separate intrinsic and shared variability we worked
under a linear assumption for the network dynamics around
each network’s state, or operating point (Fig. 2e, cf. Meth-
ods). In this case the shared and intrinsic variability contri-
butions independently influence the covariance matrix C of
neural activity (Fig. 2d):

C = Cshared +Cintrinsic. (2)

To identify shared sources of variability in the neural ac-
tivity we exploited a cross-validated Latent Factor Analy-
sis (LFA) procedure (17) that yields the number of shared
factors across the neural populations and allows us to factor
out their contribution to network activity (Figs. S3a to S3e).
We validated this procedure both via simulations in our net-
work model with known ground truth (Fig. S4) and by us-
ing cross-validated Principal Component Analysis in place
of LFA (Fig. S6).
Second, to address biases in the estimates of s due to fi-
nite sampling (13) (cf. Methods) we carried out a theoret-
ically grounded subsampling procedure on the shared and
intrinsic activity components to fit the dependence of cross-
covariances on the number of samples. This yielded an unbi-
ased estimate of s, Figs. S3f to S3g.
A key fact is that the resulting estimated statistic of cross-
covariances s depends on the operating point, identified by
the activity profile of the neural population and other neu-
ral properties (e.g. adaptation mechanisms, gain modulation
etc.). Henceforth the recurrent coupling strength R is not a
static property of a neural circuit, but it depends on the under-
lying experimental condition, as illustrated by the different
operating points in Fig. 2e. We thus inferred the recurrent
coupling strength R for each brain region and experimen-
tal condition separately. For spontaneous activity we thereby
controlled robustness of results with respect to different be-
haviorally related stationary periods using a Hidden Markov
Model (Fig. S8), and for the evoked condition we confirmed
consistency of our results across orientations of the drifting
gratings (Fig. S7).
The outcome of our analysis was that the spectral radius
across all regions and conditions was predicted to be at least
R = 0.95 on a scale from 0 to 1, with 1 marking the thresh-

old to coupling so strong that activity would be come lin-
early unstable. This bound corresponded to values of the net-
work size N ≥ 106 (Fig. 2f). As recent experiments report a
cell density across the mouse cortex to fall in between 0.48 ·
105 cells/mm3 in orbital cortex to 1.55 · 105 cells/mm3 in
visual cortex (39), these results are consistent with neural ac-
tivity, across all brain regions analyzed, being generated by
neural networks operating in a strongly recurrent regime.

Sensitive control of dimensionality
We now show that the strongly recurrent regime found in the
previous section corresponds to the most fundamental metric
of the complexity of neural activity – its dimensionality – be-
ing under sensitive control of the recurrent coupling strength
R.
To show this, we study the participation ratio DPR, a widely
used measure of linear dimensionality which accounts for
the extent to which neural responses are spread along dif-
ferent axes directions; in many often-encountered settings
DPR corresponds to the number of principal components re-
quired to capture roughly 80% of a signal’s variability (11)
(Fig. S2b). DPR is given by

DPR(C) =
(
∑
iλi)

2∑
iλ

2
i

, (3)

where λi is the eigenvalue associated with the i−th princi-
pal component. This measure can be rewritten in terms of
the statistics of the covariance matrix (13) (Fig. S2a) and,
in large balanced networks of size N , its leading contribu-
tion comes from the relative dispersion s of intrinsic cross-
covariances across neurons DPR = N

1+Ns2 (cf. Suppl. Mat.).
Combined with Eq. (1), this yields a one-to-one relation be-
tween the dimensionality of intrinsic covariances and the
spectral radius so that DPR(Cintrinsic) =N(1−R2)2, Fig. 3b
(cf. Suppl. Mat. for a formal derivation and Fig. S10 for val-
idation in complex nonlinear spiking networks; for an alter-
native derivation see (21)).
The relationship between DPR and R shows that the di-
mensionality of the network smoothly decreases with in-
creasing spectral radius towards R = 1, which is the cou-
pling level at which the network becomes (linearly) unsta-
ble, Fig. 3b. In strongly recurrent regimes, where R / 1, the
network’s dimensionality is tightly constrained, being sub-
stantially smaller than its number of neurons. Furthermore,
in this regime the relative change in dimensionality with re-
spect to R (Fig. 3c)

δDPR
DPR

= dDPR
dR

1
DPR

= 4R
R2−1 (4)

is greatest. Thus, networks with strong recurrent coupling
achieve sensitive control of their dimensionality as a function
of their coupling strength.
In sum, the high values of R estimated above throughout the
regions of mouse brain (Fig. 2f), together with the decreasing
relationship between dimensionality and spectral radius R,
suggest that the dimensionality for these brain regions will
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be low – and hence in a regime where it is under sensitive
control. We confirm this next.
To compare recordings with different numbers of neurons we
developed a theoretically unbiased extrapolation of the di-
mensionality as a function of the number of neurons recorded
Nrec (cf. Methods and Fig. S11). This enabled us to extrap-
olate the estimates of dimensionality up to realistic values
of the size of local circuits (i.e., N = O(106)). It also al-
lowed a systematic comparison between the dimensionality
of the intrinsic covariance and of the full covariance. By
construction, in balanced networks, this extrapolation satu-
rates at DPR = 1/s2 for the dimensionality of intrinsic co-
variance, while it is a function of multiple moments of the
covariance statistics for the dimensionality of the full covari-
ance (cf. Methods).
Applying the procedure above to the Allen Institute Neu-
ropixels data showed that the extrapolated dimensionality
of the full covariance (cf. Fig. 3d) saturated for network
sizes N = O(105), at values on the order of ∼ 100 dimen-
sions. The dimensionality of intrinsic covariances saturated
at higher values of several hundreds of dimensions, Fig. 3e.
These two estimates can be taken as a lower and upper bound,
respectively, of the dimensionality of the network’s activity,
which thus appears to be consistently described by a few hun-
dred dimensions – across all brain regions. This is a small
number when compared to the number of neurons in the net-
work: indeed, for a network of 105 neurons this corresponds
to a dimensionality of less than 1% of its size.
Before moving to a more detailed analysis and interpreta-
tion of dimensionality within brain areas, we confirm that
our techniques reproduce two established effects. The first
is that stimuli are known to reduce the dimensionality of re-
sponses in cortical activity (13, 40). We found that in the
evoked condition, versus the spontaneous, the dimensional-
ity of activity in visual cortex was indeed significantly lower
(t-test p-value< 10−3, Fig. 3d). The second is a recent es-
timate of the dimensionality of cortical responses to visual
stimuli (9) which we link to the framework developed here
(cf. Fig. S9).
We concluded that neural networks in regions across the
brain, and across experimental conditions, operate in a
regime where their dimensionality is under sensitive control
by the strength of recurrent coupling R. We can interpret
this as the ability to flexibly set the number of modes that
can participate in a computation, a feature which may play a
substantial functional role across the brain.

