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How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of
their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs)
and how does the process of stochastic resetting impact nonergodicity? These are the main questions
addressed in this study. Specifically, we examine, both analytically and by stochastic simulations,
the implications of resetting on the MSD- and TAMSD-based spreading dynamics of fractional
Brownian motion (FBM) with a long-time memory, of heterogeneous diffusion processes (HDPs)
with a power-law-like space-dependent diffusivity D(x) = D0|x|γ , and of their ”combined” process
of HDP-FBM. We find, i.a., that the resetting dynamics of originally ergodic FBM for superdiffusive
choices of the Hurst exponent develops distinct disparities in the scaling behavior and magnitudes
of the MSDs and mean TAMSDs, indicating so-called weak ergodicity breaking (WEB). For subdif-
fusive HDPs we also quantify the nonequivalence of the MSD and TAMSD, and additionally observe
a new trimodal form of the probability density function (PDF) of particle’ displacements. For all
three reset processes (FBM, HDPs, and HDP-FBM) we compute analytically and verify by stochas-
tic computer simulations the short-time (normal and anomalous) MSD and TAMSD asymptotes
(making conclusions about WEB) as well as the long-time MSD and TAMSD plateaus, reminiscent
of those for ”confined” processes. We show that certain characteristics of the reset processes studied
are functionally similar, despite the very different stochastic nature of their nonreset variants. Im-
portantly, we discover nonmonotonicity of the ergodicity breaking parameter EB as a function of the
resetting rate r. For all the reset processes studied, we unveil a pronounced resetting-induced noner-
godicity with a maximum of EB at intermediate r and EB∼ (1/r)-decay at large r values. Together
with the emerging MSD-versus-TAMSD disparity, this pronounced r-dependence of the EB param-
eter can be an experimentally testable prediction. We conclude via discussing some implications of
our results to experimental systems featuring resetting dynamics.

I. INTRODUCTION

A. Overview of recent developments

Resetting a stochastic process, either normal or
anomalous1–10, via restart events—abrupt or taking a fi-
nite time, stochastic/random but distributed, or entirely
deterministic in time—returns the particle to its initial
position (or a set of positions) according to a certain rule.
In recent years, the field of resetting has experienced a
wave of new theoretical developments11–76 as well as some
experimental progress66,67. There bouncing-back, often
rare, restart events might obey different distributions of
waiting times, take place in space-dependent and space-
time-coupled manner, with space-time coupled returns,
with power-law-like time-dependent resetting rates, with
probabilities depending on the offset position, in differ-
ent geometries and higher dimensions, in comb-like struc-
tures, in confining potential wells, under spatial con-
straints, in nonexponential resetting protocols, with in-
teractions, in coagulation-diffusion processes, in reaction-
diffusion protocols, in the presence of space-dependent
diffusivity, for the over- and under-damped particle dy-
namics, to mention a few recent directions of resetting
studies.

In most studies, resetting is considered for classical
paradigmatic Brownian motion (BM), while resetting
studies for more sophisticated fractional- and anomalous-
diffusion processes, including continuous-time random
walks (CTRWs) and Lévy motion, are less common.
Certain first-passage-based, search-related, and search-
optimization-like problems involve position restart, with
one of the most known manifestations being the mini-
mization of the mean first-passage time (MFPT) to a
target at intermediate rates of resetting. A relevant re-
cent study is the first-passage-analysis of a particle in
a linear potential with a power-law position-dependent
diffusivity, D(x) ∼ |x|61. Note also that, for resetting
rates varying in time, the nonequilibrium stationary state
(NESS)25,77 was shown34 to exist for a decay of r(t)
slower than ∼ 1/t. A stochastic velocity reversion for
run-and-tumble particles was also considered40.

B. Some examples of resetting

The list of real-world processes epitomizing reset-
ting/restarting includes, but is not limited to,
(•) optimization of some foraging or search
strategies78–85 [employed by animals, fish, insects,
microorganisms, bacteria, immune T-cells, etc.] and
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in behavioral biology86 (e.g., by a diffusion process
with two distinct modes: with a detailed local search
and rapid relocations between ”patches” likely to yield
food)87–89, relocation of animals to previously frequently
visited places20 and movement-ecology data90 in macro-
biological sciences.
(•) Some examples from the nano- and micro-biological
world are the events of stochastic resetting due to
backtracking interrupting a processive motion of RNA
polymerase along DNA upon transcription33 and an
alternating switching between the 3D diffusion-based
spreading and 1D recognition-based target search in
motion of DNA-binding proteins in DNA coils91–95.
(•) On the level of simple organisms, stochastic-
switching mechanisms between different phenotypes
can be mentioned (employed by various bacteria and
fungi to optimize adaptation of a phenotypically diverse
population of individuals to fluctuating [and, often,
irregularly changing] environments96–101).
(•) strategies for boosting combinatorial-search
algorithms102–104 (via adding a controlled amount
of randomization (complete backtracks) to minimize
the cumulative search time for a set of tasks or
make mean search-times more predictable)104 and
dependency-directed backtracking algorithms in hard
constraint-satisfaction problems involving artificial
intelligence102 in computer sciences,
(•) in visual pattern recognition, picture-viewing-,
and visual-search-strategies105–109 (where large-visual-
angle jerking-like saccadic motions are interrupted by
fixational tremor-like, jiggling microsaccadic ”observa-
tional” motions [depending, i.a., on the actual task being
posed, the contextual information, habituation effects,
etc.]110–115 and in optimized eye-movement strategies
in the brain for visual-search tasks (such as in saccadic
models of preferred image-search directions maximizing
information about the ”target”) in psychology109,116.
(•) In quantitative financial mathematics, the models
of option pricing for barrier-type and reset-type options
(involving option-price adjustments upon crossing
certain price boundaries or at preset dates during its
life-time) are known for decades117–121. Abrupt drops
of stock-market prices at times of economic crashes and
other sudden catastrophic events60 can also be viewed
as reset-related phenomena.
(•) Recent experimental (wo-)man-made particle-
tracking resetting setups involve a manipulation
of micron-sized beads in optical traps122 and
”tweezers”66,67 and can potentially yield time series
amenable for a single-trajectory-based time-averaging
analysis to decipher the underlying diffusion process, as
in the theory developed below.

From the theoretical perspective, the diffusive spread
of a stochastic process is in a way ”confined” by reset-
ting events yielding in the long-time limit a NESS. In
this state, the probability density/distribution function
(PDF) is quasi-stationary, but the system still features
probability fluxes due to perpetual resetting events of

positions of the particles14. The main focus of theo-
retical and simulations-based investigations of resetting
in various stochastic processes so far was often on the
shapes of the PDF (in the NESS and in the particle-
displacement phase), scaling relations and plateaus for
the mean-squared displacement (MSD), as well as cer-
tain first-passage-time-, search-, and surface-adsorption-
related quantities.

II. RESETTING OF SBM: RECENT RESULTS

Recently, the implications of resetting on the behavior
of the MSD and PDF of scaled BM (SBM)7–9,123–131 with
a time-dependent diffusion coefficient of the power-law
form,

D(t) = αKαtα−1 ∼ tα−1 (1)

with α > 0, was considered both for exponential and
power-law distributions of waiting times between two
consecutive resetting events. We refer the reader here
to the two extensive (mainly MSD- and PDF-focused)
studies of Refs.53,54. Both nonrenewal (or partial) re-
setting setups (with resetting of the position only, while
keeping the value and the time-variation of the diffusivity
unaltered)53 and renewal (complete resetting of particle
position and diffusivity)54 setups for the SBM diffusivity
D(t) in Eq. (1) were considered.

For nonrenewal exponential resetting of single-particle
diffusion, with the waiting-time distribution

ψ(t) = re−rt, (2)

(a Poissonian precess with a constant rate r and expo-
nential PDF of waiting times between randomly occur-
ring resetting events), the MSD of reset SBM in the limit
of strong resetting and long times, at

rt � 1, (3)

was shown to be53,54

〈
x2(t)

〉
≈ 2αKαtα−1/r. (4)

So, the MSD of reset SBM acquires an exponent by one
smaller than that of conventional or nonreset SBM, with
the MSD

〈
x2(t)

〉
=
∫

x2P (x, t)dx = 2Kαtα (5)

and PDF

P (x, t) = exp

[

−
x2

4Kαtα

]/√
4πKαtα. (6)

Here Kα is the generalized diffusion coefficient (with
the physical units [Kα] =m2/secα) and α is the anoma-
lous scaling exponent3,4,8. Therefore, resetting leaves su-
perdiffusive SBM with α > 2 superdiffusive, while su-
perdiffusive SBM with 1 < α < 2 is being converted
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after resetting into a process with a subdiffusive growth
of the MSD, and, lastly, initially subdiffusive SBM with
0 < α < 1 gets totally localized by resetting (all particles
are accumulated near the origin at long times).

