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Abstract

Spatial omics data are advancing the study of tissue organization and cellular
communication at an unprecedented scale. Here, we present Squidpy, a Python framework
that brings together tools from omics and image analysis to enable scalable description of
spatial molecular data, such as transcriptome or multivariate proteins. Squidpy provides both
infrastructure and numerous analysis methods that allow to efficiently store, manipulate and
interactively visualize spatial omics data.

Main

Dissociation-based single cell technologies have enabled the deep characterization of
cellular states and the creation of cell atlases of many organs and species1. However, how
cellular diversity constitutes tissue organization and function is still an open question.
Spatially-resolved molecular technologies aim at bridging this gap by enabling the
investigation of tissues in situ at cellular and subcellular resolution2–4. In contrast to the
current state of the art dissociation-based protocols, spatial molecular technologies acquire
data in greatly diverse forms, in terms of resolution (few cells per observation to subcellular
resolution), multiplexing (dozens of features to genome-wide expression profiles), modality
(transcriptomics, proteomics and metabolomics) and often times with an associated
high-content image of the captured tissue2–4. Such diversity in resulting data and
corresponding formats currently represents an organisational hurdle that has hampered
urgently needed development of interoperable and broad analysis methods. The underlying
computational challenge requires solutions both in terms of efficient data representation as
well as comprehensive analysis and visualization methods.

Hence, existing analysis frameworks for spatial data focus either on pre-processing5–8 or on
one particular aspect of spatial data analysis9–13. Due to the lack of a unified data
representation and modular API, users so far cannot perform comprehensive analyses
leveraging the full spatial modality, e.g. combining stlearn’s12 integrative analysis of tissue
images together with Giotto’s powerful spatial statistics11. A comprehensive framework that
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enables community-driven scalable analysis of both spatial neighborhood graph and image,
along with an interactive visualization module, is missing (Supplementary Table 1).

For this purpose we developed “Spatial Quantification of Molecular Data in Python”
(Squidpy), a python-based framework for the analysis of spatially-resolved omics data (Fig.
1). Squidpy aims to bring the diversity of spatial data in a common data representation and
provide a common set of analysis and interactive visualization tools. Such infrastructure is
useful in a variety of analysis settings, for different data types, and it explicitly leverages the
additional information that spatial data provides: the spatial coordinates and, when available,
the tissue image. Squidpy is built on top of Scanpy and Anndata14, and it relies on several
scientific computing libraries in Python, such as Scikit-image15 and Napari16. Its modularity
makes it suitable to be interfaced with a variety of additional tools in the python data science
and machine learning ecosystem, as well as several single-cell data analysis packages. It
allows to quickly explore spatial datasets and lays the foundations for both spatial omics
data analysis as well as novel methods development.

Results

Squidpy provides technology-agnostic data representations for spatial graphs and images

Squidpy introduces two main data representations to manage and store spatial omics data in
a technology-agnostic way: a neighborhood graph from spatial coordinates, and large source
images acquired in spatial omics data (Fig. 1b). Spatial graphs encode spatial proximity, and
are, depending on data resolution, flexible in order to support the variety of neighborhood
metrics that spatial data types and users may require. For instance, in Spatial
Transcriptomics (ST17, Visium18, DBit-seq19), a node is a spot and a neighborhood set can be
defined by a fixed number of adjacent spots whereas in imaging-based molecular data
(seqFISH20, MERFISH21, Imaging Mass Cytometry22,23, CyCif24, 4i25, Spatial Metabolomics26,
see Fig. 1a), a node can be defined as a cell (or pixel), and a neighborhood set can also be
chosen based on a fixed radius (expressed in spatial units) from the centroid of each
observation. Alternatively, other dissimilarity measures, such as euclidean distance, can be
utilized to build the neighbor graph. Such data representation is suitable for many analysis
tools that aim at quantifying spatial organization of the tissue. In Squidpy, we provide several
tools to compute statistics at cell and gene level, such as a neighborhood enrichment score
on the spatial graph, a ligand-receptor interaction analysis tool, and the Moran's I spatial
autocorrelation score for spatially variable genes identification (Fig. 1c).
The high resolution microscopy image additionally captured by spatial omics technologies
represents a rich source of morphological information that can provide key biological insights
into tissue structure and cellular variation. Squidpy introduces a new data object, the Image
Container, that efficiently stores the image with an on-disk/in-memory switch based on
xArray and Dask27,28. The Image Container provides image analysis tools, such as
performing image preprocessing, segmentation, and feature extraction, as well as interfacing
with modern deep learning frameworks for more advanced analysis15 (Fig. 1c right). It
provides seamless integration with Napari16, thus enabling interactive visualization of
analysis results stored in an Anndata object alongside the high resolution image directly from
a Jupyter notebook. It also enables interactive manual cropping of tissue areas and
automatic annotation of observations in Anndata. Since Napari is an image viewer in Python,
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all the above-mentioned functionalities can be also interactively executed without additional
requirements.