Dimensionality across the visual hierarchy
and cortical layers
Does dimensionality of neural responses relate to informa-
tion processing in neural circuits? If so, the ability of spe-
cific brain areas – operating in the strongly coupled, sensi-
tive regime described above – to modulate this dimensional-
ity would acquire a functional role.
Several studies in deep and recurrent artificial neural net-
works have highlighted how dimensionality modulation
(compression and expansion) in neural representations across
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Fig. 3. Dimensionality across brain regions. a) Figure focus: Dimensionality in-
ferred via electrophysiology recordings. b) Normalized dimensionality DPR/N for
a balanced network as a function of the spectral radius R. Blue: simulation, red:
theory. Shaded area highlights sensitive regime consistent with electrophysiology
recordings. c) Relative modulation of dimensionality as a function of the spectral
radius, Eq. (4). Blue and red curves overlap. d) Left: Dimensionality extrapolation
as a function of network size for the full covariance before applying Latent Factor
Analysis (LFA). Lines represent mean values and error bars are shown in Fig. S5.
Right: Dimensionality based on full covariance across brain regions for a network
of size N = 106 neurons. Boxes capture lower and upper interquartile range of
the variability across experimental recording sessions. e) Left: Dimensionality ex-
trapolation based on intrinsic covariances upon applying LFA. Right: Dimensionality
based on intrinsic covariances for a network of sizeN = 106 neurons. The number
of latent modes individuated by the cross-validated LFA analysis was consistently
low (Nfactors ≤ 16) (Fig. S6b).

network layers (14, 19) and stages of learning (7) have func-
tional roles in information processing. We next compute
dimensionality on a finer scale than for the regions studied
above – here for areas that subdivide those regions – to test
this idea in data from diverse neural circuits. We focus first
on the dimensionality of the full covariance, and then on the
intrinsic dimensionality.
Specifically, we first studied the full activity of areas across
the visual functional hierarchy (36). Analyzing the full co-
variance for the Neuropixels electrophysiology data revealed
a trend of dimensionality expansion from primary visual to
higher visual cortical areas (t-test max p-value across binary
comparisons< 10−15), Figs. 4a to 4c and Figs. S12a to S12b.
Such a trend is consistent with the hypothesis that the visual
stream performs a stimulus-dependent dimensionality expan-
sion, akin to the trend described in artificial neural networks
and often explained in terms of feature expansion of the input,
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Fig. 4. Dimensionality analysis across brain areas and cortical layers. a) Dimensionality extrapolation as a function of number of neurons in the network based on the full
covariance for primary visual cortex and downstream area VIS al (see (36)). b) Dimensionality analysis of the full covariance across the visual hierarchy (extrapolated for 106

neurons). Left panel: dimensionality increase along the visual hierarchy in the evoked condition. Right panel: dimensionality for the spontaneous condition, non-significant
increase. c) Left: Ranked dimensionality analysis of full covariance across areas of the visual hierarchy for the evoked condition. Box color shows fraction of recordings (on
a total number of recording sessions times the number of stimulus orientations for drifting gratings) where the dimensionality of areas reported in the rows is higher than the
dimensionality of areas reported in the columns. Right: quantification of the visual hierarchy for each area. Combined median of functional delay for each pair of cortical
areas. Box color reflects the shift from zero in milliseconds in the cross-correlogram between neurons from two areas. Analysis and plot reproduced from (36) with permission
of the authors. d) Dimensionality across the visual hierarchy based on the intrinsic covariance. e) Dimensionality of intrinsic covariances for thalamic and visual brain areas.
VISs corresponds to the activity of all secondary visual areas. f) Dimensionality of intrinsic covariances for hippocampal brain areas. g) Dimensionality of intrinsic covariances
across visual cortical layers. For supplementary plots regarding the dimensionality of full and intrinsic covariances see Fig. S12.

Figs. S12a to S12b (14, 19, 42, 43). These results underscore
the functional value of both dimensionality mechanisms and
the visual hierarchy per se (36).

The dimensionality of intrinsic covariances was consistent
with the hypothesis of visual cortical circuits being in the
strongly recurrent regime, where dimensionality is under sen-
sitive control. While the same trend of increasing dimension-
ality across the visual cortex hierarchy was not present for
intrinsic covariances (Fig. 4d t-test max p-value=0.77 across
binary comparisons), there were robust trends from thalamic
to primary and secondary visual cortical areas (LGd and LP
to VisP and VISs, Fig. 4e, t-test max p-value< 0.013) and
across hippocampal areas (CA1, CA3, DG, SUB), Fig. 4f,
t-test p-value CA1 vs CA3 <10−15), suggesting robust dif-
ferences in their intrinsic connectivity. Overall, areas con-
sidered to be possible input regions to broader circuits (LGd,
LP and CA1) displayed a high dimensionality corresponding
to a less recurrent, and potentially more feed forward, cir-
cuit, when compared with their visual cortex and hippocam-
pal counterparts. The area CA3 in particular, known to have
strong recurrent connections (44), appeared to have the low-
est dimensionality of intrinsic covariances in line with such
assumption.

Finally we considered whether different cortical layers could
carry out similar functional roles in expanding or reducing
the dimensionality of neural representations. We found that
layers 2 and 5 had respectively the lowest and highest dimen-
sionality (t-test max p-value across conditions < 10−11). In-
triguingly, this result is consistent with the hypothesis that
layer 2 performs computation through strongly recurrent cir-
cuitry (45), Fig. 4g.

These systematic trends across brain areas and layers, in both
the full and intrinsic dimensionality, suggest that the modu-
lation of dimensionality across brain networks can be asso-
ciated with functional information processing. The robust
trends we described for intrinsic dimensionality reveal the
potential for local circuitry to tune this dimensionality, a topic
to which we turn in more detail next.

