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Abstract 19 

 20 

Being able to remove or weigh down the influence of outlier data is desirable for any statistical 21 

models. While Magnetic and ElectroEncephaloGraphic (MEEG) data are often averaged across 22 

trials per condition, it is becoming common practice to use information from all trials to build 23 

linear models. Individual trials can, however, have considerable weight and thus bias inferential 24 

results. Here, rather than looking for univariate outliers, defined independently at each 25 

measurement point, we apply the principal component projection (PCP) method at each channel, 26 

deriving a single weight per trial at each channel independently. Using both synthetic data and 27 

open EEG data, we show (1) that PCP is efficient at detecting a large variety of outlying trials; (2) 28 

how PCP-based weights can be implemented in the context of the general linear model with 29 

accurate control of type 1 family-wise error rate; and (3) that our PCP-based Weighted Least 30 

Square (WLS) approach increases the statistical power of group analyses as well as a much slower 31 

Iterative Reweighted Least Squares (IRLS), although the weighting scheme is markedly different. 32 

Together, our results show that WLS based on PCP weights derived from whole trial profiles is an 33 

efficient method to weigh down the influence of outlier EEG data in linear models. 34 

 35 

Keywords: ElectroEncephaloGraphy, single trials, Weighted Least Squares, General Linear 36 

Model 38 39  37 

 38 

Data availability: all data used are publicly available (CC0), all code (simulations and data 40 39 

analyzes) is also available online in the LIMO MEEG GitHub repository (MIT license).  40 
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Introduction 41 

 42 

MEEG data are often epoched to form 3 or 4-dimensional matrices of, e.g., channel x time x trials 43 

and channel x frequency x time x trials. Several neuroimaging packages are dedicated to the 44 

analyses of such large multidimensional data, often using linear methods. For instance, in the 45 

LIMO MEEG toolbox (Pernet et al., 2011), each channel, frequency, and time frame is analyzed 46 

independently using the general linear model, an approach referred to as mass-univariate 47 

analysis. Ordinary Least Squares (OLS) are used to find model parameters that minimize the error 48 

between the model and the data. For least squares estimates to have good statistical properties, 49 

it is however expected that the error covariance off-diagonals are zeros, such that Cov(e) = σ2I, I 50 

being the identity matrix (Christensen, 2002), assuming observations are independent and 51 

identically distributed. It is well established that deviations from that assumption lead to 52 

substantial power reduction and to an increase in the false-positive rate. When OLS assumptions 53 

are violated, robust techniques offer reliable solutions to restore power and control the false 54 

positive rate. Weighted Least Squares (WLS) is one such robust method that uses different 55 

weights across trials, such that Cov(e) = σ2V, with V a diagonal matrix: 56 

 57 

  equation 1 58 

 59 

with y a n-dimensional vector (number of trials), X the n*p design matrix, β a p dimensional vector 60 

(number of predictors in X) and e the error vector of dimension n. The WLS estimators can then 61 

be obtained using an OLS on transformed data (eq. 2 and 3):  62 

 63 

  equation 2 64 

    equation 3 65 

 66 

with W a 1*n vector of weights. 67 

 68 

When applied to MEEG data, a standard mass-univariate WLS entails obtaining a weight for each 69 

trial but also each dimension analyzed, i.e. channels, frequencies and  time frames. Following 70 

such procedure, a trial could be considered as an outlier or be assigned a low weight, for a single 71 

frequency or time frame, which is implausible given the well-known correlations of MEEG data 72 

over space, frequencies and time. We propose here that a single or a few consecutive data points 73 

should never be flagged as outliers or weighted down, and that a single weight per trial (and 74 

channel) should be derived instead, with weights taking into account the whole temporal or 75 

spectral profile. In the following, we demonstrate how the Principal Component Projection 76 

method (PCP - Filzmoser et al., 2008) can be used in this context, and how those weights can then 77 

be used in the context of the general linear model, applied here to event-related potentials.  78 
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Method 79 

 80 

Trial-based Weighted Least Squares 81 

 82 

An illustration of the method is shown in figure 1. Trial weights are computed as a distance among 83 

trials projected onto the main (>=99%) principal components space. Here, the principal 84 

components computed over the f time frames are those directions which maximize the variance 85 

across trials for uncorrelated (orthogonal) time periods (figure 1B). Outlier trials are points in the 86 

f-dimensional space which are far away from the bulk. By virtue of the PCA, these outlier trials 87 

become more visible along the principal component axes than in the original data space. Weights 88 

(figure 1E) for each trial are obtained using both the Euclidean norm (figure 1C, distance location) 89 

and the kurtosis weighted Euclidean norm (figure 1D, distance scatter) in this reduced PCA space 90 

(see Filzmoser et al., 2008 for details). We exploit this simple technique because it is 91 

computationally fast given the rich dimensional space of EEG data and because it does not 92 

assume the data to originate from a particular distribution. The only constraint is that there are 93 

more trials present than time frames. For instance, with trials ranging from -50 ms to +650 ms, 94 

sampled at 250 Hz (thus 176 time points), the method requires at least 177 trials. The PCP 95 

algorithm is implemented in the limo_pcout.m function, distributed with the LIMO MEEG toolbox 96 