Squidpy enables calculation of spatial cellular statistics using spatial graphs

A key question in the analysis of spatial molecular data is the description and quantification
of spatial patterns and cellular neighborhoods across the tissue. Squidpy provides several
tools that leverage the spatial graph to address such questions. For instance, a
neighborhood enrichment analysis score that quantifies cluster proximity with a permutation
based test (see online methods) is available. When applied to a recently published seqFISH
data of mouse gastrulation29, we found several clusters to be co-enriched in their cellular
neighbors (Fig. 2a,b), recapitulating the main results of the original authors. Furthermore,our
implementation is scalable and ~10 fold faster than a similar implementation in Giotto11

(Supplementary Fig. 1a), enabling analysis of large-scale spatial omics datasets. Squidpy
also computes a co-occurrence score for clusters across spatial coordinates, which we
applied to a 4i dataset of Hela cells25. We considered ~270,000 pixels as subcellular
resolution observations, and evaluated their cluster co-occurrence at increasing distances
(Fig. 2 c,d). As expected, the subcellular measurements annotated in the Nucleus
compartment co-occur together with the Nucleus and the Nuclear envelope, at short
distances. Squidpy provides additional tools to investigate features of spatial-molecular data,
such as a fast and broader implementation of CellPhoneDB30 for spatial ligand-receptor
interaction analysis, leveraging the larger Omnipath database31, and the Moran's I spatial
autocorrelation statistic for detection of spatially variable genes32 (Fig 2 e,f). These statistics
yield interpretable results across diverse experimental techniques, as we demonstrate on an
Imaging Mass Cytometry dataset33, where we showcase additional methods like the Ripley's
K function, average clustering, and degree and closeness centrality (see Supplementary Fig.
3).

Squidpy allows analysis of images in spatial omics analysis workflows

Squidpy's Image Container object provides a general mapping between pixel coordinates
and molecular profile, enabling analysts to relate image-level observations to omics
measurements.
Following standard image-base profiling techniques34, Squidpy implements a pipeline based
on Scikit-image15 for preprocessing and segmenting images, extracting morphological,
texture, and deep learning-powered features (Supplementary Fig. 2a). To enable efficient
processing of very large images, this pipeline utilises lazy loading, image tiling and
multi-processing (Supplementary Fig. 1b). Features can be extracted from a raw tissue
image crop, or Squidpy’s nuclei-segmentation module can be used to extract nuclei counts
and nuclei sizes (Supplementary Fig. 2b). For instance, we can leverage segmented nuclei
to inform cell-type deconvolution methods such as Tangram35 or Cell2Location36

(Supplementary Fig. 4).
As an example of segmentation-based features, we calculated a nuclei segmentation using
the DAPI stain of a fluorescence mouse brain section and showed the estimated number of
nuclei per spot on the hippocampus (Fig. 2g). The cell-dense pyramidal layer can be easily
distinguished with this view of the data, showcasing the richness and interpretability of
information that can be extracted from tissue images when brought in a spot-based format.
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Squidpy’s feature extraction pipeline enables direct comparison and joint analysis of image
data and omics data. For instance, using a Visium mouse brain dataset, we compared gene
clusters with a clustering of summary features (mean, standard deviation, 0.1, 0.5, and 0.9th
quantiles) of the accompanying H&E stained tissue image (Fig. 2e,h). Several image feature
clusters show similarities with the gene-based clusters, especially in the hippocampus (77%
overlap with image feature cluster 10), and the hypothalamus (54% overlap with image
feature cluster 10), but provide a different view of the data in the cortex (no overlap >33%
with any image feature clusters) (Supplementary Fig. 2e).

Conclusion

In summary, Squidpy enables the analysis of spatial molecular data by leveraging two data
representations: the spatial graph and the tissue image. It interfaces with Scanpy and the
Python data science ecosystem, providing a scalable and extendable framework for novel
methods development in the field of biological spatial molecular data. We are convinced that
Squidpy could contribute to building a bridge between the molecular omics community and
the image analysis and computer vision community to develop the next generation of
computational methods for spatial omics technologies.
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Figures