For a power-law-like (non-Poissonian) nonrenewal re-
setting, with ψ(t) = (β/τ0)/(1 + t/τ0)1+β and β > 0, it
was shown53,54 that the MSD for reset SBM keeps the ex-
ponent of basal SBM and gets only reduced in magnitude
for 0 < β < 1. In the range β > 2 the scaling exponent of
the MSD of SBM with resetting gets reduced by one, sim-
ilarly to the case of exponential or Poissonian resetting
in Eq. (4), so that53,54

〈
x2(t)

〉
= 2ατ0Kαtα−1/(β − 2).

For renewal resetting (when both the particle position
and diffusivity are being reset), for SBM with exponen-
tial resetting the MSD was shown to approach a NESS
plateau with the saturation level at53,54

〈
x2

pl

〉
= 2KαΓ(1 + α)/rα. (7)

This turns into the known result for BM with exponential
constant-rate resetting, namely

〈
x2

pl

〉
= 2K1/r, (8)

where Γ(y) is the standard Euler-Legendre Gamma func-
tion.

For a power-law resetting with 0 < β < 1, in con-
trast, the MSD of reset SBM keeps the scaling exponent
of free SBM, while the MSD magnitude gets altered by
a factor containing the waiting-time PDF exponent β,
namely53,54

〈
x2(t)

〉
= 2Kαtα×Γ(α−β+1)/[Γ(α+1)Γ(1−

β)]. The MSD behavior differs dramatically for scaling
exponents in the region 1 < β < 2, namely at long times
for β < α + 1 the MSD scales as

〈
x2(t)

〉
∼ tα+1−β , while

for β > α + 1 the MSD approaches a long-time plateau
with α- and β-dependent values.

For CTRWs, a similar type of the MSD- and PDF-
based analysis for complete resetting (of particle posi-
tions and of waiting times) and in the case of partial re-
setting (of particle positions only) was executed as well55.
For complete resetting, for CTRWs the behaviors of the
MSD and PDF were shown to be the same as for the
corresponding SBM. This is expected because SBM is
known to be the mean-field model of CTRWs124.

III. OUTLINE OF THE PAPER

Our main objective here is to enrich the list of impor-
tant physical observables employed in resetting-dynamics
studies by a single-trajectory-based time-averaged MSD
(TAMSD) and the ergodicity breaking parameter EB, see
Eqs. (9) and (11) below. The TAMSD is a quantifier of-
ten implemented in single-particle-tracking experiments
and its characteristic features have been intensely devel-
oped theoretically over the last years for a variety of non-
reset stochastic processes featuring anomalous diffusion8.
The EB parameter characterizes the spread of individual
TAMSDs and describes the degree of nonergodicity8.

The primary focus of the current study is on the ef-
fects of resetting onto the TAMSD characteristics for
stochastic processes of nearly ergodic (see Refs.132–135)
fractional BM (FBM)42,136–144 and of nonergodic hetero-
geneous diffusion processes (HDPs)126,143,146–150 as well
as for a combination of FBM with varying Hurst expo-
nent H151,152 and HDPs with varying exponent of the
power-law-like diffusivity γ150. Note that a ”hybrid” pro-
cess of SBM-HDP was also introduced126 and recently
applied to the experimental data153. The implications of
resetting onto the MSD and PDF of FBM, HDPs, and
HDP-FBM are also considered, being a secondary focus.

Note that, despite identical PDFs of particle displace-
ments governing SBM and FBM, SBM is a memoryless
Markovian process featuring nonstationary increments
and nonequivalence of the MSD and TAMSD128 (of-
ten also indicative of weak ergodicity breaking, WEB),
whereas, in contrast to SBM, FBM is an innately non-
Markovian process with a long-time memory and sta-
tionary displacement increments, for which the MSD and
mean TAMSD are [statistically] equivalent (considered as
an ergodic process in this sense8,139,144). The standard
quantifier of ergodicity—the so-called ergodicity break-
ing parameter denoted as EB in Eq. (11) below—behaves
for SBM and FBM, however, rather similar in terms of
EB approach to zero at vanishing lag times and for long
trajectories, at Δ/T � 1. Generally, the stationarity of
increments of a stochastic process is a prerequisite of its
ergodicity.

The paper is structured as follows. We define the ob-
servables and present the details of the simulation scheme
in Sec. IV. In Sec. V the results for the MSD and
mean TAMSD for the resetting dynamics of FBM are
presented, as obtained from stochastic computer simula-
tions. In Secs. VI and VII we examine the implications
of resetting onto the MSD, PDF, and mean TAMSD of
HDPs and HDP-FBM, respectively. The results for the
resetting dynamics of FBM and HDPs are compared to
those for SBM (outlined in Sec. II). We thus start from
the known results for reset SBM in Sec. II, move to
reset FBM (examined now in terms of the MSD, PDF,
TAMSD, and EB) featuring some commonalities with re-
set SBM, and, lastly, enter the complete terra incognita
of reset HDPs and HDP-FBM processes, again, examined
these reset stochastic processes with the standard mea-
sures (MSD and PDF) and novel quantifiers (TAMSD
and EB). Finally, we draw conclusions and discuss some
applications of our results in Sec. VIII.

IV. OBSERVABLES, MODELS, AND
SIMULATION SCHEME

A. Definitions of physical observables

We employ the concept of single-trajectory-based av-
eraging along the time series of particle positions x(t) in

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.28.441681doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441681


4

FIG. 1: Simulated trajectory of a subdiffusive HDP (18), with
the diffusion-coefficient D(x) ∼ |x|−2 being shown, in the
presence of Poissonian resetting of particles to x = 0.

terms of the TAMSD8

δ2(Δ) =
1

T − Δ

T−Δ∫

0

[x(t + Δ) − x(t)]2 dt. (9)

Here, Δ is the so-called lag time and T is the total length
of the time series. After averaging over N statistically
independent TAMSD realizations, the mean TAMSD is
computed as the arithmetic mean

〈
δ2(Δ)

〉
=

1
N

N∑

i=1

δ2
i (Δ). (10)

The angular brackets denote hereafter averaging over re-
alizations of noise, while averaging over time is denoted
by the overline.

To quantify the degree of ergodicity, the so-called er-
godicity breaking parameter EB is utilized8,139,145

EB(Δ) =

〈(
δ2(Δ)

)2
〉/〈

δ2(Δ)
〉2

− 1 =
〈
ξ2(Δ)

〉
− 1,

(11)
where the dimensionless variable

ξ(Δ) = δ2(Δ)
/〈

δ2(Δ)
〉

(12)

describes the dispersion of individual TAMSD realiza-
tions around their mean (10). The distribution of
TAMSDs for an ensemble of particle trajectories is char-
acterized by the PDF φ(ξ)8,143.

B. Diffusion models

1. Main equations for FBM, HDPs, and HDP-FBM

We employ the same simulation scheme as in the recent
study of a numerical and analytical investigation of the
”compound” process of FBM-HDPs introduced recently
in Ref.150. Shortly, the overdamped Langevin equation

dx(t)/dt =
√

2D(t)ηH(t) (13)

with fractional Gaussian zero-mean noise ηH(t) featuring
the power-law correlation function (for t 6= t′),

〈ηH(t)ηH(t′)〉 ' K2H×2H(2H−1)×|t−t′|2(H−1), (14)

is used to simulate free136,137 and reset FBM in terms of
single-particle diffusion.

For HDPs, the same Langevin equation for a zero-mass
particle,

dx(t)/dt =
√

2D(x)η(t), (15)

is modeled with white Gaussian noise having zero mean
and unit variance,

〈η(t)η(t′)〉 = δ(t − t′), (16)

and position-dependent diffusion coefficient of a power-
law form146,

D(x) = D0|x|
γ . (17)

For γ < 0, in order to regularize the diverging diffusiv-
ity at the origin, x = 0, a modified position-dependent
diffusion coefficient is used in simulations, namely146,150

D(x) = D0A/(A + x−γ), (18)

with the factor A = 10−2 [acting as a small offset]. For
2 > γ > 0 no problems with diverging diffusivities occurs
and the form (17) is used directly. The critical point
for the diffusivity exponent is at γ = 2: upon approach-
ing this point the exponential (and not a power-law-like)
growth of the MSD is realized147,154.

For a stochastic process of HDP-FBM we consider ana-
lytically and simulate the overdamped Langevin equation

dx(t)/dt =
√

2D(x)ηH(t). (19)

Not to be repetitive, we refer the reader to Ref.150 for the
the details of the analytical solutions of these equations,
the description of the region of parameters of FBM and
HDPs amenable for a solution, etc.