(https://limo-eeg-toolbox.github.io/limo_meeg/). The WLS solution, implemented in 97 

limo_WLS.m, consists of computing model beta estimates using weights from the PCP method 98 

on OLS standardized robust residuals, following three steps:   99 

  100 

(1) After the OLS solution is computed, an adjustment is performed on residuals by 101 

multiplying them by 1/√1 − ℎ where h is a vector of Leverage points (i.e. the diagonal of 102 

the hat matrix 𝐻 = 𝑋(𝑋′𝑋)−1𝑋′ where X is the design matrix). This adjustment is 103 

necessary because leverage points are the most influential on the regression space, i.e. 104 

they tend to have low residual values (Hoaglin & Welsch, 1978). 105 

(2) Residuals are then standardized using a robust estimator of dispersion, the median 106 

absolute deviation to the median (MAD), and re-adjusted by the tuning function. Here we 107 

used the bisquare function. The result is a series of weights with high weights for data 108 

points having high residuals (with a correction for Leverage).  109 

(3) The WLS solution is then computed following equation 3. 110 
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 111 
Figure 1. Illustration of the PCP weighting scheme using trials for ‘famous faces’ of the OpenNeuro.org 112 
publically available ds002718 dataset. Data are from subject 3, channel 34 (see Section on empirical data 113 
analysis). Panel A shows the single-trial responses to all stimuli. The principal component analysis is 114 
computed over time, keeping the components explaining the most variance and summing to at least 99% 115 
of explained variance (giving here 69 eigenvectors i.e. independent time components from the initial 176 116 
time points). The data are then projected onto those axes (panel B). From the data projected onto the 117 
components, Euclidean distances for location and scatter are computed (panels C, D - showing smooth 118 
histograms of weights) and combined to obtain a distance for each trial. That distance is either used as 119 
weights in a linear model or used to determine outliers (panel E, with outliers identified for weights below 120 
~0.27, shown in dark grey). At the bottom right, the mean ERP for trials classified as good (red) vs. outliers 121 
(black) and the weighted mean (green) are shown (panels F and G). Shaded areas indicate the 95% highest-122 
density percentile bootstrap intervals.  123 

 124 

Simulation-based analyses 125 

 126 

A. Outliers detection and parameters estimation.  127 

 128 

Simulated ERPs were generated to evaluate the classification accuracy of the PCP method and to 129 

estimate the robustness to outliers and low signal-to-noise ratio of the WLS solution in 130 

comparison to an OLS solution and a standard Iterative Reweighted Least Squares (IRLS) solution, 131 

which minimizes residuals at each time frame separately (implemented in limo_IRLS.m). To do 132 

so, we manipulated (i) the percentage of outliers, using 10%, 20%, 30%, 40% or 50% of outliers; 133 

(ii) the signal to noise ratio (defined relative to the mean over time of the background activity); 134 

and (iii) the type of outliers. The first set of outliers were defined based on the added noise: white 135 

noise, pink noise, alpha oscillations and gamma oscillations. In these cases, the noise started with 136 
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the P1 component and lasted ~ 200ms (see below). The second set of outliers were defined based 137 

on their amplitude, or outlier to signal ratio (0.5, 0.8, 1.2, and 1.5 times the true N1 amplitude).  138 

 139 

Synthetic data were generated for one channel, using the model developed by Yeung et al. 140 

(2018). The simulated signal corresponded to an event-related potential with P1 and N1 141 

components (100 ms long) added to background activity with the same power spectrum as 142 

human EEG, generating 200 trials of 500 ms duration with a 250 Hz sampling rate. Examples for 143 

each type of simulation are shown in figure 2 and results are based, for each case, on a thousand 144 

random repetitions. Performance of the PCP algorithm at detecting outlying synthetic EEG trials 145 

was investigated by computing the confusion matrix and mapping the true and false positives 146 

rates in the Receiver Operating space, and by computing the Matthew Correlation Coefficients 147 

(MCC). Robustness was examined by computing the Pearson correlations and the Kolmorov-148 

Smirnov (KS) distances between the ground truth mean and the OLS, WLS, and IRLS means. 149 

Pearson values allowed to estimate the linear relationships between estimated means and the 150 

truth while KS distances provide a fuller picture of the overall differences in distributions.  151 

 152 

The code used to generate the ERP and the results are available at  https://github.com/LIMO-153 

EEG-Toolbox/limo_test_stats/tree/master/PCP_simulations. 154 
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 155 
Figure 2. Illustration of simulated ERP ground truth with the different types of outlier trials. At the top is 156 
shown the mean background, mean signal and resulting generated ERP with it’s 95% confidence intervals. 157 
In each subsequent subplot is shown the mean ERP ground truth from 160 trials with their 95% confidence 158 
intervals (blue) with a SNR of 1. The first row shows in red the mean ERP from outlier trials generated by 159 
adding white noise, pink noise, alpha or gamma oscillations; the second row shows the mean ERP from 160 
outlier trials generated with variable Outlier to Signal Ratio (OSR) on the N1 component.  161 

 162 

B. Statistical inference. 163 

 164 

Accurate estimation of model parameters (i.e. beta estimates in the GLM - equation 3)  is 165 

particularly important because it impacts group-level results. Inference at the single-subject level 166 

may, however, also be performed and accurate p-values need, therefore, to be derived. Here, 167 

error degrees of freedom are obtained using the Satterwaithe approximation (equation 4).  168 

 169 

𝑑𝑓𝑒 =  𝑡𝑟([𝐼 − 𝐻]𝑇[𝐼 − 𝐻])    equation 4 170 

 171 

with dfe, the degree of freedom of the error, I the identity matrix, and H the hat matrix. 172 
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To validate p-values, simulations under the null were performed. Two types of data were 173 

generated: Gaussian data of size 120 trials x 100 time frames and EEG data of size 120 trials x 100 174 

time frames with a P1 and N1 component as above, added to coloured background activity with 175 

the same power spectrum as human EEG. In each case, a regression (1 Gaussian random 176 

variable), an ANOVA (3 conditions of 40 trials - dummy coding) and an ANCOVA (3 conditions of 177 