Figure 1: Squidpy is a software framework for the analysis of spatial omics data.
(a) Squidpy supports inputs from diverse spatial molecular technologies with spot-based,
single-cell, or subcellular spatial resolution.
(b) Building upon the single-cell analysis software Scanpy14 and the Anndata format,
Squidpy provides efficient data representations of these inputs, storing spatial distances
between observations in a spatial graph and providing an efficient image representation for
high resolution tissue images that might be obtained together with the molecular data.
(c) Using these representations, several analysis functions are defined to quantitatively
describe tissue organization at cellular (spatial neighborhood) and gene level (spatial
statistics, spatially-variable genes and ligand-receptor interactions), to combine microscopy
image information (image features and nuclei segmentation) with omics information and to
interactively visualize high-resolution images.
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Figure 2: Analysis of spatial omics datasets across diverse experimental techniques
using Squidpy.
(a) Neighborhood enrichment analysis between cell clusters in spatial coordinates. The
"Lateral plate mesoderm" cluster is co-enriched with the "Alllantois" and "Intermediate
mesoderm" cluster. Also, the "Endothelium" cluster is enriched with the "Haematoendothelial
progenitors". Both of these results were also reported by the original authors29.
(b) Visualization of selected clusters of the seqFISH mouse gastrulation dataset.
(c) Visualization of subcellular molecular profiles in Hela Cells, plotted in spatial coordinates
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(approx 270000 observations/pixels).
(d) Cluster co-occurrence score at increasing distance threshold across the tissue. The
cluster "Nucleolus" is found to be co-enriched at short distances with the "Nucleus" and the
"Nuclear envelope" clusters.
(e) Expression of Nrgn, Mobp, and clustering result from gene expression space plotted on
spatial coordinates. Nrgn and Mobp are spatially variable genes defined with Moran’s I
global spatial autocorrelation score. The selected genes are spatially distributed and they
are shared across different clusters.
(f) Ligand-receptor interactions from the cluster “Hippocampus” to clusters “Pyramidal Layer”
and “Pyramidal layer dentate gyrus”. Shown are a subset of significant ligand-receptor pairs
queried using Omnipath database.
(g) Segmentation features derived from fluorescence image of Visium mouse brain dataset.
Top left: DAPI stain. Bottom left: nuclei segmentation using DAPI stain. Right: number of
nuclei in each Visium spot derived from the nuclei segmentation count. The yellow square
shows the location of the inset.
(h) H&E stain and clustering of summary image features (channel intensity mean, standard
deviation, and 0.1, 0.5, 0.9th quantiles) derived from the H&E stain at each spot location (for
quantitative comparison see Supplementary Fig. 2e).
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Code and data availability

Squidpy is a pip installable python package and available at the following github repository:
https://github.com/theislab/squidpy , with documentation at:
https://squidpy.readthedocs.io/en/latest/ . All the results of this analysis can be found at the
following github repository: https://github.com/theislab/squidpy_reproducibility . The
pre-processed datasets have been deposited at
https://doi.org/10.6084/m9.figshare.c.5273297.v1 and they are all conveniently accessible in
Python via the squidpy.dataset module. The datasets used in this article are the following:
Imaging Mass Cytometry33, seqFISH29, 4i25, and several Visium18 datasets available from the
website: https://support.10xgenomics.com/spatial-gene-expression/datasets .
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Supplements

Supplementary Figure 1. Benchmarking resources for Squidpy analysis modules.
Benchmarks (a) and (b) were run on a 2,4 GHz Intel Core i5 processor with 4 cores and 16
GB RAM. Benchmarks (c) and (d) were run on a Centos 8 server cluster with 32 cores and
128 GB of memory. Unless explicitly mentioned, functions were run without parallelization.

(a) Execution times for spatial graph building and neighborhood enrichment analysis,
comparing four spatial datasets at increasing number of observations. Squidpy outperforms
similar functions provided by the Giotto toolkit11, for any dataset and task. Reported are
mean values for 10 runs, except for the 4i neighbor enrichment test that was run only once in
Giotto.

(b) Execution time for typical feature extraction workflow on different datasets. The feature
extraction workflow consisted of segmenting the image using watershed with a fixed
threshold, and extracting summary and segmentation features with default parameters. The
segmentation was done using image tiles of size 2000. Using more cores (tasks) linearly
decreases computation time for the feature extraction workflow, enabling processing of very
large images (>400M pixels).

(c) Execution time for Squidpy’s implementation of the CellphoneDB permutation-based test,
at an increasing number of genes for the development of human forebrain dataset37.