Local tuning of the global recurrent coupling
strength R

We next asked how balanced neural networks can regulate
their overall recurrent coupling strength R and hence their
dimensionality. While the majority of previous works fo-
cused on how global properties of the recurrent anatomical
connectivity affect the spectral radius R (18, 46, 47), we here
focus on the impact of local connectivity motifs on the ra-
dius and the dimensionality. These motifs are statistics of the
neural connectivity W that involve pairs of connections (see
Methods), and are the fundamental local building blocks of
networks.
Second order motifs appear in four types: reciprocal, diver-
gent, convergent, and chain motifs (Fig. 5b), together with the
variance of neural connections already present in purely ran-
dom models (46). These motifs have been shown to play im-
portant roles determining neuron-to-neuron correlations and
allied circuit dynamics (26–28, 32, 48–53) and emerge from
learning rules consistent with biological STDP mechanisms
(54, 55).
We here develop a general theory that takes full account of
all second order motifs. Our approach generalizes previous
work on reciprocal connections (56) or on networks of purely
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Fig. 5. Motif analysis in synaptic physiology datasets. a) Figure focus: network
recurrency inferred via synaptic physiology datasets. b) Theoretical dependence of
spectral radius on motif abundances. c) Theoretical dependence of dimensionality
on motif abundances. d) Motif abundances in mouse V1. Inset: Simplified V1
circuit diagram with only prevalent connections (41). e) Inferred radius as a
function of relative strength g of inhibitory and excitatory synapses and ratio γ of
inhibitory to excitatory population size. f) Estimation of Rmotifs from mouse data
(500 bootstraps based on random subsets of 80% of sessions). Shuffle of
synapses within each experimental session preserving EI synapse type (shuffle EI
syn.). Effect of all EI motifs (g = 4 and γ = 0.25, red point in panel e), of only EE
motifs, or only II motifs (cf. Fig. S14). g) Same as f for EE motifs in human dataset.
h) Effect of VIP regulation on Rmotifs. Left: SST is inactive and Rmotifs is computed
over the displayed circuit involving PV and VIP. Right: SST is active and VIP is
inhibited resulting in PV and SST balancing the activity of the Pyr population. i)
Layer-wise estimation of Rmotifs for EI balanced motifs, EE-only motifs in mouse
and EE-only motifs in human. Same bootstrapping as in f.

excitatory neurons (51), and is consistent with recent results
for single-population networks that were independently ob-
tained by powerful but distinct theoretical tools based on the
full covariance spectrum (21). Our analysis yields a novel

compact analytical quantity:

R= σ
1− τdiv− τcon−2τchn + τrec√

1− τdiv− τcon
, (5)

where τrec, τchn, τdiv, τcon denote correlation coefficients
between pairs of synapses that capture the abundance of re-
ciprocal, chain, divergent, and convergent motifs, respec-
tively (cf. Methods and Suppl. Mat.) and σ captures the
overall synaptic strength. This formula describes how the
spectral radius R is affected by increasing or decreasing the
prevalence of second order motifs (Fig. 5a) and thus links
the modulation of auto- and cross-covariances and the dimen-
sionality of neural responses across the global network to the
statistics of local circuit connectivity, as shown in Figs. 5b
to 5c. While Eq. (5) is exact for the simplest type of bal-
anced networks, which are networks of inhibitory neurons
whose recurrent interactions balance the excitatory external
input, we show that it generalizes to standard models of bal-
anced excitatory-inhibitory networks (57). Here, σ and τ
combine the corresponding statistics of the excitatory and in-
hibitory subpopulations (cf. Fig. S13 and Suppl. Mat.). This
direct link between quantifiable, local connectivity statistics
and the global network property R opened the door to novel
functional analyses of very large-scale synaptic physiology
datasets in both mouse and human, as we describe next.

Cortical circuits in mouse and human employ
local synaptic motifs to modulate their recur-
rent coupling
We analyzed newly released synaptic physiology datasets
from both mouse and human cortex (37, 38) to assess the
involvement of synaptic motifs in modulating the recurrent
coupling strength. This synaptic physiology dataset was
based on simultaneous in-vitro recordings of 3-to-8 cell
groups (cf. Methods) and consisted of 1,368 identified
synapses from mouse primary visual cortex (out of more
than 22,000 potential connections that were tested) and
363 synapses from human cortex. The recurrent coupling
strength R defined by Eq. (5) has an overall scaling term, σ,
and a motif contribution term given byRmotifs =R/σ which
encapsulates whether the overall motif structure increases
(Rmotifs > 1) or decreases (Rmotifs < 1) the spectral radius
R. We begin by assessing the probability of occurrence of
individual motifs and hence estimating Rmotifs, cf. Meth-
ods. The relationship Eq. (5) defines a specific hypothesis
for empirical motif statistics that modulate global circuit
dimensionality: if they combine to produce Rmotifs > 1 then
they are tuned to reduce dimensionality, and vice-versa for
Rmotifs < 1 .
Beginning with the mouse data, we calculated the statistics
of individual motifs, separating those for excitatory (E) and
inhibitory (I) synapses (EE, EI, II, Fig. 5d), and found many
motifs to be significantly present. We then combined these to
compute Rmotifs. This requires two parameters: one regulat-
ing the overall ratio of inhibitory to excitatory neurons (γ),
and another the relative strength of the inhibitory synapses
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(g) (cf. Suppl. Mat.). We found that Rmotifs < 1 across
all choices of these parameters (Fig. 5e). Many different
motifs, differently involving E and I cell types, combine to
produce this value of Rmotifs. To study how this occurs, we
separated the contribution to Rmotifs from motifs within the
excitatory population (EE type only) by assuming that other
motifs occur at chance level. Interestingly, the EE motifs
operating alone produced the opposite trend, increasing
the radius REE only

motifs > 1 (Fig. 5f center, one-sided t-test
p-value< 10−20). The same was true for motifs within the
inhibitory population RII only

motifs > 1 (Fig. 5f right, one-sided
t-test p-value p-value< 10−20), and for motifs within the
excitatory population in human cortical circuits (Fig. 5g).
We further confirmed that this effect is also predicted for
previously published data on excitatory connections in rat
visual cortex (30) (cf. Methods). The increased recurrent
coupling strengths within both the excitatory and inhibitory
populations underscore the prominent role of EI motifs,
specifically reciprocal EI motifs, in decreasing and poten-
tially regulating the overall recurrent coupling strength to be
Rmotifs < 1 (Fig. 5d, Fig. 5e, Fig. S13). Overall, the distinct
roles of motifs among E and I cells types in regulating
Rmotifs point to ways that the radius, and hence dimension,
may be controlled dynamically in neural circuits, as we
explore next.