40 trials and 1 Gaussian random covariate) model were fitted to the data using the OLS, WLS and 178 

IRLS methods. The procedure was performed 10,000 times, leading to 1 million p-values per 179 

data/model/method combination and Type 1 errors with binomial confidence intervals were 180 

computed. 181 

 182 

Empirical data analysis 183 

 184 

A second set of analyses used the publicly available multimodal face dataset (Wakeman & 185 

Henson, 2016) to (i) investigate the PCP classification; (ii) validate the GLM implementation for 186 

type 1 error family-wise control at the subject level; (iii) evaluate group results, contrasting WLS 187 

against the OLS and IRLS methods. This analysis can be reproduced using the script available at 188 

https://github.com/LIMO-EEG-189 

Toolbox/limo_meeg/blob/master/resources/code/Method_validation.m. 190 

  191 

A. EEG Data and Preprocessing 192 

 193 

The experiment consisted in the presentation of familiar, unfamiliar, and scrambled faces, 194 

repeated twice at various intervals, leading to a factorial 3 (type of faces) by 3 (repetition) design. 195 

The preprocessing replicated Pernet et al (2021). EEG data were extracted from the MEG fif files, 196 

time corrected and electrode position re-oriented and saved according to EEG-BIDS (Pernet et 197 

al., 2019 - available at OpenNeuro 10.18112/openneuro.ds002718.v1.0.2.). Data were imported 198 

into EEGLAB (Delorme & Makeig, 2004) using the bids-matlab-tools v5.2 plug-in and non-EEG 199 

channel types were removed. Bad channels were next automatically removed and data filtered 200 

at 0.5 Hz using pop_clean_rawdata.m of the clean_radata plugin v2.2 (transition band [0.25 201 

0.75], bad channel defined as a flat line of at least 5 sec and with a correlation to their robust 202 

estimate based on other channels below 0.8). Data were then re-referenced to the average 203 

(pop_reref.m) and submitted to an independent component analysis (Onton et al., 2006) 204 

(pop_runica.m using the runnica algorithm sphering data by the number of channels -1). Each 205 

component was automatically labelled using the ICLabel v1.2.6 plug-in (Pion-Tonachini et al., 206 

2019), rejecting components labeled as eye movements and muscle activity above 80% 207 

probability. Epochs were further cleaned if their power deviated too much from the rest of the 208 

data using the Artifact Subspace Reconstruction algorithm (Kothe & Makeig, 2013) 209 

(pop_clean_rawdata.m, burst criterion set to 20). 210 
   211 

B. High vs. low weight trials and parameters estimation. 212 

 213 

At the subject level (1st level), ERP were modelled at each channel and time frame with the 9 214 

conditions (type of faces x repetition) and beta parameter estimates obtained using OLS, WLS, 215 

and IRLS. For each subject, high vs. low weight trials were compared with each other at the 216 
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channel showing the highest between trials variance to investigate what ERP features drove the 217 

weighting schemes. High and low trials were defined a priori as trials with weights (or mean 218 

weights for IRLS) below the first decile or above the 9th decile. We used a two-sample bootstrap-219 

t method to compare the 20% trimmed means of high and low trials in every participant, for each 220 

of these three quantities: temporal SNR (the standard deviation over time); global power (mean 221 

of squared absolute values, Parseval’s theorem); autocorrelation (distance between the 2 first 222 

peaks of the power spectrum density, Wiener-Khinchin theorem). A similar analysis was 223 

conducted at the group level averaging the metrics across trials. Computations of the three 224 

quantities have been automatized for LIMO MEEG v3.0 in the limo_trialmetric.m function. 225 

 226 

C. Statistical inference. 227 

  228 

In mass-univariate analyses, once p-values are obtained, the family-wise type 1 error rate can be 229 

controlled using the distribution of maxima statistics from data generated under the null 230 

hypothesis (Pernet et al., 2015). Here, null distributions were obtained by first centering data per 231 

conditions, i.e. the mean is subtracted from the trials in each condition, such that these 232 

distributions had a mean of zero, but the shape of the distributions is unaffected. We then 233 

bootstrap these centred distributions (by sampling with the replacement), keeping constant the 234 

weights (since they are variance stabilizers) and the design. We computed 2500 bootstrap 235 

estimates per subject. A thousand of these bootstrap estimates were used to compute the family-236 

wise type 1 error rate (FWER), while maxima and cluster maxima distributions were estimated 237 

using  from 300 to 1,500 bootstraps estimates in steps of 300, to determine the convergence 238 

rate, i.e. the number of resamples needed to control the FWER. Since OLS was already validated 239 

in Pernet et al. (2015), here we only present WLS results. Statistical validations presented here 240 

and other statistical tests implemented in the LIMO MEG toolbox v3.0 (GLM validation, robust 241 

tests, etc.) are all available at https://github.com/LIMO-EEG-Toolbox/limo_test_stats/wiki.   242 

 243 

D. Performance evaluation at the group level. 244 

 245 

At the group level (2nd level), we computed 3 by 3 repeated measures ANOVAs (Hotelling T^2 246 

tests) separately on OLS, WLS, and IRLS estimates, with the type of faces and repetition as factors. 247 

Results are reported using both a correction for multiple comparisons with cluster-mass and with 248 

TFCE (threshold-free cluster enhancement) at p<.05 (Maris & Oostenveld, 2007; Pernet et al., 249 