(d) Squidpy implementation of the CellphoneDB permutation-based tests uses the full
Omnipath database for ligand receptor annotations. For two datasets (paul1538 mouse and
pbmc3k39 human), Omnipath in Squidpy can recover a higher number of interactions.
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Supplementary Figure 2. Image processing workflow and examples of segmentation
and deep learning interface
(a) Exemplary image processing workflow utilising Squidpy’s Image Container object. From
left to right are shown: the high-resolution source image, the preprocessing results (smooth,
gray methods), the cell-segmentation results (that can be done with a watershed or custom,
deep learning-based approach) and finally the feature extraction results. The features can be
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computed both at spot level, or at segmentation mask level, enabling the analysis to relate
any pixel-level metric to the molecular profile.

(b) Segmentation features extracted using a watershed segmentation. Extension of Figure 2
(a). From left to right are shown: number of nuclei underneath each Visium spot, mean
intensity of anti-NEUN channel within the nuclei masks, mean intensity of anti-GFAP channel
within the nuclei masks, and a leiden clustering of the gene expression values. The
segmentation features provide interpretable, additional information to the gene-space
clustering. We can see that the cell-rich pyramidal layer of the Hippocampus has more cells
than the surrounding areas. This fine-grained differentiation of the Hippocampus is not
visible in the gene clusters, where the Hippocampus is only one cluster. The per-channel
intensities show that the areas labelled with "Cortex_1" and
"Cortex_3" have a higher intensity of neurons (higher intensity of anti-NEUN channel) and
that clusters "Fiber_tracts" and "lateral ventricles" are enriched with glial cells (higher
intensity of anti-GFAP channel).

(c) Qualitative comparison of gene-space clustering (left) with clustering of ResNet features
(center) and clustering of summary features (right, see Fig. 2b) using a mouse brain Visium
dataset with an H&E microscopy image. ResNet features were calculated by training a
pre-trained ResNet model to predict the gene-expression cluster assignment (shown on the
left) and taking the feature vector of the last fully connected layer as data representation.

(d) Confusion matrix showing the proportion of assigned labels in gene clusters and resnet
embedding clusters from (c). Rows correspond to clusters in gene expression space (c) left),
columns correspond to resnet embedding clusters (c) center). The heatmap shows the
proportion of overlapping observations in each cluster annotation. For instance, for
"Thalamus_2" cluster, 88% of observations are annotated as cluster 2 in the resnet
embedding visualization. We can see that for some cluster labels the prediction was strong,
whereas for others the resnet model was unable to discriminate the labels. For instance,
some regions of the cortex and hypothalamus seemed to not have been accurately
classified. This showcases how the image container object can be used to relate morphology
information from the source image to any annotation in the Anndata object.

(e) Confusion matrix showing the proportion of assigned labels in gene clusters and image
summary feature clusters from (c). Rows correspond to clusters in gene expression space
(c) left), columns correspond to image summary feature clusters (c) center). The heatmap
shows the proportion of overlapping observations in each cluster annotation. Several of the
gene clusters are recognizable using simple image features. E.g.,“Hypothalamus_1” is
overlapping to 77% with cluster 8, “Hippocampus” is overlapping to 54% with cluster 10, and
“Pyramidial_layer” and “Pyramidial_layer_dentate_gyrus” are covered to 43%/44% by cluster
14. In other regions, especially the cortex (clusters “Cortex_1”, “Cortex_3”, “Cortex_4”), the
image clusters do not overlap well (no cluster overlap > 33%), showing that in these regions
simple image features and gene expression values show different patterns.
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Supplementary Figure 3. Example analysis of Imaging Mass Cytometry data from
breast cancer biopsies.
(a) Spatial visualization of cell types as defined by the original authors33.
(b) Ripley's K statistics computed at increasing distances threshold across the tissue. There
is no clear spatial pattern in the data, except for a small increased clustering pattern of the
"basal CK tumor cell", which can be visualized in the lower-right section of the spatial plot.
(c) Co-occurrence analysis of cell types at increasing distance thresholds across the tissue.
Visualized is the probability conditioned on the presence of the "basal CK tumor cell".
Interestingly, we can observe a slight co-enrichment with the "small elongated stromal cell"
cluster.
(d) Neighborhood enrichment analysis between cell type clusters in the spatial graph. We
can observe how the immune cell subsets and stromal cells seem to form a closer
neighborhood as opposed to the tumor cells.
(e) Network centralities for cell types (nodes of the spatial graph). The "apoptotic tumor cell"
cluster shows high closeness and degree centrality, and it is indeed the most abundant and
spread class label in the graph.
(f) Visualization of two markers for immune cell populations, visualized in spatial coordinates.
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Supplementary Figure 4. Interfacing Squidpy to Tangram for segmentation-aware
cell-type deconvolution.
Tangram is a recently published cell-type deconvolution method that maps single cell to
spatial voxels of gene expression profiles. Squidpy’s Image Container can be used to
acquire nuclei segmentation mask and leverage this mask to map cell types to tissue using
Tangram.
(a) Subset of Visium spatial transcriptomics dataset showing a mouse brain coronal section.
(b) scRNA-seq data from the mouse cortex from Tasic et al40.
(c) Tangram results as averaged by cell type. The cortical layers have been deconvoluted
successfully.
(d) Tangram maps of single cells. The cell type of the segmentation objects were assigned
by Tangram, employing the seamless integration provided by Squidpy between the
segmentation objects and the original spot observations in Anndata. In the figure, each point
corresponds to a segmentation object colored by the cell type assigned by Tangram.
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Squidpy stLearn Giotto Seurat (spatial) SpatialExperiment STUtility