One pathway for this control is via cell types, which
subdivide E and I populations (Fig. 5h) and are separately
identified in the synaptic physiology dataset which we
analyze. As Table S2e shows, reciprocal EI motifs were
prevalent when the inhibitory interneuron was a somatostatin
cell (SST) or a parvalbumin cell (PV), but not a VIP cell.
Recent findings have shown that VIP interneurons (58, 59)
are important regulators of cortical functions, are modu-
lated by arousal and movement (60), and are recruited by
reinforcement signals (61). We thus hypothesized that VIP
interneurons could dial the recurrent coupling of cortical
circuits by exerting disinhibitory control (the regulation
of the overall activity by inhibiting a second population
of inhibitory interneurons) over the SST neural population
(41, 58) without being directly involved in regulating the
balanced regime, given the almost absent recurrent connec-
tivity within the VIP population and sparse connectivity with
pyramidal cells (Fig. 5h). Under the simplest form of this hy-
pothesis, there exists a mutual antagonism between VIP and
SST populations that results in only one of these populations
being active at a time, and we therefore derived the values
of Rmotifs for either case. We found that activation of the
VIP pathway substantially increased Rmotifs (Fig. 5h). This
shows how VIP interneurons, which themselves may collect
top-down signals from higher cortical areas, could selectively
tune the dimensionality of local cortical activity. This adds
another channel for control of information processing in
cortical circuits to existing hypotheses on how VIP neurons
regulate gain (59). Furthermore, we predicted a similar trend
in increasing Rmotifs to follow from short-term synaptic
plasticity (STP) in modulating cell-type specific connections

upon stimulus onset, although a detailed analysis awaits
future investigation (Figs. S15a to S15c). Finally, we note
that, our results were robust to inclusion of estimates of the
relative synaptic strength of cell type specific connections
(Fig. S15d) and the cell type specific prevalence of the three
inhibitory subpopulations (Fig. S15d) (see Methods).

In sum, we asked whether the experimentally derived struc-
ture of cortical networks – quantified by their motifs – en-
ables the tuning of recurrence strength R and hence dimen-
sionality. We found that the answer is yes, and that the VIP
disinhibitory pathway and STP modulation both provide ex-
amples of how motifs are likely to play a substantial role in
this tuning. As we reviewed above, high dimensional activity
can retain stimulus details, while lower dimensional activity
can promote robust and general downstream decoding. Taken
together, this points to new functional roles for modulatory
and adaptive mechanisms known to take effect across time
during stimulus processing and to be engaged across brain
states (for example in an aroused versus passive states).
Finally, we find evidence for synaptic motifs in the cross-
layer differences in the dimensionality of cortical activity
identified above (Fig. 4g). There, activity in mouse cortex
layer 2 showed lower dimensionality, corresponding to an
increased overall recurrent coupling strength R compared to
layers 4, 5 or 6. Intriguingly, the corresponding motif con-
tribution Rmotifs to this coupling strength was significantly
stronger for layer 2 than for layer 4 or 5. Moreover, a similar
result held true when performing the analysis on the human
dataset for excitatory connections in layers 2 and 3 (Fig. 5i
and Fig. S16).

Conclusion
We showed that neural networks across the mouse brain op-
erate in a strongly recurrent regime. A feature of this regime
is the ability of neural circuits to sensitively modulate the rel-
ative dimensionality of their activity patterns via their recur-
rent coupling strength. This has potentially important conse-
quences for computation. Indeed, our analyses of large scale
Neuropixels recordings from areas within the thalamus and
hippocampus, and across layers in cortex, showed systematic
trends in this dimensionality. Our theory links these find-
ings to clear predictions for recurrent coupling strength in
these areas: a higher dimensionality suggests a lower recur-
rent coupling strength and vice-versa. Moreover, we showed
that the critical circuit features that determine a circuit’s re-
current coupling strength R – and hence the dimensional-
ity of its activity patterns – are not just its overall synaptic
strength, but also a tractable set of local synaptic motifs. We
use theoretical tools to quantify the effect of these motifs
via a compact index Rmotifs. This provides a concrete tar-
get quantity that can, as we show, be readily obtained from
emerging, large-scale synaptic connectivity datasets and used
to check predictions about the role of synaptic structure in
controlling dimensionality. Thus theory and brain-wide ex-
perimental analyses converge to provide new evidence for an

Dahmen et al. bioRχiv | 7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2020.11.02.365072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.365072
http://creativecommons.org/licenses/by/4.0/


intriguing concept: that the connectivity of brain networks
exert global control over their activity in a highly tractable
manner, via the building blocks of their local circuitry.
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Stimulus examplea

Drifting gratings Gray mean luminance

Evoked condition Spontaneous condition Stimulus set #1 (Brain observatory)

Stimulus set #2 (Functional connectivity)

Time (min)

10 min
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Stimulus presentationb

0 2.5 sec 5 sec 7.5 sec

2.0 sec
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0.5 sec inter
trial interval