2015).  250 

 251 

In addition to these thresholded maps, distributions were compared to further understand where 252 

differences originated from. First, we compared raw effect sizes (Hotelling T^2) median 253 

differences between WLS vs. OLS and WLS vs. IRLS for each effect (face, repetition and 254 

interaction), using a percentile t-test with alpha adjusted across all 6 tests using Hochberg’s step-255 

up procedure (Hochberg, 1988). This allowed checking if differences in results were due to effect 256 

size differences. Then, since multiple comparison correction methods are driven by the data 257 

structure, we compared the shapes of the F value and of the TFCE value distributions (TFCE 258 

reflecting clustering). Each distribution was standardized (equation 5) and WLS vs. OLS and WLS 259 

vs. IRLS distributions compared at multiple quantiles (Rousselet et al., 2017).  260 
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    261 

𝑌𝑧𝑖 =  
(𝑌𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌)

√(𝑝𝑖/2)∗𝑀𝐴𝐷(𝑌)
     equation 5 262 

 263 

with Yzi the standardized data, Y the data, and MAD the median absolute deviation.  264 

 265 

Results 266 

 267 

Outliers detection  268 

 269 

While the PCP method is used in the GLM to obtain weights and not to remove outliers directly, 270 

simulations allowed us to better understand what kind of trials are weighted down and how good 271 

the method is at detecting such trials. Figure 3 shows all the results for ERP simulated with a SNR 272 

of 1. Similar results were observed when using a SNR of 2 (supplementary figure 1). First and 273 

foremost, in all cases and for up to 40% of outlying trials, the PCP data are located in the upper 274 

left corner of the ROC space, indicating good performances. When reaching 50% of outliers, the 275 

true positive rate falls down to ~40% and the false positive rate remains below 40%. This is best 276 

appreciated by looking at the plots showing perfect control over false positives when data are 277 

contaminated with up to 40% of white, alpha, and gamma outliers. In those cases, the Matthew 278 

Correlation Coefficients also remain high (>0.6) although not perfect (not =1), indicating some 279 

false negatives. Compared with other types of noise, pink noise elicited very different results, 280 

with Matthew Correlation Coefficients around 0 indicating chance classification level. Results 281 

from amplitude outliers also show Matthew Correlation Coefficients close to 0 with a linear 282 

decrease in true positives and a linear increase in false positives as the percentage of outliers 283 

increases. This implies that  the PCP method did not detect amplitude changes around peaks. 284 

These results are simply explained by the principal components being computed over time 285 

frames, and outliers with pink noise and weaker or stronger N1 do not affect the temporal profile 286 

of the ground truth sufficiently to lead to different eigenvectors (‘directions’) in this dimension 287 

when decomposing the covariance matrix, i.e. their temporal profiles do not differ from the 288 

ground truth.   289 
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290 
Figure 3. PCP performance at detecting outlying trials with a SNR of 1. (A) Results for outliers affected by 291 
white noise, pink noise, alpha, and gamma oscillations. (B) Results for trials affected by amplitude changes 292 
over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). The scatter plots map the Receiver Operating 293 
Characteristic Space (False Positive rate vs. True Positive rate); the curves display, from left to right, the 294 
median True Positive rate, False Positive rate, and Matthew Correlation Coefficients. 295 

 296 
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297 
Supplementary Figure 1. PCP performance at detecting outlying trials with a SNR of 2.  (A) Results for outliers affected 298 
by white noise, pink noise, alpha, and gamma oscillations. (B) Results for trials affected by amplitude changes over 299 
the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). The scatter plots map the Receiver Operating Characteristic Space 300 
(False Positive rate vs. True Positive rate); the curves display, from left to right, the median True Positive rate, False 301 
Positive rate, and Matthew Correlation Coefficients.   302 
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High vs. low trial weights 303 

 304 

The classification for real ERP data confirmed the simulation results:  the PCP algorithm weighted 305 

down trials with dynamics different from the bulk. Single subject analyses (supplementary table 306 

1) and group analyses (figure 4) for WLS showed that trials with a low weight are less smooth 307 

than trials with a high weight (higher temporal variance ~10 vs. 7.26 uV and power ~131 vs. 69 308 

dB, lower autocorrelation 11 vs. 12.25 ms), despite having similar spectra (as expected from data 309 

filtering and artefact reduction). In comparison, trials with low and high mean weights based on 310 

IRLS, were similar on those metrics (temporal variance ~9 vs. 7 uV,  and power ~126 vs. 65 dB, 311 

autocorrelation 12.25 vs. 12 ms). While 11 out of 18 subjects show maximum between-trial 312 

variance on the same channels for WLS and IRLS, only 28% of low weight trials were the same 313 

between the two methods, and 56% of high weight trials. Since different trials have low or even 314 

high weights between methods, this further indicates that the weighting scheme from WLS 315 

differs from IRLS which relies on amplitude variations only. 316 

 317 

Estimation and Robustness  318 

 319 

The effect of adding outliers on the mean can be seen in figure 5 and supplementary figure 2. 320 

The standard mean, i.e. the ordinary least squares ERPs, shows an almost linear decrease in 321 

Pearson correlations and linear increase in KS distances to the ground truth as the percentage of 322 

outlier increases, an expected behaviour since OLS are not robust. Our reference robust 323 

approach, IRLS, shows robustness to white noise, alpha, and gamma oscillations with higher 324 

Pearson correlations than the OLS. Yet it performed worse than the OLS with pink noise and 325 

amplitude outliers, showing lower correlations with the ground truth, despite having similar KS 326 

distances in all cases. As the IRLS solution for pink noise and amplitude outliers weights data to 327 

minimize residuals at each time point separately, these are also expected results, resulting in an 328 

average distance (over time) larger than OLS. The new WLS approach showed stronger resistance 329 

to outliers for white noise, alpha and gamma oscillations than the IRLS approach, with higher 330 

Pearson correlations. For pink noise and N1 amplitude outliers, it performs as well as the IRLS, 331 

despite different KS distances. The IRLS algorithm attenuates the influence of those data points 332 

that differ from the ground truth, but this may be from different trials at different time points. 333 