Package focus Efficient unified data
representations for
spatial data,
comprehensive spatial
graph and image
analysis tools,
(interactive)
visualisation in python

Method to combine
image information with
gene expression
measurements in a joint
representation.
Provides several
additional analysis tools
for spatial data analysis

Spatial analysis and
visualisation in R: a
comprehensive
package tool that
provides analysis and
visualization tool for
spatial graph and
image

Seurat extension to
support spatial
visualization and
spatially variable genes
analysis

Bioconductor object to
store spatial genomics
data

Tool to analyze and
visualize spatial
transcriptomics data
and the microscopy
image in R

Infrastructure

Store large tissue image (>500Mb) Yes No Yes No No Yes

Store small tissue image (<10Mb) Yes Yes Yes Yes Yes Yes

Build spatial neighborhood graph Yes No Yes No NA Yes (only knn)

Spatial analysis

Spatial statistics for cell types Yes Partial (no spatial
graph) Yes No NA No

Spatially variable genes Yes Yes Yes Yes NA Yes

Ligand-receptor analysis Yes Partial (no database) Partial (no database) No NA No

Image analysis

Morphology features (Standard) Yes No No No NA No

Morphology features (DNN based) Yes Yes (only low res
image) No No NA No

Segmentation Yes No No No NA No

Registration No No No No NA Yes

Interface with DL framework Yes Yes No No NA No

Integration

Image-gene expression integration Yes (with external tool) Yes No No NA No

Mapping/Deconvolution Yes (with external tool) Yes (with external tool) Yes (with external tool) Yes NA No

Visualization

2d static Yes Yes Yes Yes NA Yes

3d static No No Yes No NA Yes

2d interactive Yes No Yes No NA Yes

Interactive cropping Yes No Yes No NA No

Others

Unit tests Yes No No Yes Yes No

Documentation Yes Yes Yes Yes Yes Yes

Framework Python Python R/Python/ImageMagick R R R

Supplementary Table 1. Comparison of Squidpy features to existing tools for spatial
molecular data analysis
Rows correspond to a set of analysis features that are specific for working with spatial
molecular data. It is subdivided in Infrastructure, Spatial Analysis, Image Analysis,
Integration, Visualization and Others. The columns contain software tools that are tailored for
spatial data analysis. Entries have been labelled according to whether the software tool is
able to provide a specific functionality, whether it's partially available or whether it's missing.
The row “Framework” specifies which programming languages are necessary to use all of
the functionalities of the package. Finally, for SpatialExperiment, since it is an object to store
spatial transcriptomics data, the analysis features do not apply.
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Online methods

1 Infrastructure

Spatial graph The spatial graph is a graph of spatial neighbors with cells (or spots in case of
Visium) as nodes and neighborhood relations between spots as edges. We use spatial coordinates
of spots to identify neighbors among them. Different approach of defining a neighborhood relation
among spots are used for different types of spatial datasets.

Visium spatial datasets have a hexagonal outline for their spots, i.e each spot has up to eight spots
situated around it. For this type of spatial dataset the parameter n_rings should be used. It specifies
for each spot how many hexagonal rings of spots around it will be considered neighbors.

sq.gr.spatial_neighbors(adata , coord_type="visium", n_rings=<int>)

For the other types of spatial datasets neighbors can be defined as the closest spots in terms of
euclidean distance between their coordinates. For a fixed number of the closest spots for each spot,
it leverages the k-nearest neighbors search from Scikit-learn1 and n_neigh must be used.

sq.gr.spatial_neighbors(adata , coord_type="generic", n_neigh=<int>)

In order to get all spots within a specified radius (in units of the spatial coordinates) from each spot
as neighbors, the parameter radius should be used.

sq.gr.spatial_neighbors(adata , coord_type="generic", radius=<float>)

The function builds a spatial graph and saves its adjacency and weighted adjacency matrices to
adata.obsp['spatial_connectivities'] in either Numpy2 or Scipy sparse arrays3. The weights
of the weighted adjacency matrix are distances in the case of coord_type="generic" and ordinal
numbers of hexagonal rings in the case of coord_type="visium". Together with the connectivities,
we also provide a sparse adjacency matrix of distances, saved in adata.obsp['spatial_distances
'] We also provide spectral and cosine transformation of the adjacency matrix for uses in graph
convolutional networks4.