2. Some applications of FBM and HDPs

The model of FBM was recently applied to rational-
ize (•) the non-Brownian anomalous dynamics of lipids,
cholesterols, and proteins in/on lipid membranes155–158,
(•) the dynamics of G-proteins and G-protein-coupled re-
ceptors on plasma membrane159,160, (•) the diffusion of
labeled mRNAs in living bacterial cells161, (•) anomalous
motion of lipid granules in living yeast cells162, (•) the
diffusion of telomeres inside the nuclei of human cancer
cells163,164, (•) the dynamics of chromosomal loci in bac-
terial cells165–167, (•) non-Gaussian nonergodic anoma-
lous diffusion of micron-sized beads in mucin-polymer
hydrogels168, (•) tracer dynamics in actin networks169
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[for the particles larger in size than the network mesh-
size]170, (•) heterogeneous intracellular transport of DNA
cargo in cancerous cells [with coexisting ergodic-and-
nonergodic but nonaging dynamics]171, as well as (•) in-
termittent bulk-surface non-Gaussian and aging anoma-
lous diffusion with aging of anticancer-drug doxorubicin
in silica nanoslits172, to mention a few examples.

Solutions of the diffusion equation with variable dif-
fusion coefficients go back to Boltzmann173, while the
nonlinear diffusion equation with the diffusivity being a
power law of concentration of the diffusing substance,

D(C) ∼ Cε, (20)

with ε > 0, was solved by Pattle174 (see also
some recent ”reincarnations”175,176). Contemporary
models of diffusion with space-dependent diffusion
coefficients154,177–184—with HDPs being a specific exam-
ple that assumes the functional diffusivity form (17)—
can be used to describe (•) the non-Brownian diffu-
sion in crowded, porous, and heterogeneous media185–202

(such as densely macromolecularly crowded cell cyto-
plasm), (•) the reduction of a critical ”patch size” re-
quired for survival of a population in the case of het-
erogeneous diffusion of its individuals181, (•) diffusion
in heterogeneous comb-like and fractal structures182,
(•) escalated polymerization of RNA nucleotides by
a spatially confined thermal (and diffusivity) gradi-
ent in thermophoresis setups203, (•) motion of ac-
tive particles with space-dependent friction in poten-
tials [both of power-law forms]204, and (•) transient
subdiffusion in disordered space-inhomogeneous quan-
tum walks205,206. We mention also a class of dif-
fusion models with (•) particle-spreading scenarios
with concentration-dependent power-law-like diffusivity
(20)175,207, (•) concentration-dependent dispersion in the
population dynamics, with a nonlinear dependence of
mobility on particle density, D(ρ) ∼ ρκ (yielding a mi-
gration from more- to less-populated areas)208–210, as
well as (•) similar nonlinear equations10 for porous-media
dynamics211, nonlinear heat-conductance systems (with
a power-law-like temperature-dependent conductivity),
and the dynamics of granular materials211,212.

C. Implementation of resetting: algorithm of
numerical simulation

We use below the exact theoretical results and asymp-
totic relations of Ref.150 for FBM, HDPs, and HDP-FBM
processes (without re-deriving them here) and employ
the middle-point, physically motivated, Stratonovich-
convention-based simulation scheme for Eqs. (13), (15),
and (19) (see the details of the Itô-Stratonovich conver-
sion employed and Eq. (32) in Ref.150). For all these
processes at each elementary time-step of dt = 10−2 or
dt = 10−3 in simulations a constant rate of resetting is
set r, so that resetting probability to the initial position

xres = x(0) = 0 (21)

is r × dt, see Fig. 1. When simulating reset FBM we
always employ (21), while for reset HDPs and HDP-FBM
an offset xres = 0.01 is used (to avoid stalling of particles
at the origin, in particular for superdiffusive HDPs).

The waiting-time distribution of resetting events (2)
yields the average resetting time

〈tres〉 =
∫ ∞

0

t × re−rtdt = 1/r. (22)

We consider instantaneous resetting or ”jumping-to-the-
origin” events that makes a consistent picture with the
inertia-free or overdamped dynamics of the particles in
their displacement phase (between the events of reset-
ting). Other-than-Poissonian distributions of resetting
times, noninstantaneous resetting protocols (constant-
velocity, etc.), resetting triggered by crossing of certain
thresholds, etc. can also be considered and implemented
in simulations.

Resetting of FBM, similarly to that of SBM53,54, can
be performed in a partially or fully renewal scheme. In
the second case, the memory of noise correlations (14) is
completely ”erased” upon each resetting event: we use
this fully renewal scheme when simulating exponentially
reset FBM and HDP-FBM below. For HDPs, the imple-
mentation of resetting is unproblematic because the pro-
cess is memoryless. In simulations, we generate particle
trajectories for all three reset processes considered via a
discretization scheme with a Poissonian-resetting proto-
col: the particle position x(t+dt) is generated depending
on the previous point x(t) via the standard Langevin-
dynamics simulation approaches (using Eqs. (13), (15),
and (19)) when no resetting occur during the time t + dt
[with the probability 1−r×dt] and the particle is moved
to the reset position xres [with the probability r × dt]
when the resetting event does take place.

V. RESETTING OF FBM

For reset FBM with a fully erased memory—as well as
for other Gaussian (Markovian as well as non-Markovian)
stochastic processes with the same free-motion PDF as
that of SBM—it was predicted (provided after each reset-
ting the particle performs statistically identical diffusion
process) to have the same MSD and PDF as for renewal
resetting of SBM54. In general, one can expect that, both
for FBM and HDPs, the events of instantaneous resetting
of particle positions to the origin will give rise to larger
displacements for consecutive time-steps. This not only
contributes to a growing magnitude of the TAMSD at
short lag times (see below), but also can give rise to a
more pronounced irreproducibility of individual TAMSD
trajectories and, therefore, larger values of the EB pa-
rameter in this region. In the limit of long time, in the
NESS the MSD and TAMSD are expected to stagnate
and lose any dependence in their growth with (lag) time.
We substantiate on these intuitive expectations below.
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A. MSD

We present the results of analytical computations and
findings of computer simulations for the MSD of reset
FBM in Fig. 2 (also showing the TAMSD realizations),
for several values of the Hurst exponent H, for both sub-
and superdiffusive dynamics (in terms of the MSD). For
smaller values of H we used a smaller time-step of dt =
10−3 in order to better resolve the short-time behavior
of the ensemble- and time-averages. The MSD of FBM
with exponential resetting starts unperturbed with the
expected short-time behavior characteristic of anomalous
diffusion8,139–141, namely

〈
x2(t)

〉
= 2K2Ht2H . (23)

At times of the order of the average resetting time (22),

tpl ∼ (1/r) × [Γ(2H + 1)]
1

2H , (24)

the MSD starts saturating at a plateau (with plateau-
related quantities denoted by the subscript ”pl” here-
after), with the same height as that for reset SBM53,54,
see Eq, (7). Specifically, for NESS the height of the MSD
plateau (with a substitution α = 2H) is

〈
x2

pl

〉
≈ 2K2HΓ(2H + 1)/r2H , (25)

as indicated in Fig. 2. We have checked that this transi-
tion behavior for the MSD is the same for the scenarios
with and without long-time memory of FBM (14) being
included in simulations (results not shown). The con-
sistency of the short-time MSD asymptote (23), the r-
dependent MSD plateaus (25), and different onset times
onto the NESS-related MSD behavior is demonstrated in
Figs. S1 and S2 via presenting the results of computer
simulations and the theoretical predictions for a set of
several rates of resetting r.

B. PDF

The results for the PDF at intermediate-to-large dis-
placements for reset FBM in the NESS are in full agree-
ment with the predictions for fully-reset SBM, given by a
time-independent function of the form (with the substitu-
tion α = 2H to go from SBM- to FBM-expressions)53,54

P (x) ∼

√
2r

√
2H(2H + 1)

(
2H

4K2Hr

) 1
2H+1

|x|
1−2H
1+2H

× exp

[

−

(
x2r2H

4K2H

) 1
2H+1 (

(2H)
1

2H+1 + (2H)−
2H

2H+1

)
]

.

(26)

The leading functional behavior for the PDF ”tails” in
expression (26) is a stretched-or-compressed exponential
function, namely53,54

P (x) ∼ exp
[
−const(r,H) × |x|

2
2H+1

]
. (27)

We have checked that the levels for the MSD plateaus in

the NESS,
〈
x2

pl

〉
, are well described using the approxi-

mate PDF (26), especially at Hurst exponents H &1/2,
as shown in Fig. S4.

In Fig. 3 we present the agreement of the results of
computer simulations for the PDF of reset FBM with the
theoretically shape (26) at long times in the NESS and
for intermediate-to-large displacements of the particles.
The shapes of the PDF for reset FBM with and with-
out memory are statistically identical at these conditions.
We prove this in Fig. 3 presenting the results for reset
FBMs for sub- and superdiffusive choices of H. Note also
that the MSD evolution for reset FBM with and without
memory is also identical (results not shown). For reset-
ting rate r = 1 the FBM dynamics at H = 0.8 is much
faster than at H = 0.2. For a preset/fixed length of sim-
ulated trajectories, the MSD plateaus for reset FBM at
H = 0.8 occupy a rather extended time domain, while the
quasi-stationary state for a slower dynamics at H = 0.2
is not yet realized, compare Figs. 2c and S2b at r = 1.