By doing so, KS distances to the ground truth were similar or lower (for alpha and gamma 334 

oscillations) than the OLS. The WLS approach attenuates the influence of trials with different time 335 

courses and thus, the WLS ERP mean is affected at every time point, even if the detection 336 

concerns a small part of the time course, leading to higher KS distances even with a small number 337 

of outliers.  338 
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339 
Figure 4. Face ERPs computed using low and high weight trials. The top of the figure displays the mean of 340 
low weight (red) and high weight (black) trials over right posterior temporal (subject 2, channel 50), left 341 
frontal (subject 14 channel 4), and left posterior central (subject 19, channel 66) areas. The weights were 342 
obtained either with the PCP-WLS or the IRLS methods. The lower part  of the figure displays single subject 343 
mean tSNR, power and autocorrelation (scatter plots) along with the percentile bootstrap difference 344 
between low and high weight trials (black circles are the bootstrap 20% trimmed mean differences and 345 
the pink rectangles show the 20% trimmed mean and 95% confidence intervals).  346 
  347 
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 tSNR difference (uV) Power difference (dB) autocorrelation difference (ms) 

 WLS IRLS WLS IRLS WLS IRLS 

s2 [-0.03 0.54] [0.26 1.14] [-2 6] [3 18] [-8.5 1.8] [5.09 16.4] 

s3 [2.35 2.92] [-4.48 -2.34] [35 50] [-55 -22] [-3.9 3.5] [16.6 45.9] 

s4 [0.14 069] [1.9 3.43] [1 13] [39 64] [-13 -6.7] [-12.8 3.2] 

s5 [4.03 8.25] [10.7 13.57] [77 200] [297 382] [-13 -4.7] [-14.6 -4.9] 

s6 [1.51 2.87] [-0.74 1.98] [24 48] [-6 33] [-4.8 -0.39] [-0.6 17.8] 

s7 [1.16 5.1] [2.44 5.26] [38 141] [54 129] [-4 11.1] [-7.3 11.2] 

s8 [7.49 8.21] [7.57 8.55] [154 173] [159 183] [-24 -19.8] [-20.2 -14.1] 

s9 [2.97 7.96] [-4.55 0.44] [52 169] [-74 28] [-16 -7.1] [-1.5 7.1] 

s10 [-0.61 0.9] [-3.47 2.27] [-11 11] [-107 102] [0.9 9.1] [-0.2 1.5] 

s11 [-0.73 4.46] [4.57 7.27] [-11 168] [123 200] [-2.9 1.4] [0 7.8] 

s12 [6.69 11.17] [-2.06 4.85] [149 250] [-98 93] [-31 -22] [-13.1 -2.7] 

s13 [-5.06 0.1] [-6.8 2.91] [-222 2] [-285 142] [4.4 12] [-6.2 0.19] 

s14 [4.81 7.63] [3.54 7.77] [174 270] [123 270] [-0.4 24] [-6.9 13.3] 

s15 [1.69 3.91] [-0.97 2.06] [36 93] [-20 51] [-6.5 1.1] [1.8 10.5] 

s16 [-6.85 8.4] [-2.13 13.82] [-164 300] [-65 444] [-8.3 8.7] [-16 14.1] 

s17 [2.34 3.72] [2.31 4.09] [34 68] [45 83] [-29.4 -15.9] [-13.8 2.4] 

s18 [0.54 1.28] [-0.64 1.86] [6 20] [-3 27] [-15.7 -2.43] [-28.8 11.4] 

s19 [-0.39 0.71] [-0.40 0.57] [-8 16] [-9 17] [-6.9 -1.3] [-7.1 -1.5] 

Supplementary Table 1. Subjects 95% percentile bootstrap confidence intervals of 20% trimmed mean differences 348 
between high and low trials obtained using PCP-WLS or IRLS at channels with the highest between-trial variance. 349 
Intervals which do not include 0 (i.e., the difference between high vs. low trials is statistically significant) are shown 350 
on a gray background. 351 
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 352 
Figure 5. Robustness of the PCP method to outlying trials with a SNR of 1. The upper part of the figure 353 
shows median and 95% CI results for outliers affected by white noise, pink noise, alpha and gamma 354 
oscillations. The lower part of the figure shows results for trials affected by amplitude changes over the N1 355 
component (0.5, 0.8, 1.2, 1.5 times the N1). Mean Pearson correlations indicate how similar the 356 
reconstructed means are to the ground truth, while mean Kolmogorov-Smitnov distances indicate how 357 
much the overall distribution of values differ from the ground truth. OLS is in blue, IRLS in green, WLS in 358 
red. 359 
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360 
Supplementary figure 2. Robustness of the PCP method to outlying trials with a SNR of 2. The upper part 361 
of the figure shows median and 95% CI results for outliers affected by white noise, pink noise, alpha and 362 
gamma oscillations. The  lower part of the figure shows results for trials affected by amplitude changes 363 
over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). Mean Pearson correlations indicate how similar 364 
the reconstructed means are to the ground truth, while mean Kolmogorov-Smitnov distances indicate how 365 
much the overall distribution of values differ from the ground truth. OLS is in blue, IRLS in green, WLS in 366 
red. 367 
  368 
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Statistical inference for single subjects 369 

 370 

The average type 1 error rate for every channel and time frame tested with simulated data is at 371 

the nominal level (5%) for OLS. Results also show that IRLS are a little lenient, with small but 372 

significantly smaller p-values than expected, leading to an error rate of ~0.055. Conversely, WLS 373 

are conservative for simulated ERP, with p-values slightly too high, giving a type 1 error rate of 374 