Image Container The Image Container is an object for microscopy tissue images associated
with spatial molecular datasets. The object is a thin wrapper of an xarray.Dataset5 and provides
efficient access to in-memory and on-disk images. On-disk files are loaded lazily using dask6 through
rasterio7, meaning content is only read in memory when requested. The object can be saved as a
zarr store zarr8. This allows handling very large files that do not fit in memory.

Image Container is initialised with an in-memory array or a path to an image file on disk. Im-
ages are saved with the key layer. If lazy loading is desired, the chunks parameter needs to be
specified.

sq.im.ImageContainer(PATH , layer=<str>, chunks=<int>)

More images layers with the same spatial dimensions x and y like segmentation masks can be added
to an existing Image Container.

img.add_img(PATH , layer_added=<str>)

The Image Container is able to interface with Anndata objects, in order to relate any pixel-level
information to the observations stored in Anndata (e.g. cells, spots etc.). For instance, it is possible
to create a generator that yields image’s crops on-the-fly corresponding to locations of the spots in
the image:
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spot_generator = img.generate_spot_crops(adata)

lambda x: (x for x in spot_generator) # yields crops at spots location

This of course works for both features computed at crop-level but also at segmentation-object level.
For instance, it is possible to get centroids coordinates as well as several features of the segmentation
object that overlap with the spot capture area.

Napari for interactive visualization Napari is a fast, interactive, multi-dimensional image
viewer in Python9. In squidpy, it is possible to visualize the source image together with any an-
ndata annotation with Napari. Such functionality is useful for fast and interactive exploration of
analysis results saved in anndata together with the high resolution image. Furthermore, leveraging
Napari functionalities, it is possible to manually annotate tissue areas and assign underlying spots
to annotations saved in the Anndata object. Such ability to relate manually defined tissue areas
to observations in anndata is particularly useful in settings where there is a pathologist annotation
available and it needs to be integrated with analysis at gene expression or image level. All the steps
described here are done in Python, therefore available in the same environment where the analysis
is performed (it does not require an additional tool).

img = sq.im.ImageContainer(PATH , layer=<str>)

img.interactive(adata)

2 Graph and spatial patterns analysis

Neighborhood enrichment test The association between label pairs in the connectivity graph
is estimated by counting the sum of nodes that belong to classes i and j (e.g. cluster annotation) and
are proximal to each other, noted xij . To estimate the deviation of this number versus a random
configuration of cluster labels in the same connectivity graph, we scramble the cluster labels while
maintaining the connectivities, and then recount the number of nodes recovered in each iteration
(1,000 times by default). Using these estimates, we calculate expected means (µij) and standard
deviations (�ij) for each pair, and a Z-score as,

Zij = (xij � µij)/�ij

The Z-score indicates if a cluster pair is over-represented or over-depleted for node-node interactions
in the connectivity graph. This approach was first described (to the best of our knowledge) by
Schapiro et al10. The analysis and visualization can be performed with the analysis code showed
below.

sq.gr.nhood_enrichment(adata , cluster_key="<cluster_key >")

sq.pl.nhood_enrichment(adata , cluster_key="<cluster_key >")

Our implementation leverages just-in-time compilation with Numba11 to achieve greater perfor-
mances in computation time (see Supplementary figure 1).

Ligand-receptor interaction analysis We provide a re-implementation of the popular Cell-
phonedb method for ligand-receptor interaction analysis12. In short, it’s a permutation-based test of
ligand-receptor expression across cell-types combinations. Given a list of annotated ligand-receptor
pairs, the test computes the mean expression of the two molecules (ligand, receptor) between cell
types, and builds a null-distribution based on n permutations (default 1000). A p-value is computed
based on the proportion of the permuted means against the true mean. In Cellphonedb, if a receptor
or ligand is composed of several subunits, the minimum expression is considered for the test. In our
implementation, we also include the option of taking the mean expression of all molecules in the
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complex. Our implementation also employs Omnipath13 as ligand-receptor interaction annotatiojn.
A larger database that contains the original CellphoneDB database together with 5 other resources
(see Turei et al.13). Finally, our implementation leverages just-in-time compilation with Numba11

to achieve greater performances in computation time (see Supplementary figure 1).