The PDF shapes for reset FBM evolve upon approach-
ing the NESS. We find that for r = 1 the PDF shape at
the origin for strongly subdiffusive reset FBM is almost
smooth and Gaussian (as for nonreset FBM), while for
the same rate of resetting for strongly superdiffusive reset
FBM the PDF exhibits a pronounced cusp at the origin
stemming from the returning events of the particles. This
cusp is well described by the theoretical prediction (26),
see Fig. 3, and it corroborates with the emergence of
the NESS plateaus of the MSD and mean TAMSD. The
empty and filled symbols in Fig. 3 show the results of
reset-FBM simulations with and without the long-time
memory of noise being taken into account: we check the
validity of the theoretical PDF in Fig. 3 once for nonre-
newal resetting of FBM too. Therefore, for considerably
larger values of r, when for strongly subdiffusive reset
FBM the MSD also reveals a plateau at long times in the
NESS (results not shown, but see Fig. S2c for the onset
on this saturating behavior at r = 3), the respective PDF
of reset FBM at H = 0.2 also has a cusp at x = 0, as
shown in Fig. S5.

The PDF cusp for subdiffusive reset FBM is not in
agreement with (26) and it critically depends on the sim-
ulation time-step. Ideally, the probability of resetting
each step should be small in order for the results to be
independent on the time-step used in simulations. The
numerical integration of the long-time limit of the PDF
(B1)—evidently step-size-independent—does not reveal
any cusp at x = 0, see the cross-symbols in Figs. S5 and
S6. As we reduce the simulation time-step from dt = 0.01
to 0.001 keeping the resetting rate the same, the PDF
peak in simulations for H = 0.2 vanishes and the PDF
form nicely agrees with the results of numerical integra-
tion of (B1), see Fig. S6. We stress therefore that a
sufficient care and accuracy should be taken when simu-
lating such processes.

This numerical inaccuracy giving rise to the ”spurious”
PDF cusp for H = 0.2 gives rise to small, but systemati-
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cally measurable, deviations in the plateau heights of the
MSD and mean TAMSD in the NESS for the simulations
for very large resetting rates r (results not shown). Note
that for reset SBM53,54 the PDF shape from the theory
was shown as a combination of the results of the Laplace
approximation (26) [valid at intermediate-to-large sepa-
rations from the origin], while the central PDF part near
x = 0 was the cusp-free numerical integration of the ex-
act PDF expression in Eq. (B1).

Note that the approximate Laplace-method-based
PDF (26) is generally not normalized: for subdiffusive
(superdiffusive) rest FBM it underestimates (overesti-
mates) the integral

∫
P (x)dx, as shown in Fig. S7. We

still call this approximate non-normalized distribution-
function a PDF hereafter, for brevity. The PDF (26)
describes the simulation data well at intermediate-to-
large separations53,54, for |x| & x?. The deviations from
the results of computer simulation at small |x| values
from the expression (26) are especially pronounced for
very subdiffusive reset FBM. A rough estimation for the
threshold separation x? for reset FBM with H < 1/2
follows [based on the realized PDF shapes] from solving
∂P (x)/∂x|x=x? = 0 for the inflection point, that gives

x?(H, r) =

(
1/2 − H

1 + 1/(2H)

)H+1/2(2K2H

Hr2H

)1/2

, (28)

see the inset of Fig. S7 showing x?(H) variations. The
exponential decay of the PDF of reset FBM in the NESS
given by (27) [identical to that of full expression (26)]
as well as the scaling relation for the growth-dynamics
of the NESS domain with time given by ∼ tH+1/2 were
obtained before in Ref.25. The NESS starts getting estab-
lished from the restart position [by multiply reset trajec-
tories/particles], with the spatial NESS domain growing
quicker in time than a typical FBM diffusion length that
scales as ∝

√
MSD(t) ∼ tH . Outside of this PDF- and

MSD-stationarity domain, the reset system still performs
relaxation and features a time-dependent PDF [describ-
ing the trajectories with almost no resetting occurred so
far]. In Fig. S8 the PDF decay derived in Ref.25 is ex-
plicitly compared to our simulation data for subdiffusive
reset FBM.

To quantify the height of the PDF at the point of par-
ticle resetting in the NESS, in Fig. S9 we show the re-
sults of computer simulations for the values of P (x = 0)
for reset FBM. As for nonreset FBM, the PDF is iden-
tical to that of pure SBM (given by Eq. (6)), using the
PDF-transformation relation (B1), for reset FBM in the
NESS the PDF at the point of particles’ return assumes
the value

P (x = 0) ≈
∫ ∞

0

re−rτ τ−H

√
4πK2H

dτ =
rHΓ(1 − H)
√

4πK2H

∝ rH .

(29)
The asymptotic long-time law P (x = 0) ∼ rH excellently
agrees with the results of our simulations, see Fig. S9.
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(b)
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(c)
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FIG. 2: Magnitude of the MSD (blue circles), the spread of
individual TAMSDs (thin red curves), and the mean TAMSD
(thick blue curve) for the dynamics of reset FBM, shown for
varying values of the Hurst exponent (the values of H are in-
dicated in the graphs). Simulations of resetting are conducted
with no FBM-related memory effects. Theoretical long-time
plateaus for the MSD and mean TAMSD are given by Eqs.
(25) and (32), respectively. The short-time asymptote for the
MSD is Eq. (23), while the evolution of the mean TAMSD
at short lag times follows Eqs. (30) and (32), for subdiffusive
and superdiffusive FBM, correspondingly. The asymptotes
are shown as the black dashed and dot-dashed lines. Parame-
ters: the length of the trajectories is T = 102, the elementary
time-step in simulations is dt = 10−2 (except for H = 0.2
when dt = 10−3), the number of trajectories for ensemble av-
eraging is N = 104, the resetting rate is r = 1 [the resetting
probability per step is r × dt = 10−2], and the generalized
diffusion coefficient is set to K2H = 1/2.
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FIG. 3: Shapes of the PDFs of reset FBM, computed for the
Hurst exponents H = 0.2 with dt = 10−3 and H = 0.8 with
dt = 10−2 (see the legend) at r = 1. The symbols represent
the results of simulations, while the solid curves are the the-
oretical intermediate-to-long-times expectations for the PDF
given by (26). The dashed lines at large displacements are
stretched- or compressed-exponential asymptotes for the PDF
tails53,54 given by (27).

C. TAMSD

We find from simulations that for subdiffusive Hurst
exponents, with 0 < H < 1/2, the TAMSD starts sublin-
early and has roughly the same magnitude as the short-
time MSD (23), namely

〈
δ2(Δ)

〉
≈ 2K2HΔ2H . (30)

For initially superdiffusive FBMs, in the range of Hurst
exponents 1/2 < H < 1, in contrast, the mean TAMSD
is linear at short lag times,

〈
δ2(Δ)

〉
≈ 2K2HΓ(2H + 1)/r2H × (rΔ)1, (31)

as shown in Fig. 2. In App. A we provide the derivation
of asymptotes (30) and (31). For H = 1/2 we need to
take the sum of two independent terms (30) and (31) in
order to quantitatively fit the short-lag-time behavior of
the mean TAMSD.

At long lag times for reset FBM the TAMSD plateau
in the NESS is realized, with the magnitude of twice that
of the MSD plateau (given by Eq. (25)), namely

〈
δ2
pl

〉
≈ 2 × 2K2HΓ(2H + 1)/r2H . (32)

The ratio
〈
δ2
pl

〉/〈
x2

pl

〉
= 2 (33)

in the long-time (quasi-stationary) limit is known also
for FBM confined in harmonic potentials141 and interval-
confined HDPs148. This twice-the-MSD magnitude in

(32) stems from the TAMSD definition (9) and is not
related to resetting per se. The reason being that after
multiple resettings in the NESS the process values at
x(t + Δ) and x(t) become almost independent, so that
〈
[x(t + Δ) − x(t)]2

〉
≈
〈
x2(t + Δ)

〉
+
〈
x2(t)

〉
≈ 2

〈
x2

pl

〉

(34)
yielding (33).

We stress, however, that for FBM in parabolic poten-
tials at short lag times the MSD and mean TAMSD are
fully equivalent in magnitude and scaling141. This fact
is in stark contrast to reset FBM studied here, where
WEB and MSD-versus-TAMSD nonequivalence emerges
at H > 1/2, see also Tab. I. Indeed, we observe that for
reset FBM the mean TAMSD in the region of short lag
times always increases in magnitude as compared to that
of free/nonreset FBM. At the very last point of the tra-
jectory, at Δ → T , the magnitude of the mean TAMSD
approaches that of the MSD in the plateau region. This
fact is, however, not very well visible in the presentation
in Figs. 2, S1, and S2 because of a logarithmic sampling
of the simulation data (with only ten points per decade).