~0.04) and lenient with purely Gaussian data (type 1 error ~0.065 – table 1). This behaviour of 375 

WLS is caused by the PCP method which optimizes weights based on distances across time, 376 

except that with simulated Gaussian data there is no autocorrelation and the PCA returns a much 377 

higher number of dimensions, leading to a meaningless feature reduction and thus meaningless 378 

trial distances and weights. 379 

 380 

  Null Gaussian Null ERP 

Regression OLS [0.0495 0.0503]   [0.0498 0.0507] 

 WLS [0.0636 0.0645]     [0.0400 0.0408] 

 IRLS [0.0555 0.0564] [0.0527 0.0536] 

ANOVA OLS [0.0493 0.0502] [0.0493 0.0501] 

 WLS [0.0695 0.0706] [0.0374 0.0382] 

 IRLS [0.0575 0.0584] [0.0540 0.0549] 

ANCOVA condition OLS [0.0494 0.0502] [0.0493 0.0502] 

 WLS [0.0699 0.0709] [0.0379 0.0386] 

 IRLS [0.0578 0.0587] [0.0546 0.0555] 

ANCOVA covariate OLS [0.0496 0.0505] [0.0496 0.0504 ]    

 WLS [0.0638 0.0648] [0.0410 0.0418] 

 IRLS [0.0563 0.0572] [0.0538 0.0547] 

Table 1. Type I error rate binomial 95% confidence intervals at every time frames and channels for 381 
simulated data under the null hypothesis. 382 

 383 

The WLS family-wise type 1 error rate (i.e. controlling the error for statistical testing across the 384 

whole data space) examined using nullified ERP data from Wakeman and Henson (2015) shows 385 

a good probability coverage for both maximum and cluster statistics with 95% confidence 386 

intervals overlapping with the expected nominal value (figure 6). Individual mean values ranged 387 

from 0.039 to 0.070 for maximum statistics (across subject average 0.052) and 0.044 to 0.07 for 388 

spatial-temporal clustering (across subject average 0.051). Those results do not differ 389 

significantly from OLS results (paired bootstrap t-test). Additional analyses based on the number 390 
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of bootstraps used to build the null distribution indicate that 800 to a 1000 bootstrap samples 391 

are enough to obtain stable results, and that the errors are relatively well distributed in space 392 

and time even if some channels tend to be more affected than others, i.e. there is no strong 393 

sampling bias: maximum number of error occurring at the same location was 0.05% using 394 

maximum statistics and 0.9% using spatial-temporal clustering, see bottom for figure 6, error 395 

density maps. 396 

 397 

 398 
Figure 6. Type 1 error rates under the null using the PCP-WLS method. The top row shows the subjects’ 399 
error rates: cell-wise, i.e. averaged across all time frames and channels, and corrected for the whole data 400 
space, i.e. type 1 family wise error rate using either the distribution of maxima or the distribution of the 401 
biggest cluster-masses. Results are within the expected range (marked by dotted black lines) with 402 
overlapping 95% confidence intervals for maximum statistics and spatial-temporal clustering. The middle 403 
row shows the effect of the number of resamples, with the dashed lines representing the boundaries of the 404 
individual 95% average confidence intervals, and the black lines the average. The cell-wise error is not 405 
affected by the number of bootstrap samples since it does not depend directly on this parameter to 406 
estimate the null (left). Using maximum statistics and cluster-mass distribution estimates shows a stronger 407 
dependency on the number of bootstrap estimates, with results stable after 800 to 1000 bootstraps. The 408 
bottom row  shows error density maps (sum of errors out of 27000 null maps). The cell-wise error (i.e. no 409 
correction for multiple comparisons) shows that errors accumulate, with some channels showing many 410 
consecutive time frames with 5% error. By contrast, maximum statistics (middle) and the maximum 411 
cluster-masses (right) do not show this effect (maxima at 0.05% and 0.9%), suggesting little to no spatial 412 
bias in sampling (note the very different density scales for the three measures).   413 
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Performance evaluation at the group level 414 

 415 

Repeated measures ANOVAs using parameter estimates from each method revealed 2 spatial-416 

temporal clusters for the face effect for both WLS and IRLS, but only the 1st cluster was declared 417 

statistically significant using OLS (table 2). The expected results (Wakeman & Henson, 2015) with 418 

full faces having stronger N170 responses than scrambled faces are replicated for all approaches 419 

(start of cluster 1).  Maximum differences were observed over the N170 only when using OLS 420 

parameters. Using WLS and IRLS gave maxima much later (P280), a result also observed when 421 

using TFCE rather than spatial-temporal clustering. In each case, a repetition effect was also 422 

observed in a much more consistent way among methods with the second presentation of stimuli 423 

differing from the 1st and 3rd presentations (figure 7).  424 

 425 

 OLS WLS IRLS 

Face effect 

cluster 1 
140ms to 504ms, 

 max=74, p=0.002 at 
184ms channel EEG049 

140ms to 424ms,  
 max=64, p= 0.002 at 

280ms channel EEG017    

136ms to 432ms,  
max=74, p= 0.002 at 

292ms channel EEG006  

cluster 2   
440ms to 648ms,  

max=17.6, p= 0.032 at 
616ms channel EEG057 

520ms to 648ms,  
max=22, p= 0.032 at 

636ms channel EEG055     

TFCE max=74, p=0.026 
at 184ms channel 

EEG049  

max=64, p=0.012 
at 280ms channel 

EEG017  

max=74, p=0.012 
at 292ms channel 

EEG006  

Repetition effect 

cluster 1 
232ms to 648ms,  

max=50, p= 0.001 at 
588ms channel EEG057  

232ms to 648ms, 
max=51, p= 0.001 at 

612ms channel EEG045 

236ms to 648ms,  
max=52, p= 0.001 at 

588ms channel EEG057  

TFCE max=50, p=0.002 
at 588ms channel 

EEG057  

max=51, p= 0.001 at 
612ms channel EEG045 

max=52, p= 0.001 at 
588ms channel EEG057  

Table 2: Face and repetition effects results using cluster-mass correction and TFCE for each of the three 426 
methods.  427 
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 428 
Figure 7. Main Face effects observed using OLS, WLS or IRLS 1st level derived parameters. The left 429 