...trial block
continuation

Drifting gratings presentation
trial structure c

Natural images

Fig. S1. Statistics of stimuli. a) Example of screen displayed to the animal during the evoked condition with drifting-grating stimuli (left) and the spontaneous condition (gray
screen, right). b) Drifting gratings were presented with four different orientations (0◦,45◦,90◦,135◦) and one temporal frequency (2Hz) for the duration of 2 seconds with
75 repeats each (0.5 seconds of inter-trial interval). Spontaneous activity was recorded for the duration of 30 minutes. The statistics of sessions is reported in Table S1. c)
Position of the two experimental conditions (red: evoked condition, green: spontaneous condition) in the recordings for the two stimulus trains ("brain observatory" and
"functional connectivity"). Also natural image presentations are shown in blue, as analyzed in Fig. S12. In all experimental sessions neural recordings were performed with
Neuropixels probes.
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Fig. S2. Statistics of covariances in balanced networks. a) Example of covariance matrix and statistics for a balanced network. The covariance of the neural activity is
computed by analyzing the binned neural activity. For each neuron spikes are binned into windows of 100ms. Then the covariance is computed resulting in a matrix where
the number of rows and columns corresponds to the number of neurons. The two distributions on the right capture respectively the statistics of diagonal (auto-covariances)
and off-diagonal (cross-covariances) entries of the covariance matrix. Of specific importance for our study are the standard deviation of cross-covariances δc and the mean
of auto-covariances ā as their ratio, termed s in our study, is in one-to-one correspondence with the spectral radius R. b) Example of data distribution where each green dot
corresponds to a single binned vector of spike counts. The geometrical interpretation for such a point cloud is that the axes of major variability are determined by the
eigenvectors of the covariance matrix. Eigenvalues, when normalized to their sum, determine the amount of variance of the data in the direction identified by the eigenvector.
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Fig. S3. Method for estimating shared and intrinsic activity statistics. a) Bin spikes of each recorded neuron in each experimental session into 100ms windows to obtain
spike-count vectors. b) Perform 5 fold cross-validated latent factor analyses (LFA) with increasing number of factors (from 1 to 25). Determine log-likelihood as a function of
the number of factors. Select number of factors (#factors) as the minimal one that yields a relative increment of the cross-validation curve lower than 5%. c) Perform LFA with
#factors to split total activity into shared and intrinsic activity components. d) Compute covariance of shared and intrinsic components. e) Compute distribution of
covariances for shared and intrinsic components. f) Subsample intrinsic neural activity and compute standard deviation of cross-covariances δc as a function of samples
(#bins) used. g) Fit dependence of δc on the number of bins to estimate and remove bias induced by the finite duration of the recording (see Methods). This procedure
yielded an unbiased estimate of the statistics of intrinsic auto- and cross-covariances.
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Fig. S4. Latent Factor Analysis applied to simulation data. LFA yields an upper bound on the dimensionality of intrinsic network activity in linear rate networks.
Correlated external inputs can strongly alter covariances within the network, but LFA faithfully extracts intrinsic covariances over a wide range of spectral radii and ranks of
external input covariances. a) A rank-one input, for example, can lead to broader distributions of covariances (red) with respect to intrinsically generated covariances (blue).
Applying LFA, inferred intrinsic covariances (green) recover features of ground-truth intrinsic covariances well. b) Covariance spectra corresponding to distributions in a. c)
Pearson correlation coefficient between ground-truth and inferred intrinsic covariances for different spectral radii and ranks of external input covariances. d) Relative error of
inferred spectral radius. e) Relative error of inferred intrinsic dimensionality. For large spectral radii R / 1, LFA wrongly subtracts low-dimensional components of intrinsic
covariances, which, however, consistently leads to conservative results, i.e. underestimated spectral radii and overestimated intrinsic dimensionalities. Note that color scales
in panels d and e are cut at the value 1 for better visibility. Details on the model system and the LFA application are shown in Suppl. Mat. S3.4.
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Fig. S5. Dimensionality extrapolation analysis across regions. a) Extrapolated dimensionality based on the full covariance for individual brain regions as a function of the
network size, see Methods. For each region we computed the unbiased covariance matrix statistics (Fig. S3), and based on these statistics we computed the dimensionality
as a function of the network size (the number of neurons in that particular region). This was performed for spontaneous (solid line) and evoked activity (dashed line). Shaded
areas indicate confidence interval across sessions. Interestingly the estimates in most panels are not significantly different across conditions suggesting that a robust
estimate of the dimensionality was achieved as the two conditions are based on independent statistics. The only significant difference between conditions is in visual cortex
where in the evoked condition the dimensionality is significantly lower (t-test p-value< 10−3) in line with previous findings (13, 40). b) Same as in panel a with the
extrapolation here based on the statistics of intrinsic covariances. Comparing the extrapolated values of panel a and panel b allows to establish a respectively lower and
upper bound on the dimensionality of neural activity in each area. Henceforth a bound on the value of recurrencies can be similarly derived due to the one-to-one
relationship between recurrency and dimensionality based on intrinsic covariances.
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Fig. S6. Dimensionality analysis across regions with cross-validated Principal Component Analysis (PCA). In this figure we present the plots of Fig. 3 obtained by using a
cross-validated PCA in place of a cross-validated LFA in the method used to estimate the shared and intrinsic activity components (Fig. S3). The method is applied
identically, except that the LFA step is replaced by a cross-validated PCA. Similarly neural activity is then projected onto the number of principal components identified by the
method to obtain the shared activity (projected onto components) and intrinsic activity (activity not captured by selected components). a) Top: dimensionality of intrinsic
covariance extrapolation across brain regions and conditions. Same as plots shown in Fig. S5b. Bottom left: Average of the dimensionality extrapolation in each top panel to
ease comparison across regions. Same as Fig. 3d left. Bottom right: dimensionality of intrinsic activity across regions and conditions visualized as a box plot (the box
displays average and interquartiles). The statistic within the box corresponds to 50% of the statistics, therefore boxes are larger in size than more common standard
deviations error bars. b) Left: number of factors extracted by the cross-validated LFA technique across regions (cf. Fig. S3). Middle: number of factors extracted by the
cross-validated PCA technique across regions. Right: comparison between number of factors extracted by cross-validated LFA and cross-validated PCA. There is a
significant correlation (p-value 0.037) between the number of factors extracted with the two methods across experimental sessions. This statistics is of relevance as it can be
considered an estimate of the dimensionality of neural activity on its own. The number of cross-validated factors (for LFA) and components (for PCA) are indeed often taken
as a measure of dimensionality. These plots suggest that according to these measures the dimensionality of neural activity across regions is on the order of 10-20 factors or
components.
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Fig. S7. Analysis of covariance statistics in the evoked condition. In order to test the robustness of our methods in extracting the statistics of cross-covariances we verified
that such statistics were consistent by splitting the data into smaller sets. These sets were naturally selected by the fact that the evoked condition studied here corresponded
to drifting gratings with multiple orientations. Therefore studying statistics across orientations allowed us to verify the robustness of our metrics. a) Quantity s (defined as the