Ripley’s K function is a spatial analysis method used to describe whether points with discrete
annotation in space follow random, dispersed or clustered patterns. Ripley’K function can be used
to describe the spatial patterning of cell clusters in the area of interest. Ripley’s K function is defined
as

K(t) = A
nX

i=1

nX

j=1

wi,jI(di,j < t) (1)

Where I(di,j < t) is the indicator function, that sets whether the operand is 1 or 0 based on the
(euclidean) distance di,j evaluated at search radius t, A is the average density of point in the area
of interest and wi,j is the edge effect correction (see Astropy implementation for details on this
term14).
sq.gr.ripley_k(adata , cluster_key="<cluster_key >")

sq.pl.ripley_k(adata , cluster_key="<cluster_key >")

Cluster co-occurrence ratio provides a score on the co-occurrence of clusters of interest across
spatial dimensions. It is defined as

p(exp|cluster)
p(exp)

(2)

where cluster is the annotation of interest to be used as conditioning for the co-occurrence of all
clusters. It is computed across n radius of size d across the tissue area. It was inspired by an
analysis performed by Tosti et al. to investigate tissue organization in the human pancreas with
spatial transcriptomics15.
sq.gr.co_occurrence(adata , cluster_key="<cluster_key >")

sq.pl.co_occurrence(adata , cluster_key="<cluster_key >")

Global Moran’s I is a spatial auto-correlation statistics, widely used in spatial data analysis.
Given a feature (gene) and spatial location of observations, it evaluates whether the pattern expressed
is clustered, dispersed, or random16. It is defined as:

I =
n

S0

Pn
i=1

Pn
j=1wi,jzizjPn
i=1 z

2
i

(3)

where zi is the deviation of the feature from the mean (xi �X), wi,j is the spatial weight between
observations, n is the number of spatial units. We provide an wrapper for the global Moran’s I
statistics implemented in libpysal17. Test statistics and p values (computed from a permutation
based test and further FDR corrected) are stored in adata.uns["moranI"].

sq.gr.moran(adata , cluster_key="<cluster_key >")

Centrality scores provide a numerical analysis on node patterns in the graph, which helps to
better understand complex dependencies in large graphs. A centrality is a function C which assigns
every vertex v in the graph a numeric value C(v) 2 R. It therefore gives a ranking of the single
components (i.e. cells) in the graph which simplifies to identify key individuals. Group centrality
measures have been introduced by Everett and Borgatti.18. They provide a framework to assess
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clusters of cells in the graph, i.e. is a specific cell type more central or more connected in the graph
than others. Let G = (V,E) be a graph with nodes V and edges E. Additionally, let S be a group
of nodes allocated to the same cluster cS . Then N(S) defines the neighbourhood of all nodes in
S. The following four (group) centrality measures are implemented. Group degree centrality is
defined by the fraction of non-cluster members that are connected to cluster members, so

Cdeg(S) =
|N(S)� S|
|V |� |S| 2 [0, 1].

Larger values indicate a more central cluster. Group degree centrality can help to identify essential
clusters or cell types in the graph. Group closeness centrality measures how close the cluster is
to other nodes in the graph and is calculated by the number of non-group members divided by the
sum of all distances from the cluster to all vertices outside the cluster, so

Cclos(S) =
|V � S|P
v2VS

dS,v
2 [0, 1]

where dS,v = minu2S du,v is the minimal distance of the group S from v. Hence, larger values indicate
a greater centrality. Group betweenness centrality measures the proportion of shortest paths
connecting pairs of non-group members that pass through the group. Let S be a subset of a graph
with vertex set VS . Let gu,v be the number of shortest paths connecting u to v and gu,v(S) be the
number of shortest paths connecting u to v passing through S. The group betweeenness centrality
is then given by

Cbetw(S) =
X

u<v

gu,v(S)

gu,v
for u, v /2 S.

The properties of this centrality score are fundamentally different from degree and closeness centrality
scores, hence results often differ. The last measure described is the average clustering coefficient.
It describes how well nodes in a graph tend to cluster together. Let n be the number of nodes in S.
Then the average clustering coefficient is given by

Ccluster(S) =
1

n

X

v2S

2T (v)

deg(v)(deg(v)� 1)

with T (v) being the number of triangles through node v and deg(v) the degree of node v. The
describes centrality scores have been implemented using the NetworkX library in python19.

sq.gr.centrality_scores(adata , cluster_key="<cluster_key >")

sq.pl.centrality_scores(adata , cluster_key="<cluster_key >", selected_score="<

selected_score >")

Interaction matrix represents the total number of edges that are shared between nodes with
specific attributes (e.g. clusters or cell types).

sq.gr.interaction_matrix(adata , cluster_key="<cluster_key >", normalized=True)

sq.pl.interaction_matrix(adata , cluster_key="<cluster_key >")

Python implementations relies ont the NetworkX library19.