Via equating the magnitudes of the short-lag-time
TAMSD asymptotes and the long-time TAMSD plateau
one can assess the lag time at which the TAMSD
plateau (32) starts to be followed as Δpl ∼ (1/r) ×

[2Γ(2H + 1)]
1

2H for 0 < H < 1/2 and Δpl ∼ 2/r for
1/2 < H < 1.

To assess the effects of a varying resetting rate r, in Fig.
S1 we present the results of computer simulations for the
largest Hurst exponent H = 0.99 (when the scatter of in-
dividual δ2(Δ) trajectories is the broadest [for the same
(fixed) r], see also Sec. VD) at varying r values. We
observe that the predicted r-dependent plateaus for the
MSD and mean TAMSD at long times in the NESS, ex-
pressions (25) and (32), respectively, excellently describe
the results of simulations.

The spread of individual TAMSD realizations for the
resetting dynamics of FBM typically increases, as com-
pared to that of free FBM that a process with EB(Δ) → 0
for long trajectories and short lag times (at Δ/T → 0)
in the continuous-time formulation (see Refs.132–134 for
the definition(s) and general discussion of ergodicity), as
demonstrated in Refs.8,139,143,144. This effect is partic-
ularly pronounced for large superdiffusive Hurst expo-
nents, H, as illustrated in Figs. 2c and S1. In the region
of resetting rates r considered in Fig. S1 for H = 0.99 the
relative spread of the TAMSDs increases with decreasing
r. Note, however, that the entire variation of the dis-
persion of individual TAMSDs as a function of the Hurst
exponent and resetting rate is rather nontrivial, as we
unveil below.

In contrast, for strongly subdiffusive Hurst exponents,
see, e.g., the results presented in Fig. S2 for the choice
H = 0.2, the impact of the resetting rate [varying in the
same interval] is rather weak. This is intuitively clear:
as compared to the trajectories of strongly superdiffusive
FBM which depart far away from the origin and thus are
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strongly impact by a given resetting rate, for very subd-
iffusive FBM the trajectories are weakly fluctuating, me-
andering in a close proximity of the starting position, so
that the impact of events of particle’s resetting to zero
is nearly unnoticed in our quantifiers. To substantiate
on this claim, in Fig. S3 two FBM trajectories for each
choice of H = 0.8 and H =0.2 are presented in the ab-
sence and in the presence of resetting.

D. EB

1. Distribution of TAMSDs

The distribution of TAMSDs for H = 0.8 for FBM in
the presence of resetting is presented in Fig. S10. We
find that for small rate of resetting the distribution φ(ξ)
at short lag times for a weakly reset FBM is considerably
skewed toward the region ξ > 1. This fact (known not
only for FBM143,146) stems from the existence of a nat-
ural boundary at ξ = 0 (as ξ is positively defined, Eq.
(12)) and an unbounded domain extending to ξ � 1.
As the rate of resetting increases (in the range of rates
chosen), the TAMSD realizations become progressively
less scattered around their mean, indicative of a more
reproducible [or ergodic] dynamics in terms of scatter of
individual TAMSD magnitudes, described by φ(ξ).

2. Large r values

This enhanced reproducibility of TAMSD realizations
in this range of r is also reflected in the decreasing value
of the EB parameter, see the simulation data in Fig. 4 for
H = 0.8. A qualitatively similar behavior of EB versus
r is also observed in simulations for H = 1/2, but in a
smaller range of resetting rates, see Fig. 4. At these ”in-
termediate” r values for reset FBM with elevated Hurst
exponents, the value of the EB parameter at short lag
times drops according to

EB(r, Δ1) ∼ 1/r. (35)

The value of EB itself is also sensitive to H values: larger
Hurst exponents yield larger EB, as our simulations show.

Therefore, the dependence (35) of EB on r in this range
of resetting rates for reset FBM with elevated H is func-
tionally similar to that of EB on 1/T (considered, again,
at short lag times) repeatedly detected for a number of
(both normal and anomalous) stochastic processes8. The
latter indicates progressively more ergodic behavior for
longer trajectories, so that the relation EB(T, Δ1) ∼ 1/T
holds. The decrease of EB values with r (in the limit of
frequent resetting) for reset FBM with larger Hurst ex-
ponents is corroborated by a shrinking φ(ξ(Δ1)) distri-
bution computed for the same conditions with increasing
r, as shown in Fig. S10. In contrast, for strongly subdif-
fusive reset FBMs we observe a nearly constant EB upon
varying r, as illustrated in Fig. 4 for H = 0.2.

For strong or frequent resetting, as the probability of
a reset even at each displacement step approaches unity,
the EB parameter reveals a sensitivity to the step-size
value (discreteness effects), alike those for the emergence
of PDF cusps at x → 0 in the same limit. For instance,
our simulations for a fixed trace length T = 102 per-
formed for dt = 10−2 yield somewhat different large-r be-
havior of EB for superdiffusive reset FBM, as compared
to that at dt = 10−3 (effectively, 10-times more points
in each trajectory). Namely, for smaller time-steps the
deviations from the expected EB versus r scaling (35)
disappear, see the empty symbols at large r in Fig. 4.

We emphasize here also the essential differences in
the behavior and magnitudes of the EB parameter ob-
tained from the discrete-time stochastic simulations ver-
sus those predicted from a continuous-time theory of
(non-)ergodicity of FBM139, as studied in Ref.144. For
instance, for subdiffusive FBM the magnitude of EB at a
fixed lag time Δ1 and fixed trajectory length T loses its
dependence on the Hurst exponent and EB stagnates at
a plateau, with the height dropping as

EBpl(N̄) ∼ 1/N̄ (36)

with the number of points in the trajectory, N̄ . In
such a case, the EB parameter scales with the time-step
dt = T/N̄ used in simulations. In Fig. 4 the simulation
data for reset FBM at H = 0.2 for two different time-
steps illustrate the EB(dt) variation (36), see the empty
symbols at large r values.

3. Small r values

For very weak or rare resetting, we recover the small
values of EB characteristic for ergodic free FBM8,139,144

at Δ/T � 1 at the corresponding H values, computed
recently in Ref.150 and denoted as the dashed lines of
respective colors in Fig. 4. We emphasize, however,
that the approach of EB of reset FBM to that of non-
reset FBM yields a nonmonotonic dependence of EB(r),
particularly pronounced for strongly superdiffusive (but
also present for slightly subdiffusive) reset FBM. This
nonmonotonicity of EB(Δ1) yields a strongly resetting-
enhanced dispersion of short-lag-time magnitudes of in-
dividual TAMSDs of reset FBM at intermediate reset-
ting rates. The maximum of EB as a function of r—
characterizing the strongest irreproducibility of individ-
ual TAMSDs—shifts towards smaller r values for more
superdiffusive FBMs, compare the data for EB(r) for
different H in Fig. 4. We find that the maximally
achievable EB values for strongly superdiffusive reset
FBM at intermediate r are colossal, about four orders
of magnitude larger than the respective EB values for
free FBM139,144.

We also emphasize that for reset FBM the variation
of EB(Δ1) with resetting rate r stays qualitatively sim-
ilar also for longer trajectories, with EB values getting
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FIG. 4: Dependence of the EB parameter (11) on the rate of
FBM resetting r, computed at Δ = Δ1 = 10−2 and dt = 10−2

(filled symbols) and dt = 10−3 (empty symbols), for a set of
H exponents. The theoretical asymptote (35) is the black
dot-dashed line at intermediate-to-large resetting rates. The
values of EB for nonreset FBM for the time-step dt = 10−2

are the dashed plateaus (with the H-respective colors, see also
the legend). The length of the trajectories is T = 102.

reduced according to EB(Δ1, T ) ∼ 1/T relation (simi-
lar to that for free BM8 and free FBM with 0 < H <
3/4139,144), see Fig. S11.