column shows the full channels * times thresholded maps using cluster-mass correction for 430 

multiple comparisons (p<.05). Topographies are plotted at three local  maxima. The middle and 431 

right columns show time courses of the mean parameter estimates per condition (blue, red, 432 

orange) and condition differences (green, purple, black) over channel 50 (right inferior-temporal) 433 

and channel 6 (middle anterior frontal).   434 
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The statistical maps show that group results using based on WLS parameter estimates lead to 435 

smaller F values than those obtained from OLS or IRLS estimates (note the difference in maxima 436 

table 1 and scale in Figure 7), which is confirmed by the median differences in Hotelling T^2 values 437 

(supplementary tables 2, 3 & table 3). Considering uncorrected p-values, this translates into 438 

weaker statistical power for WLS: Face effect OLS = 34% of significant data frames, WLS = 31%, 439 

IRLS = 34%, Repetition effect OLS = 39%, WLS = 35%, IRLS = 39%. Results based on cluster-440 

corrected p-values showed however more statistical power for WLS relative to OLS for the Face 441 

effect (OLS 20% WLS 22% IRLS 25% of significant data frames with cluster mass and 3%, 5% 3% 442 

of significant data frames with TFCE), and mixed results for the Repetition effect (OLS 31% WLS 443 

28% IRLS 31% of significant data frames with cluster mass and 7%, 8% 7% of significant data 444 

frames with TFCE).  445 

 446 

To further understand how cluster-based results lead to more statistical power for WLS while F 447 

values are smaller, we compared distributions’ shapes by comparing the deciles of normalized 448 

values (figure 8). For the face effect, WLS did not differ significantly from OLS or from IRLS for F-449 

values, while TFCE values were  significantly larger, from the 2nd decile onward when compared 450 

to OLS, and for deciles 2, 3, 4, 7, 8 and 9 compared to IRLS. For the repetition effect, WLS differed 451 

from OLS on deciles 2, 7, 8 and 9 for both F-values and TFCE values while it differed from IRLS on 452 

decile 9 only when looking at F-values, and deciles 2, 5, 8 and 9 when looking at TFCE values. 453 

Finally, for the interaction effect, WLS did not differ from OLS or IRLS in terms of F-values but had 454 

significantly weaker TFCE values than OLS (deciles 1, 3, 6, 7, 8 and 9) and IRLS (all deciles but the 455 

4th). In summary, for the significant main face effect and repetition effect, a general pattern of 456 

more right skewed distributions of F-values and TFCE-values for WLS than for OLS and IRLS was 457 

observed while a shorter tail was observed for the non significant interaction effect. 458 

 459 

 face effect repetition effect interaction effect 

WLS vs OLS -0.32 [-0.36 -0.28] -0.54 [-0.59 -0.48]  -0.21 [-0.29 -0.13] 

WLS vs IRLS  -0.34 [-0.39 -0.30] -0.53 [-0.58 -0.48]  -0.14 -0.21 -0.08] 

Table 3. Median differences in Hotteling T^2 values for each effect tested with percentile 460 

bootstrap 95% confidence intervals (p=0.001).             461 

  462 
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    OLS WLS IRLS 

Cluster 1 
Channel 50 

Famous Faces vs. 
Scrambled 

-4.93 
[-12.2 2.32] 

-4.52 
[-11.39 2.34] 

-5.82 
[-12.76 1.11] 

Unfamiliar Faces vs. 
Scrambled 

-4.77 
[-12.42 2.86] 

-4.64 
[-13.02 3.72] 

-5.19 
[-11.93 1.54] 

Famous vs Unfamiliar 
Faces 

-0.15 
[-3.13 2.81] 

0.12 
[-3.28 3.53] 

-0.62 
[-4.86 3.60] 

Cluster 1 
Channel 6 

Famous Faces vs. 
Scrambled 

2 
[-5.25 9.25] 

1.71 
[-5.16 8.59] 

1.68 
[-6.05 9.41] 

Unfamiliar Famous Faces 
vs. Scrambled 

3.21 
[-5.80 12.22] 

2.20 
[-5.97 10.38] 

2.95 
[-6.08 11.99] 

Famous vs Unfamiliar 
Faces 

-1.20 
[-5.72 3.30] 

-0.49 
[-5.03 4.04] 

-1.27 
[-5.47 2.93] 

Cluster 2 
Channel 50 

Famous Faces vs. 
Scrambled 

-4 
[-13.82 5.82] 

-4.11 
[-15.62 7.40] 

-4.04 
[-13.31 5.23] 

Unfamiliar Faces vs. 
Scrambled 

-2.16 
[-9.20 4.87] 

-2.17 
[-9.83 5.48] 

-2.32 
[-8.96 4.31] 

Famous vs Unfamiliar 
Faces 

-1.83 
[-6.47 2.81] 

-1.93 
[-9.76 5.88] 

-1.71 
[-7.47 4.03] 

Supplementary table 2. Pairwise differences in mean parameter estimates (arbitrary unit) measured at 463 
channel 50 and 6 at the maximum of the famous faces responses.  464 
  465 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.441629doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441629
http://creativecommons.org/licenses/by/4.0/