3 Image analysis and segmentation

Image processing Before extracting features from microscopy images, the images can be pre-
processed. Squidpy implements functions for commonly used preprocessing functions like conversion
to gray-scale or smoothing using a gaussian kernel.
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sq.im.process(img , method="gray")

img.show()

Implementations are based on the Scikit-image package20 and allow processing of very large images
through tiling the image into smaller crops and processing these.

Image segmentation Nuclei segmentation is an important step when analysing microscopy
images. It allows the quantitative analysis of the number of nuclei, their areas, and morphological
features. There are a wide range of approaches for nuclei segmentation, from established techniques
like thresholding to modern deep learning-based approaches.

A difficulty for nuclei segmentation is to distinguish between partially overlapping nuclei. Watershed
is a classic algorithm used to separate overlapping objects by treating pixel values as local topology.
For this, starting from points of lowest intensity, the image is flooded until basins from different
starting points meet at the watershed ridge lines.
sq.im.segment(img , method="watershed")

img.show()

Implementations in Squidpy are based on the original Scikit-image python implementation20.

Custom approaches with deep learning Depending on the quality of the data, simple seg-
mentation approaches like watershed might not be appropriate. Nowadays, many complex segmen-
tation algorithms are provided as pre-trained deep learning models, such as Stardist21, Splinedist22

and Cellpose23. These models can be easily used within the segmentation function.
sq.im.segment(img , method=<pre-trained model>)

img.show()

Image features Tissue organisation in microscopic images can be analysed with different image
features. This filters relevant information from the (high dimensional) images, allowing for easy
interpretation and comparison with other features obtained at the same spatial location. Image
features are calculated from the tissue image at each location (x, y) where there is transcriptomics
information available, resulting in a obs x features features matrix similar to the obs x gene matrix.
This image feature matrix can then be used in any single-cell analysis workflow, just like the gene
matrix.

The scale and size of the image used to calculate features can be adjusted using the scale and
spot_scale parameters. Feature extraction can be parallelized by providing n_jobs (see Supple-
mentary Figure 1). The calculated feature matrix is stored in adata[key] .
sq.im.calculate_image_features(adata , img , features=<list>, spot_scale=<float>,

scale=<float>, key_added=<str>)

Summary features calculate the mean, the standard variation or specific quantiles for a color channel.
Similarly, histogram features scan the histogram of a color channel to calculate quantiles according
a defined number of bins.
sq.im.calculate_image_features(adata , img , features="summary")

sq.im.calculate_image_features(adata , img , features="histogram")

Textural features calculate statistics over a histogram that describes the signatures of textures. To
grasp the concept of texture intuitively the inextricable relationship between texture and tone is
considered24: if a small-area patch of an image has little variation in it’s gray tone the dominant
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property of that area is tone. If the patch has a wide variation of gray tone features, the dominant
property of the area is texture. An image has a simple texture if it consists of recurring textural
features. For a grey level image I or e.g. a fluorescence color channel, a co-occurrence matrix C is
computed. C is a histogram over pairs of pixels (i, j) with specific values (p, q) 2 [0, 1, ..., 255]2 and
a fixed pixel offset:

Cp,q =
X

i

�I(i),p�I(j),q (4)

with Kronecker-Delta �. The offset is a fixed pixel distance from i to j under a fixed direction
angle. Based on the co-occurence matrix different meaningful statistics (texture properties) can be
calculated which summarize textural pattern characteristics of the image:

X

p,q

Cp,q(p� q)2 contrast

X

p,q

Cp,q|p� q| dissimilarity

X

p,q

Cp,q

1 + (p� q)2
homogeneity

X

p,q

C2
p,q ASM

X

p,q

Cp,q
(p� µp)(q � µq)q

�2
p�

2
q

correlation.

(5)

sq.im.calculate_image_features(adata , img , features="texture")

All the above implementations rely on the Scikit-image python package20.

Segmentation features Similar to image features that are extracted from raw tissue images,
segmentation features can be extracted from a segmentation object (3). These features allow to get
statistics over the number, area, and morphology of the nuclei in one image. To compute these fea-
tures, the Image Container img needs to contain a segmented image at layer <segmented_img>
sq.im.calculate_image_features(adata , img , features="segmentation", features_kwargs

={"label_layer":<segmented_img>})

Custom features based on deep learning models Squidpy feature calculation function can
also be used with custom user-defined features extraction functions. This enables the use of e.g.,
pre-trained deep learning models as feature extractors.
sq.im.calculate_image_features(adata , img , features="custom", features_kwargs={"

func":<pre-trained keras model>})
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