VI. RESETTING OF HDPS

A. MSD

At short times, the MSD of reset HDPs starts similarly
to that of unperturbed HDPs, as shown in Fig. 5, namely
following the power law

〈
x2(t)

〉
≈ Cpt

p, (37)

where the scaling exponent of the MSD, p(γ), is given in
terms of the exponent of the space-dependent diffusivity
form (17) by146

p = 2/(2 − γ) (38)

and the prefactor Cp in (37) is146

Cp = Γ(p + 1/2)π−1/2(2/p)2p(D0)
p. (39)

The MSD plateau (see App. B for the derivation)
〈
x2

pl

〉
≈ CpΓ(p + 1)/rp (40)

is realized at long times (in the NESS). This expression
for the stagnating MSD features the same functional form
as the MSD plateau of the reset-FBM process in Eq. (25),
with the pair of parameters {p, Cp} effectively playing the
role of {2H,K2H}. The typical time at which the MSD
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FIG. 5: The same as in Fig. 2, but for reset HDPs, com-
puted for the scaling exponents of D(x) ∼ |x|γ being γ = 1
(panel (a)) and γ = −2 (panel (b)), corresponding to super-
and subdiffusive HDPs, respectively. The theoretical short-
time asymptotes (37) and (46) and the NESS-related long-
time MSD and mean TAMSD plateaus given by expressions
(40) and (44), respectively, are the dashed black lines. The
magnitude of the diffusivity (17) is fixed in simulations to
D0 = 1.

plateau (40) starts to be followed can be estimated—from
equating the growth law (37) and plateau height (40)—as

tpl ∼ (1/r) × [Γ(p + 1)]
1
p ∼ 1/r. (41)

B. PDF

The approximate PDF of reset HDPs at intermediate-
to-long separations follows from the general considera-
tion for reset HDP-FBM processes (see App. C for the
derivation, and also Sec. VII) at 2H = 1 as

P (x) ≈
1
2

√
r

D0
|x|1/p−1 exp

[

−p

√
r

D0
|x|1/p

]

. (42)

This PDF (truly normalized at H = 1/2, see Fig. S7)
has a Laplacian-like shape in variable |x|1/p as compared
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FIG. 6: Shapes of the PDFs of reset HDPs plotted for the
same scaling exponents of the diffusivity as in Fig. 5, and
at diffusion time T = 102 in the NESS, as indicated in the
legends. The theoretical asymptote (42) is the solid curve.

to the Gaussian-like shape of the PDF of nonreset HDPs
given by expression (C1). Additionally, for p = 1 it turns
into the PDF of canonical reset BM13,14,25,53,54 given by

P (x) = (1/2)
√

r/D0 exp
[
−
√

r/D0 × |x|
]
. (43)

Note that the PDF form (42) cannot predict trimodal-
ity observed in computer simulations for reset HDPs with
scaling exponents γ < 0 because the ideal theoretical con-
sideration yielding the free-HDP PDF (C1) is based upon
assuming infinite diffusivity at the origin (that, in turn,
instantly relocates the particles from there, so that one
expects P (x = 0) = 0), while in the in-silico-reality of
computer simulations the diffusion coefficient for subdif-
fusive HDPs has to have finite values at the origin, see
Eq. (18), yielding P (0) 6= 0. We quantify the physical
reasons of trimodality of PDFs and the dependence of
PDF heights at the origin for a general scenario of HDP-
FBM processes in Sec. VIIB below.

For reset subdiffusive HDPs (γ < 0) in the NESS for
the trimodal PFD shapes observed in simulations (at cer-
tain conditions, see Sec. VIIB) the two side peaks stem
from the spreading dynamics of nonreset HDPs, while
the central peak at x = 0 emerges due to resetting to
the origin, see Fig. 6. The PDFs for reset superdiffusive
HDPs, with the diffusivity exponents 2 > γ > 0, have a
single peak/cusp at the origin, due to the return events
and the influx of particles at x = 0, leaving the general
PDF shape however largely unaltered.

C. TAMSD

We start with the long-lag-time behavior here, where a
plateau of the mean TAMSD develops, as demonstrated
in Fig. 5. The height of this plateau is twice that of the

MSD plateau in expression (40), namely
〈
δ2
pl

〉
≈ 2 ×

〈
x2

pl

〉
≈ 2 × CpΓ(p + 1)/rp, (44)

similarly to the TAMSD-versus-MSD plateaus for reset
FBM. At short lag times, the linear growth of the mean
TAMSD with lag time that is known for HDPs146,150,

〈
δ2(Δ)

〉
=
〈
x2(T )

〉
× Δ/T = CpT

p × Δ/T, (45)

stays unaltered for HDPs in the presence of Poissonian
resetting (2), see Fig. 5. Specifically, using the input
from computer simulations regarding the linear growth
at short lag times and the TAMSD plateau (44) at long
lag times, the following approximate evolution of the
TAMSD with the lag time can be proposed,
〈
δ2(Δ)

〉
≈ (1/2)

〈
δ2
pl

〉
× (rΔ)1 + Cpr

−p × (rΔ)1. (46)

The second term in this expression is analogous to that
in Eq. (45), with the inverse reset rate playing the role
of the trajectory length in the prefactor, i.e. 1/r ↔ T .

The spread of individual TAMSD trajectories for subd-
iffusive reset HDPs with constant-rate resetting becomes
relatively small, see Fig. 5b. It is visible in particular
for small scaling exponents γ when the nonreset HDPs
are only weakly nonergodic (with the MSD and mean
TAMSD being close in magnitude and in values of their
scaling exponents). For superdiffusive HDPs with reset-
ting, the spread of individual TAMSDs is comparatively
large, see the behaviors of the MSD and mean TAMSD
for γ = −2 and γ = 1 illustrated in Fig. 5.

D. EB

The degree of irreproducibility of TAMSD realizations
and nonergodicity for reset HDPs depends on the sub-
versus superdiffusive nature of nonreset HDPs. In partic-
ular for superdiffusive reset HDPs, similarly to the results
for superdiffusive reset FBMs in Fig. 4, the EB param-
eter exhibits a maximum at intermediate rates of reset,
see the results shown in Fig. 10 for the case H = 1/2.
For subdiffusive reset HDPs, the EB parameter reveals
a plateau in the limit of rare resetting, r → 0 (with the
height not very sensitive to the exponent γ). In the limit
of strong resetting, on the other hand, both sub- and su-
perdiffusive HDPs feature the EB parameter decreasing
rapidly as ∼ 1/r with the rate of exponential resetting, as
illustrated in Fig. 10. We thoroughly describe the results
for EB variation for a more general process of HDP-FBM
in Sec. VIID.

As a comparison, for interval-confined nonreset HDPs
the spread of TAMSD realizations at short lag times was
severely restricted by confinement and the values of the
EB parameter were shown to decrease as ∼ 1/T with the
trajectory length T , even in the very confined scenarios,
see Figs. 4 and 6(b,d) in Ref.148. We stress that the
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MSD-TAMSD inter-relation
〈
δ2
pl

〉
≈ 2

〈
x2

pl

〉
was also

valid for the interval-confined HDPs in the limit of long
times, after multiple ”reflections” of the particles from
the confining walls took place.

VII. RESETTING OF HDP-FBM

A. MSD

The MSD of reset HDP-FBM at short times starts as
for the unperturbed process150, following the law

〈
x2(t)

〉
≈ Cpt

2Hp, (47)

while at long times the NESS plateau of the MSD
emerges, with the height (see App. B for the derivation)

〈
x2

pl

〉
≈ CpΓ(2Hp + 1)/r2Hp, (48)

as shown in Fig. 7. This general behavior of the MSD is
expected and analogous to that of the parent processes
of reset FBM and reset HDPs (considered in Secs. VA
and VIA, correspondingly).

B. PDF

The approximate PDF of a stochastically reset HDP-
FBM process at intermediate-to-long distances from the
origin, given by expression (see App. C for the deriva-
tion)

P (x) ≈

√
2r

√
2H(2H + 1)

(
2Hp2

4D0r

) 1
2H+1 1

p
|x|

2−p(2H+1)
p(2H+1)

× exp

[

−

(
|x|2/pr2H

D0(2/p)2

) 1
2H+1 (

(2H)
1

2H+1 + (2H)−
2H

2H+1

)
]

,

(49)

is shown in Fig. 8, revealing a good agreement with the
results of our computer simulations.

Trimodal PDFs for reset HDP-FBM processes in the
NESS are selected as those shapes having three—rather
that one or two—points with zero derivative of the PDF
with respect to the coordinate. The necessary condition
for this is γ < 0 (subdiffusive parental HDPs) and su-
perdiffusive Hurst exponents H (as we conclude from the
region in the plane of {H, γ} amenable for computer sim-
ulations, see Fig. 1 in Ref.150). The diagram of trimodal
PDF shapes in the plane {H, r} for a fixed value of the
diffusivity exponent γ = −2 is presented in Fig. 9. We
find that high resetting rates and strongly superdiffusive
parental FBMs promote the emergence of PDF trimodal-
ity for reset HDP-FBM processes (trimodality is clearly
a function of the HDP exponent γ < 0 too (the results of
simulations for other γ values are not shown). In this re-
gion of large resetting rates r and high Hurst exponents

(a)
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FIG. 7: The same as in Fig. 2 but for the generalized reset
HDP-FBM process, computed for the parameters as indicated
in the plots. The short-time predictions (48) and (55) and
the long-time plateaus (48) and (56) for the MSD and mean
TAMSD, respectively, are the dashed and dot-dashed lines.