23 

 

 medianT maxT medianF maxF medianCluster maxCluster medianTFCE maxTFCE 

Face effect 

OLS 4.44 157.64 2.09 74.19 72.57 22591.41 130.41 40992.1 

WLS 3.98 136.27 1.87 64.13 64.29 19453.52 85.72 35828.8 

IRLS 4.49 157.77 2.11 74.25 34.41 23300.19 130.88 54888.48 

Repetition Effect 

OLS 5.38 107.03 2.53 50.37 35.25 39116.91 244.38 82143.67 

WLS 4.46 109.14 2.1 51.36 33.76 33979.02 129.89 76244.1 

IRLS 5.32 110.86 2.5 52.17 37.31 39870.66 212.27 98429.06 

Interaction 

Effect 

OLS 5.45 126.31 1.12 26.01 23.79 387.94 27.64 483.46 

WLS 5.17 78.15 1.06 16.09 21.14 317.38 25.69 470.1 

IRLS 5.32 135.67 1.09 27.93 30.57 283.44 22.9 366.41 

Supplementary table 3. Medians and maxima of the Hotelling T^2, F-values, Cluster-mass and TFCE scores 466 
for each effect of the ANOVA and methods used at the 1st level.                   467 

  468 

 469 
Figure 8. Comparisons of the deciles of standardized F-value (1st and 2nd column) and TFCE value (3rd and 470 
4th column) distributions. Comparisons were done independently for the face effect, the repetition effect 471 
and their interaction. 472 
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Discussion 473 

 474 

Simulation and data-driven results indicate that the proposed WLS-PCP method is efficient at 475 

down weighting trials with dynamics differing from the bulk, leading to more accurate estimates. 476 

Results show that, for ERP, deriving weights based on the temporal profile provides a robust 477 

solution against white noise or uncontrolled oscillations. For biological (pink) noise and amplitude 478 

variations which do not alter the temporal profile, the PCP algorithm does not classify well outlier 479 

trials, leading to a decrease in detection performance compared with white, alpha or gamma 480 

noise. Rather than a defect, we see this as biologically relevant (see below). Importantly, even in 481 

those cases of failed detection, the overall correlations with the ground truth remained high 482 

(>=0.99). When analyzing real data, differences in amplitude variations were nevertheless 483 

captured by the PCP/WLS approach, with amplitude variations related to trials which were out 484 

of phase with the bulk of the data. 485 

 486 

Group-level analyses of the face dataset replicated the main effect of face type (faces>scrambled) 487 

in a cluster from ~150ms to ~350ms but also revealed a late effect (>500ms), observed when 488 

using WLS and IRLS parameter estimates but absent when using OLS parameter estimates. 489 

Despite more data frames declared significant with WLS than OLS, effects sizes were smaller for 490 

WLS than for OLS and IRLS. The shape of the F distributions when using WLS parameter estimates 491 

were however more right skewed than when using OLS or IRLS, leading cluster corrections to 492 

declare more data points as significant. Indeed, under the null, very similar distributions of 493 

maxima are observed for the three methods leading to more power for the more skewed 494 

observed distributions. The interplay between 1st level regularization, 2nd level effect size, and 495 

multiple comparison procedures depends on many parameters and it is not entirely clear how 496 

statistical power is affected by their combination and requires deeper investigation via 497 

simulations. Empirically, we can nevertheless conclude that group results were statistically more 498 

powerful using robust approaches at the subject level than when using OLS. 499 

 500 

Using the trial dynamics (temporal or spectral profile) to derive a single weight per trial makes 501 

sense, not just because the observed signal is autocorrelated, but also because it is biologically 502 

relevant. Let’s consider first the signal plus noise model of ERP generation (Hillyard, 1985; Jervis 503 

et al., 1983; Shah, 2004). In this conceptualization, ERPs are time-locked additive events running 504 

on top of background activity. An outlier time frame for a given trial may occur if 1) the evoked 505 

amplitude deviates from the bulk of evoked trials, or 2) the background activity deviates from 506 

the rest of the background activity. In the former case, the additional signal may be conceived 507 

either as a single process (a chain of neural events at a particular location) or a mixture of 508 

processes (multiple, coordinated neural events). In both cases, the data generating process is 509 

thought to be evolving over time (auto-regressive) which speaks against flagging or weighting a 510 

strong deviation at a particular time frame only. It is likely that several consecutive time frames 511 

deviate from most other trials, even though only one time frame is deemed an outlier. In the case 512 

of a deviation in background activity, it would mean that for an extremely brief period, a large 513 

number of neurons synchronized for non-experimentally related reasons, and for this trial only. 514 

Although we do not contend that such events cannot happen in general, this would mean that, 515 

in the context of ERP outlier detection, the background activity varies by an amount several folds 516 
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bigger than the signal, which goes against theory and observations. Let now us consider the phase 517 

resetting model (Makeig et al., 2002; Sayers et al., 1974). In this model, ERPs are emerging from 518 

phase synchronization among trials, due to stimulus induced phase-resetting of background 519 

activity. If a trial deviates from the rest of the trials, this implies that it is out-of-phase. In this 520 

scenario, deriving different weights for different time frames (i.e. IRLS solution) means that the 521 

time course is seen as an alternation of normal and outlying time frames, which has no 522 

meaningful physiological interpretation. Thus, irrespective of the data generating model, the WLS 523 

approach seems biologically more appropriate than the IRLS method. 524 

 525 

In conclusion, we propose a fast and straightforward weighting scheme for trials based on their 526 

temporal or spectral profiles. Results indicate that it captures and attenuates well ERP noise, 527 

leading to increased estimation precision and possibly increased statistical power at the group 528 

level. 529 
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