ratio between the standard deviation of cross-covariances and the average of autocovariances) for the full covariance of the activity. This is the central object for our
analysis. Left: spontaneous condition across regions displayed for comparison to the evoked condition. Right: evoked condition across regions for different stimulus
orientations and for all stimulus orientations analyzed together. Results in the main figures (Figs. 2 to 3) are computed, for each session, as the average across the four
different orientations presented here. b) Same as panel a for the intrinsic covariance. These statistics allow us to verify the robustness of our analysis across orientations for
the evoked condition and also verify that the ’all’ condition, where orientations are considered all together, did not qualitatively differ from individual orientations.
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Fig. S8. Hidden Markov Model (HMM) analysis of spontaneous activity. Here we verify the robustness of the dimensionality and recurrency estimation in the spontaneous
activity. During spontaneous activity neural activity is known to be strongly influenced by the movement of the animal and other factors (e.g. arousal). Therefore we verified
that our estimates of dimensionality were not specifically driven by such factors. To achieve such control in an unsupervised way we analysed spontaneous activity by
detecting, in the interval of 30 minutes corresponding to spontaneous activity, periods where the neural activity was well captured by the same latent state. This hypothesis,
that the activity is driven by a specific latent state, corresponds to the hypothesis underlying a Hidden Markov Model (HMM). Henceforth we analyzed spontaneous activity
with a HMM. This algorithm (see Methods) returned a parsing of spontaneous periods of activity into multiple underlying states by means of an unsupervised detection
algorithm. In each state, the assumption underlying the algorithm is that the average neural activity is steady and therefore fluctuations around such average activity can be
considered as intrinsically generated. a) Example raster plot during one of the sessions with overlaid running speed of the animal (green). The HMM extracts different states
whose appearance strongly correlates with the animal movement (e.g. blue state). b) We noticed that some states were driven by the speed of the animal. This could be
visualized by the average speed of the animal in individual HMM states across all sessions. Multiple states appear to correspond to either static or moving conditions. c) For
the neural activity during all bins where a specific state appeared we computed the dimensionality of the neural activity for that specific state. The plot shows the
dimensionality of so obtained HMM state dependent neural activity versus the average speed in each state. There is no substantial correlation between the running speed
and dimensionality. d) Dimensionality of the full covariance across regions computed for the entire period of the spontaneous condition (entire period, purple) or for each
individual state and averaged across all states and sessions in each brain region (states only, blue). The dimensionality computed over the entire period is systematically
lower as the HMM extracts periods where the neural activity tends to be stationary thus limiting the effect of shared variability modes on the dimensionality of the full
covariance. This suggests that the lower dimensionality obtained by the computation over the entire period is driven by the components that account for the switch between
multiple states. In the computation we retained states which accounted for at least 2 minutes of the entire period. In areas which are elsewhere defined as "other" there were
no states that passed this threshold, therefore data are not shown. e) Dimensionality of intrinsic covariances computed across regions for the entire period (purple) or during
states only (blue). The dimensionality computed in the two ways appears more in agreement than in panel d suggesting that the LFA analysis (Fig. S3) successfully extracts
components of shared variability coherently throughout the period in a way comparable to what is achieved by parsing the neural activity with an HMM. Therefore these
analyses confirm the robustness of our estimation method validating the ability of the LFA analysis to capture sources of shared variability in the spontaneous condition.
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Fig. S9. Analysis of dimensionality via covariance eigenvalues spectrum. An alternative method of dimensionality estimation has been recently proposed in (9). We verified
that our analysis is consistent with the results identified by this alternative technique. a) This technique is based on estimating the exponent α of a power law fit to the
normalized full spectrum of the covariance eigenvalues. The figure shows an example estimation of the critical exponent α from the normalized spectrum of the full
covariance matrix. b) The exponent α can also be extracted through the dimensionality (see Methods) by assuming the power law decay of the full spectrum. The
distribution across all sessions for each brain area are here shown. The values obtained between 1.02 and 1.08 are consistent with the ones reported in (9). This allows to
validate our techniques and their relation to established findings in the literature.
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Fig. S10. Linear-response theory for dimensionality of spiking network dynamics. The theory for linear rate models predicts the dimensionality for more complex
network topologies and spiking neuron dynamics. The participation ratio DPR can be expressed in terms of three quantities (see Methods): a) mean cross-covariances, b)
standard deviation of autocovariances, c) standard deviation of cross-covariances. All quantities are rescaled by mean autocovariances. Solid lines indicate simulations of
homogeneous inhibitory networks with leaky integrate-and-fire neuron models and dashed lines show analytical predictions using linear response theory (18). d) The
matching theoretical predictions for the statistics of covariances in homogeneous inhibitory networks yield an accurate prediction for the dimensionality (grey), not only for
simulations of homogeneous single population inhibitory networks (blue), but also for homogeneous two-population excitatory-inhibitory networks (red) and spatially
organized single-population inhibitory networks (green). The neuron and network models and parameters are as described in (18).
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Fig. S11. Dimensionality extrapolation based on unbiased subsampling of covariances. a) Statistics of covariances based on activity from Nrec recorded neurons of
a homogeneous inhibitory network of N = 10000 leaky integrate-and-fire neurons. The participation ratio DPR can be expressed in terms of three quantities: mean
cross-covariances (red) as well as standard deviations of auto- (blue) and cross-covariances (green), each rescaled by mean autocovariances (see Methods). The
covariance statistics being independent of the number of recorded neurons Nrec allows for an unbiased dimensionality extrapolation based on subsampled covariances. b)
Measured dimensionality (black dots) based on statistics of covariances from different numbers Nrec of recorded neurons as well as extrapolated dimensionality (yellow
curve) based on covariance statistics of Nrec = 500 neurons (corresponding to yellow dot). The extrapolated dimensionality fits the true dimensionality well. Statistics of
covariances are averaged over 100 random subsamplings for each Nrec to avoid statistical fluctuations. Same homogeneous inhibitory network as in Fig. S10.
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Fig. S12. Dimensionality analysis across brain areas. Here we provide supplementary plots to the analyses shown in Fig. 4. a) Dimensionality extrapolation as a function of
number of neurons in the network (network size) based on the full covariance across areas involved in the visual hierarchy (36). In all areas the evoked condition is
significantly lower dimensional than the spontaneous condition (max p-value across areas< 10−15). b) Dimensionality of evoked responses for the full covariance across all
stimuli in the drifting gratings (i.e. across all orientations as for condition "all" in Fig. S7) and natural scenes (cf. Methods and Fig. S1). Significant increase in dimensionality
from primary to higher visual cortical areas was found in both conditions. c) The increase in dimensionality across the visual hierarchy has important connections with the
processing of information in artificial deep neural networks classifying images (14, 19). To provide further data for such comparison we analyze the measure of extent of
neural representations across the hierarchy given by E(C) =