H the PDF peak at the reset position x = 0 is most
distinctly pronounced.

Note that the domain of HDP exponents γ < 0 and
Hurst exponents H < 1/2 is not allowed for our specific
simulation procedure employed for HDP-FBM processes,
see Ref.150: thus, we cannot check if trimodal PDFs are
present for HDP-FBM also at H < 1/2 and subdiffusive
HDPs (the ”forbidden region” of parameters). The re-
gion of exponent variation in Figs. S12 and 9 is such
that only γ < 0 (p < 1) and superdiffusive FBMs with
H > 1/2 are allowed (again, see Fig. 1 in Ref.150)
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FIG. 8: The same as in Fig. 3 but for reset HDP-FBM plotted
for diffusion time t = T = 102 and for the parameters of Fig.
7 (as indicated in the legend).

Now we rationalize the height of the resetting-induced
PDF peak at the origin. Because of regularization of sub-
diffusive HDPs via the diffusivity Ansatz (18), the par-
ticles returned to the origin start spreading effectively
not according to HDP-FBM, but rather as conventional
reset FBM. The PDF peak at x ≈ 0 cannot be cap-
tured by the Laplace-method-based PDF (49) applicable
at intermediate-to-large separations from the origin. For
larger r values, however, the fraction of diffusing parti-
cles returned to the origin is comparatively large so that
FBM dominates the overall dynamics, while the HDP-
based spreading dynamics is not yet established for this
process. Therefore, at larger r we expect the scaling for
the PDF height at the origin, P (x = 0), for reset HDP-
FBM process to follow that of simple reset FBM, namely

P (x = 0) ∼ rH (50)

given by (29). This asymptote is indeed found to fit
the results of computer simulations rather closely for the
regime of frequent resetting, as illustrated in Fig. S12.

For small r values the PDF value at x = 0 is rather
HDP-dynamics dominated, as for a free process of HDP-
FBM150. Therefore, for rare resetting for reset HDP-
FBM we predict the following relation

P (x = 0) ∼ rpH . (51)

This scaling is reminiscent of that found for free HDP-
FBM150, with the inverse rate of resetting playing the
role of the trajectory length T , as intuitively expected,

T ↔ 1/r. (52)

Performing simulations for two different simulation time-
steps, in Fig. S12 we show that the differences for the
heights of the PDF at the origin do exist, but they are not
substantial so that the theoretically predicted asymptotic
laws (50) and (51) for P (x = 0) are still valid.

0 0.5 1 1.5 2

0.6

0.7

0.8

0.9

bimodal

trimodal

FIG. 9: Diagram of bimodal and trimodal PDF shapes for
the reset generalized HDP-FBM process in the plane of re-
setting rates r and Hurst exponents H, plotted for the HDP-
diffusivity exponent γ = −2. The region 0 < H < 1/2 is not
accessible in the simulations of subdiffusive parental HDPs
(which are yielding bimodal PDFs being transferred into tri-
modal PDFs by resetting). Other parameters: T = 102,
dt = 10−2, and N = 104.

C. TAMSD

For reset HDP-FBM for the choice of exponents 0 <
H < 1/2 the leading TAMSD term scales sublinearly as

〈
δ2(Δ)

〉
≈ Cpr

−2Hp × (rΔ)2H , (53)

while for 1/2 < H < 1 the leading term grows linearly,
〈
δ2(Δ)

〉
≈ (1/2)

〈
δ2
pl

〉
× (rΔ)1. (54)

Generally, the mean TAMSD of the reset HDP-FBM pro-
cess is a combination of these two terms,
〈
δ2(Δ)

〉
≈ (1/2)

〈
δ2
pl

〉
× (rΔ)1 + Cpr

−2Hp × (rΔ)2H ,

(55)
whereas at long lag times the mean-TAMSD plateau is
realized with twice the height of the MSD plateau given
by (48), i.e.

〈
δ2
pl

〉
≈ 2

〈
x2

pl

〉
≈ 2 × CpΓ(2Hp + 1)/r2Hp. (56)

These expressions present a natural continuation of the
results for reset FBM and HDPs and they enable excel-
lent quantitative fit of the simulation data for varying
model parameters and scaling exponents (γ and H), see
Fig. 7. We emphasize that the sublinear (53) and linear
(54) short-lag-time scaling of the TAMSD for reset HDP-
FBM are ”inherited” from the respective scaling laws for
reset FBM, Eqs. (30) and (31), while the the height of
the TAMSD plateau in the NESS given by (56) depends
on the ”intensity” of the HDP-driven dynamics, Cp.
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Note that for HDPs we generally use slightly nonzero
reset positions. In Fig. 7 for γ > 0 we set

x0 = xres = 10−2, (57)

while for γ < 0 the reset position was fixed at x0 =
0.3 (to shorten the transient short-time regime where
the theoretical and simulation-based MSD results some-
what differ [due to expected effects of initial-position
relaxation146,147]).

D. EB

The spread of individual TAMSDs of stochastically re-
set HDP-FBM depends—in addition to the leading de-
pendence on resetting rate r—on the values of the Hurst
exponent H and the HDP-diffusivity exponent γ. Per-
forming simulations for systematically varying r we ob-
serve that, especially for superdiffusive FBM being the
parent process for HDP-FBM, the dependence of EB on
r is nonmonotonic. Similarly to the EB(r) dependence
for reset FBM, the variation of EB(r) for HDP-FBM ex-
hibits a maximum at intermediate rates of resetting. For
these conditions, as r → 0 the EB parameter smoothly
goes to the respective values for the nonreset process.

In contrast to FBM, for HDP-FBM processes in the ab-
sence of resetting the EB values are not small because the
parent HDP process is by itself already nonergodic, with
MSD 6=TAMSD and finite EB values even for infinitely
long trajectories146,147 (the general features of EB(p)
variation for HDPs are similar to those of CTRWs147).
Therefore, for the trajectories of a finite length and at
Δ/T � 1 the variations in the magnitudes of short-
lag-time TAMSD realizations—characterizing different
TAMSD-based diffusivities or transport coefficients—are
distinctly visible.

In the opposite limit of very frequent resetting, again
similarly to the EB parameter of reset FBM, a power-law
decay EB(r, Δ1) ∼ 1/r is detected in simulations, see Fig.
10. This decay of EB(Δ1) at high rates of resetting is uni-
versal, being detected for all choices of exponents H and
γ of reset HDP-FBM processes, as well as for trajectories
of different lengths, see Fig. S13. The detailed analysis
of positioning of this EB(r)-maximum as a function of
exponents H and γ as well as of trajectory length T is
beyond the scope of the current study.

The analysis of whether—for a fixed FBM exponent H
and resetting rate r—the spread of TAMSDs increases as
the exponent γ deviates from the ”most ergodic” value
γ = 0 [expected to yield smallest EB values] towards neg-
ative γ for subdiffusive and positive γ for superdiffusive
HDPs can also be performed. Its results can then be
compared to the theoretical predictions for the EB(γ)-
dependence for nonreset HDPs146. All these issues de-
serve a special theoretical consideration [especially if they
turn to be of interest for the experimental resetting com-
munity].

10-6 10-5 10-4 10-3 10-2 10-1 100 101
10-3

10-2

10-1

100

101

102

103

FIG. 10: The same as in Fig. 4, but showing the ergod-
icity breaking parameter for the reset HDP-FBM processes
EB(Δ1 = 10−2) versus the rate of resetting, for H and γ ex-
ponents as indicated in the legend. The asymptote (35) is
the black dot-dashed line shown at intermediate-to-large r.
Parameters: T = 102 and dt = 10−2.
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Stochastic process MSD and TAMSD Short-time scaling Long-time scaling MSD 6=TAMSD at short times

reset FBM, 0 < H < 1/2
〈
x2(t)

〉
〈
δ2(Δ)

〉 ∼ t2H , Eq. (23)
∼ Δ2H , Eq. (30)

〈
x2

pl

〉
∼ r−2H , Eq. (25)〈

δ2
pl

〉
≈ 2

〈
x2

pl

〉
, Eq. (32)

No

reset FBM, 1/2 < H < 1
〈
x2(t)

〉
〈
δ2(Δ)

〉 the same
∼ Δ1, Eq. (31)

the same
the same

Yes

reset HDPs, p = 2
2−γ

〈
x2(t)

〉
〈
δ2(Δ)

〉 ∼ tp, Eq. (37)
∼ Δ1, Eq. (45)

〈
x2

pl

〉
∼ r−p, Eq. (40)〈

δ2
pl

〉
≈ 2

〈
x2

pl

〉
, Eq. (44)

Yes

reset HDP-FBM, 0 < H < 1/2
〈
x2(t)

〉
〈
δ2(Δ)

〉 ∼ t2Hp, Eq. (47)
∼ Δ2H , Eq. (53)

〈
x2

pl

〉
∼ r−2Hp, Eq. (48)〈

δ2
pl

〉
≈ 2

〈
x2

pl

〉
, Eq. (56)

Yes

reset HDP-FBM, 1/2 < H < 1
〈
x2(t)

〉
〈
δ2(Δ)

〉 the same
∼ Δ1, Eq. (54)

the same
the same

Yes

TABLE I: Collection of the main asymptotic results for the
MSD and mean TAMSD of reset FBM, HDPs, and HDP-
FBM, both at short and long times. The conclusions regard-
ing the nonequivalence of both averages (at short times) are
listed in the last column.