∑
i
λ2

i /
(∑

i
λi

)
. This measure exploits the same statistics of the dimensionality Eq. (3) and can thus be

extrapolated with identical techniques, but identifies the volume of the point cloud of data rather than its dimensionality. Here we plot the average extent across orientations
for the evoked drifting gratings condition and the average extent in the spontaneous condition (same as Fig. 4b). The significant decrease in extent for neural
representations, together with the increase in dimensionality across all conditions suggests an increased separability of neural representations along the visual hierarchy:
point-clouds of data become smaller (lower extent) but are arranged in a higher dimensional fashion (higher dimensionality). d) Dimensionality of the full covariance across
thalamic and visual areas. Secondary visual areas are here considered together (VISs): neurons from any secondary cortical area are grouped together in "area" VISs for
analyses reporting VISs. e) Dimensionality based on the full covariance for hippocampal areas. f) Dimensionality based on the full covariances across visual cortical layers.
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Fig. S13. Numerical validation of theory for spectral radius in excitatory-inhibitory networks with population-specific motif abundances. Spectral radius as a function of
abundances of excitatory and inhibitory a) recurrent motifs, b) convergent motifs, c) divergent motifs, and d) chain motifs. Only one parameter is varied at a time with all
other motif abundances set to zero. Theoretical predictions are given by solid curves, numerical evaluations of single network realizations are shown by colored markers. Cf.
Suppl. Mat. for network construction algorithms. The approximate theory correctly predicts the influence of changes in abundance of each type of motif on the spectral
radius. In particular, an over-representation of reciprocal EE and II motifs increases the spectral radius while an over-representation of reciprocal EI motifs decreases the
spectral radius. These effects are the dominant contributions to the results obtained from the synaptic physiology dataset.
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Fig. S14. Analysis of motifs in synaptic connectivity dataset. a) Statistics of synaptic probability (psyn) and τ values corresponding to each motif for the bootstrap analysis
of mouse synaptic physiology data. The statistics reported in each panel corresponds to 500 bootstraps where in each bootstrap 80% random experimental sessions were
analyzed. The plots allow us to verify the variability in the inference of synaptic probabilities and motif values. b) Same as in panel a for reciprocal motifs with synaptic type
dependence (EE, EI, II corresponding respectively to the two synapses being excitatory, of mixed type or inhibitory). These supplementary plots utilize the same data as
shown in Fig. 5f.
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Fig. S15. Effect of short-term synaptic plasticity (STP) on recurrent coupling strength. We captured the effect of STP on the recurrency Rmotifs with a dedicated analysis
(see Methods). a) Values of Rmotifs as a function of parameters g and γ. This plot is a reproduction of Fig. 5h for ease of comparison. b) Values of STP metric as a
function of pre- and post-synaptic cell type as computed in the Allen synaptic physiology dataset ((37)). Values of STP above zero indicate a facilitating synapse (that
increases its strength with stimulus repetitions) while STP values lower than zero indicate a depressing synapse (that decreases its strength with stimulus repetition). c)
Values of Rmotifs as a function of parameters g and γ upon considering the effective trend of STP modulation on individual motifs. This analysis points to the fact that
Rmotifs is modulated by STP effects, in particular, upon adaptation of the synapses STP appears to increase Rmotifs. This would correspond to an increase of recurrency
and a decrease in dimensionality. This is in agreement with findings suggesting that stimuli suppress the dimensionality of the representation as we found in visual cortex (cf.
Fig. 4d, (13)). d) Control that accounting for the relative synaptic strength of synapses among different cell types did not affect our findings. We included in our analysis the
average relative values of synaptic strength computed between populations of interneurons (see Methods). Each panel has a corresponding circuit cartoon at the bottom of
the figure (from left to right: regular analysis same as Fig. S15a, analysis with silenced SST population same as Fig. 5f, analysis with silenced VIP population same as
Fig. 5g, analysis with STP effect same as Fig. S15c). e) We verified that the statistics collected during the experiment would reflect the expected statistics relative to the
difference prevalence of the three populations of interneurons in the visual cortex. We did so by accounting for such bias in our analysis and recomputing all values of
Rmotifs, see Methods. The order of the panels follows the same prescriptions as in panel d.
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a Statistics of synaptic probability and motifs in mouse and human data in layers 2 and 3
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Fig. S16. Motifs in layers 2 and 3 of mouse and human cortex. In this analysis we compare the statistics of motifs in layer 2 and 3 for both mouse and human. These layers
are the only ones that have a sufficient data in both datasets allowing for a direct comparison. a) Statistics of synaptic probability (psyn) and taus corresponding to each
motif for the bootstrap analysis of mouse and human synaptic physiology data. The statistics reported in each panel corresponds to 500 bootstraps where in each bootstrap
80% random experimental sessions were analyzed. These supplementary plots utilize the same data as shown in Fig. 5i. It is remarkable how the distributions show
similarities and differences in a motif specific way: In the case of chain and divergent motifs, the values for layer 2 and 3 for the human dataset are much in agreement, while
for reciprocal connections they are markedly different.
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Session id Type Thalamus Vis.Cortex Hippocampus Midbrain others LGd LP VISp VISl VISam VISpm VISrl VISal VIS CA1 CA3 DG ProS SUB APN lays1 lays2 lays4 lays5 lays6
715093703 brain observatory 1.1 297 258 185 26 117 82 139 60 42 30 50 76 145 14 26 26 42 51 41 14
719161530 brain observatory 1.1 193 166 178 176 19 71 28 52 40 37 18 10 9 108 14 14 42 176 15 23 57 19
721123822 brain observatory 1.1 72 214 122 15 69 41 27 39 46 37 24 71 10 41 10 28 62 50 9
732592105 brain observatory 1.1 365 459 110 40 66 64 85
737581020 brain observatory 1.1 142 410 40 22 13 67
739448407 brain observatory 1.1 278 347 19 36 56 70 97
742951821 brain observatory 1.1 339 554 33 52 23 79 44 108
743475441 brain observatory 1.1 207 185 60 34 42 131 45 19 53 68 20 5 12 1 22 34 38 33 58 11
744228101 brain observatory 1.1 185 275 165 20 1 84 35 26 26 41 147 112 9 10 34 20 1 15 20 49 8
746083955 brain observatory 1.1 65 213 12 292 34 14 17 115 35 32 7 5 13 17 2
750332458 brain observatory 1.1 4 295 38 558 4 63 38 60 19 44 71 16 15 7 4 7 16 11
750749662 brain observatory 1.1 325 287 149 82 142 52 20 64 64 41 46 113 10 26 30 51 111 43
751348571 brain observatory 1.1 331 279 177 40 55 137 49 27 71 37 95 78 16 37 46 37 41 67 93 29
754312389 brain observatory 1.1 28 275 197 1 27 102 14 64 22 41 32 135 15 47 26 52 71 24
754829445 brain observatory 1.1 429 192 158 45 90 170 92 47 21 32 123 12 23 45 12 23 40 25
755434585 brain observatory 1.1 118 361 121 17 25 44 27 75 39 94 62 49 42 45 8 15 53 14 4 55 33 122 23
756029989 brain observatory 1.1 168 318 168 27 60 27 51 30 72 90 24 51 113 10 37 8 21 62 46 117 42
757216464 brain observatory 1.1 305 352 215 55 6 114 85 53 64 37 53 60 112 13 42 7 41 47 31 63 94 19
757970808 brain observatory 1.1 184 304 218 48 45 58 80 70 46 54 130 4 37 47 26 46 77 21
758798717 brain observatory 1.1 115 199 181 68 39 47 49 23 80 116 40 1 24 53 33 22 68 29
759883607 brain observatory 1.1 94 205 137 38 23 58 55 48 44 82 3 15 2 35 30 11 25 91 20
760345702 brain observatory 1.1 64 274 148 5 37 17 72 49 55 44 54 91 30 27 2 24 36 106 34
760693773 brain observatory 1.1 406 420 88 70 54 66 128
761418226 brain observatory 1.1 103 373 197 6 12 41 44 36 41 111 185 145 11 41 6 55 91 156 35
762120172 brain observatory 1.1 332 385 84 74 33 91 50
762602078 brain observatory 1.1 32 303 138 25 27 75 52 60 116 101 5 6 26 19 22 27 49 14
763673393 brain observatory 1.1 87 278 193 50 6 77 3 73 36 74 44 51 131 32 30 48 18 35 78 23
766640955 functional connectivity 215 244 238 85 76 101 52 34 56 37 65 163 16 59 64 29 42 84 37
767871931 functional connectivity 119 342 195 49 83 101 52 64 33 46 100 19 32 1 43 41 22 41 100 32
768515987 functional connectivity 169 291 189 76 48 21 72 59 49 50 61 96 23 25 45 57 1 30 53 106 29
771160300 functional connectivity 49 450 369 1 8 6 43 85 87 58 108 21 269 42 29 26 3 1 59 42 110 42
771990200 functional connectivity 155 224 141 24 60 31 54 43 37 19 29 66 6 29 40 24 14 22 81 11
773418906 brain observatory 1.1 86 259 188 7 37 17 39 166 72 15 50 17 34 6 45 52 92 33
774875821 functional connectivity 31 279 264 27 69 53 45 40 72 190 58 16 27 1 33 40 118 18
778240327 functional connectivity 59 387 309 10 2 51 85 62 77 68 13 82 240 24 41 4 10 1 41 47 154 59
778998620 functional connectivity 113 364 224 57 12 77 75 74 58 45 51 61 130 40 14 40 55 30 64 134 61
779839471 functional connectivity 118 454 246 31 73 12 126 72 84 26 146 133 22 48 43 28 28 43 95 16
781842082 functional connectivity 128 355 165 58 11 2 83 58 42 172 112 18 27 2 51 25 68 132 47
786091066 functional connectivity 28 432 218 9 82 73 65 47 165 86 3 47 28 54 9 57 67 171 55
787025148 functional connectivity 76 272 295 21 38 68 66 11 54 8 185 42 18 17 33 20 19 33 58 21
789848216 functional connectivity 78 125 162 2 32 16 14 43 30 24 14 100 25 37 2 20 45 41 5
791319847 brain observatory 1.1 24 316 192 4 8 9 93 56 49 17 58 43 85 33 32 1 41 33 65 86 39
793224716 functional connectivity 134 313 246 61 15 101 80 39 171 23 151 27 27 41 56 26 65 78 41
794812542 functional connectivity 103 520 292 38 20 108 100 109 65 89 49 135 26 13 71 47 17 79 71 193 69
797828357 brain observatory 1.1 74 297 152 39 2 67 85 58 67 52 11 24 49 29 30 44 39 42 35 104 31
798911424 brain observatory 1.1 68 443 254 26 65 94 78 135 47 89 134 21 31 9 59 25 59 65 177 48
799864342 brain observatory 1.1 127 225 188 11 70 51 75 40 29 29 52 109 16 20 36 7 11 23 32 66 29
816200189 functional connectivity 100 297 183 17 55 61 65 51 76 44 120 8 20 35 13 48 36 72 36
819186360 functional connectivity 118 251 115 23 34 78 72 52 20 107 65 17 28 5 23 27 34 152 38
819701982 functional connectivity 128 242 182 15 31 44 66 78 98 125 6 27 15 9 9 1 30 73 99 39
821695405 functional connectivity 49 254 136 26 48 34 71 64 59 26 55 16 38 27 37 17 126 40
829720705 functional connectivity 371 143 52 78 77 75 89 79 18 46 50 53 174 42
831882777 functional connectivity 411 129 12 56 65 73 63 72 92 46 107 19 2 8 58 57 126 32
835479236 functional connectivity 29 318 160 21 8 79 76 87 76 103 9 33 15 3 34 81 80 41
839068429 functional connectivity 73 352 294 23 9 64 85 47 42 60 44 74 172 22 60 4 36 22 35 31 96 31
839557629 functional connectivity 36 219 193 1 36 53 48 38 38 42 107 11 48 27 1 21 26 97 22
840012044 functional connectivity 189 275 249 29 98 46 45 48 53 83 162 15 72 29 39 55 105 30
847657808 functional connectivity 55 346 389 66 53 50 76 65 55 45 55 184 5 64 97 39 63 1 45 68 143 39

Table S1. Statistics of Neuropixels recordings. The table shows the number of neurons recorded across sessions indicating the type of recording (stimulus set Fig. S1) and
grouping the neurons into three categories: brain regions (light blue background), brain areas (dark blue background) and visual cortical layers (gray background). Sessions
are sorted by the session id for reference in the dataset. In our analyses we utilized recorded activity of a specific brain area or region whenever the number of neurons
recorded was 20 or higher.
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Count Total
 Type 
reciprocal EE 31 1119
reciprocal EI 179 2246
reciprocal II 131 4316
convergent EE 108 5810
convergent EI 81 11022
convergent II 270 21718
divergent EE 114 11321
divergent EI 0 0
divergent II 387 27229
chain EE 70 11620
chain EI 322 22044
chain II 360 43436

 Count Total
 Type 
reciprocal 351 8044
convergent 487 40455
divergent 535 40455
chain 789 80910

 Count Total
 Type 
reciprocal 62 2093
convergent 134 11136
divergent 140 11136
chain 209 22272

 Count Total
 Type 
reciprocal EE 28 530
reciprocal EI 25 851
reciprocal II 9 568
convergent EE 86 2908
convergent EI 28 4536
convergent II 17 2951
divergent EE 85 5176
divergent EI 0 0
divergent II 50 5219
chain EE 102 5816
chain EI 70 9072
chain II 31 5902

a b c dMotifs statistics EI mouse Motifs statistics mouse Motifs statistics EI human Motifs statistics human

     Type                         
reciprocal EI                             
reciprocal II           
convergent EI       
convergent II        
divergent EI          
divergent II          
chain EI               
chain II                

Pv - Count
28
43
15
45
0

113
52
93

Vip - Total
361
338

1245
1159

0
3852
2486
2317

Sst - Total
534
685

1902
2336

0
5509
3731
4595

Pv - Total
408
444

1345
1411

0
4075
2626
2743

Sst - Count
16
5
7

30
0

50
32
9

Vip - Count
1
0
1
3
0

10
1
0

e Cell-type specific motifs statistics mouse

Table S2. Statistics of synaptic motifs. Here we report the statistics of detected (count) motifs per motif type versus the maximum number of possible motifs that could be
detected if all synapses were present (total). The ratio of the two values (count/total) indicates the probability of occurrence of a specific motif. (a) Statistics of synaptic motifs
in the mouse dataset per motif type. (b) Statistics of synaptic motifs in the mouse dataset independently of the cell type being excitatory or inhibitory. (c) Same as (a) for
human synaptic physiology dataset. (d) Same as (b) for human synaptic physiology dataset. (e) Statistics of motifs in the mouse synaptic physiology dataset for each of the
inhibitory populations of interneurons.
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