VIII. DISCUSSION AND CONCLUSIONS

The current study is a ”Pitot drop”213 to a ”tsunami”
of recent resetting-related publications. This small con-
tribution contains, however, vital single-trajectory-based
concepts of the TAMSD and the distribution of TAMSDs
ubiquitously used in the analysis of time series from nu-
merous single-particle-tracking experiments. These con-
cepts will hopefully be useful and productive for theoret-
ical studies of other reset stochastic processes (see Sec.
VIII C) as well as for experimental resetting setups.

A. Summary of the main results

The constant-rate Poissonian-resetting setup has been
employed to the initially ergodic long-time-memory pro-
cess of FBM and the initially nonergodic but Markovian
HDPs in order to study certain resetting effects onto
the ensemble- and time-averaged characteristics of the
particle-spreading dynamics (in terms of the MSD and
TAMSD, the PDF, and the ergodicity breaking parame-
ter EB). These two widely used processes very different
in their stochastic nature, as well as the ”compound pro-
cess”, exemplify how resetting events can smear out the
initial distinctions between FBM and HDPs yielding of-
ten similar behaviors for many standard quantifiers, as
summarized in Tab. I.

1. Reset FBM

We detected nonequivalence of the MSD and mean
TAMSD for reset superdiffusive and the equivalence for
subdiffusive reset FBM. Specifically, we found that both

for sub- and superdiffusive FBM processes the MSD
starts (as for free FBM) with ∼ t2H scaling, while the
TAMSD starts sublinearly in lag time for subdiffusive
and linearly for superdiffusive reset FBM. In the long-
time limit, both the MSD and mean TAMSD revealed the
plateau-like behaviors, with the height of the TAMSD in
this ”stagnating” regime being twice that of the MSD,〈
δ2
pl

〉
≈ 2

〈
x2

pl

〉
, see also Tab. I.

Regarding the PDF of reset FBM in the NESS, we
quantified in simulations and described analytically the
shapes both at intermediate-to-large separations from the
origin, as well as the height of the PDF at the origin (rep-
resentative of the relative fraction of particles returned
at the initial position by the restart events).

Depending on the resetting rate r, more frequent re-
setting was shown to be capable of both impeding and
enhancing the degree of spreading of the magnitudes of
individual TAMSDs of reset FBM. The nonmonotonic
behavior of EB versus r and resetting-induced nonergod-
icity we discovered in simulations was most pronounced
for highly superdiffusive reset FBM, at H → 1. In the
strong-resetting limit, we found a simple power-law de-
crease EB(r) ∼ 1/r for reset superdiffusive FBM that
can be checked/probed experimentally.

2. Reset HDPs

For reset HDPs, at short times we observed the MSD
growing unperturbed as ∼ tp and the mean TAMSD
growing linearly with the lag time, the same scaling rela-
tions as for nonreset HDPs146,147,150, and thus WEB and
MSD-TAMSD nonequivalence is observed for reset HDPs
(see also Tab. I). Similarly to reset FBM, for reset HDPs
we found that the long-time plateau of the mean TAMSD
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in the NESS is twice as high as the MSD plateau, as we
quantified analytically in excellent agreement with the

in-silico findings. The relation
〈
δ2
pl

〉
≈ 2

〈
x2

pl

〉
valid for

all the reset processes studied here is our 1st key result.

3. Reset HDP-FBM

For the generalized process of reset HDP-FBM we
found that upon Poissonian resetting the MSD at short
times always starts as ∼ t2Hp, while the mean TAMSD
starts linearly for the super- and sublinearly ∼ Δ2H for
the superdiffusive FBM component of reset HDP-FBM.
These asymptotes as well as the long-time plateaus with〈
δ2
pl

〉
≈ 2

〈
x2

pl

〉
observed in computer simulations agree

excellently with the theoretical predictions found. Apart
from reset subdiffusive FBM that remained ergodic upon
resetting, other pure and ”combined” reset processes we
considered here have revealed the nonequivalence of the
MSD and mean TAMSD at short (lag) times, see Tab. I.
This omnipresent MSD-TAMSD nonequivalence at short
times upon resetting [even for initially ergodic processes]
is our 2nd key result.

The shape of the PDF computed analytically with the
Laplace method was demonstrated to agree well with
the numerical results of our Langevin-equation-based
stochastic simulations. For subdiffusive HDPs and su-
perdiffusive FBM contributing to the compound (subd-
iffusive HDP)-(superdiffusive FBM) reset process we de-
tected a novel class of trimodal shapes of the PDF. We
unveiled the domain of existence of these trimodal PDFs,
with the general conclusion that more frequent resetting
and more superdiffusive Hurst exponents of FBM favor
trimodal PDF profiles of reset HDP-FBM. We quantified
the scaling relations for the peak of the PDF at the origin
[the fraction of particles remaining at the reset position],
both theoretically and via computer simulations.

Note that although trimodal PDF profiles were con-
sidered for specific setups of noninstantaneous resetting
for the normal dynamics with certain position-dependent
functional forms of the reset speed45, the trimodal PDFs
we unveiled for reset (subdiffusive HDP)-(superdiffusive
FBM) processes are new and universal, being based on
the underlying dynamics of the ”source” processes of sub-
diffusive HDPs with a bimodal PDF and superdiffusive
FBM. This emerging PDF trimodality in the NESS for
reset subdiffusive HDPs and respective HDP-FBM is our
3rd key result. Such trimodal PDFs can be realizable
in diffusion-resetting protocols, even with instant return-
ing of particles to the restart position.

For the EB parameter, similarly to that of reset FBM,
at high rates of resetting we discovered a universal power-
law decrease of EB of the form EB(r) ∼ 1/r, with the ex-
act values of EB being sensitive to the values of dynamics-
governing exponents H and γ. At small resetting rates
the EB values approach those of the nonreset process, as
expected, while a pronounced maximum of EB(r) and,

thus, resetting-induced nonergodicity emerges at inter-
mediate rates of resetting. This universal nonmono-
tonic EB(r)-dependence—with a prominent maximum
followed by EB(r) ∝ 1/r-decay at large r—is our 4th
key result.

We conclude here stating that the behaviors of the
MSD and mean TAMSD in the NESS for FBM, HDPs,
and HDP-FBM processes under exponential resetting are
functionally remarkably similar, alike the found effect of
the nonmonotonic variation of EB versus resetting rate.
High-rate exponential resetting (naturally) smears out
the distinctions between initially very different processes
we studied here, yielding in the long-time limit similar—
possibly, also for other processes under such resetting—
functional dependencies for the TAMSD and EB.

B. Possible effects of initial conditions

We employed the standard [and experimentally rele-
vant] concept of ergodicity as the equivalence of the MSD
and mean TAMSD at short times and quantified the
spread of individual TAMSDs at Δ = Δ1 = dt in terms
of EB. The initial particle positions were always kept
fixed. These conditions are realizable experimentally,
with the MSD being computed without subtracting this
[nearly-zero] initial position, x0. From the theoretical
perspective, however, considering initial positions of par-
ticles being distributed according to the long-time PDF
in the NESS, P (x0), creates another statistical ensemble
and thus offers a different approach to compute aver-
ages. The ensemble- and x0-averaged MSD, computed

after this additional averaging as
〈〈

(x(t) − x0)2
〉

P (x0)

〉
,

can be a more theoretically rigorous measure for assessing
the degree of nonergodicity and possible MSD-TAMSD
nonequivalence.

We refer the reader to the study214 regarding the im-
pact of the starting positions being fixed versus being
distributed with the equilibrium PDF on the proper-
ties of diffusion in a parabolic potential, the so-called
Ornstein-Uhlenbeck (OU) process. It was found, in-
ter alia, that the MSD-TAMSD nonequivalence at short
lag times indeed disappears when the MSD involves sec-
ond averaging over Peq(x0) of all possible starting po-
sitions being sampled from the equilibrium-state PDF,〈〈

(x(t) − x0)2
〉

Peq(x0)

〉
. The ”confining” OU process is

similar to resetting-based protocols also in terms of long-

time MSD/TAMSD plateaus featuring
〈
δ2
pl

〉/〈
x2

pl

〉
=

2 [again, for the starting positions distributed with
Peq(x0)]214. The effects of distributed x0-positions onto
nonergodicity of various reset processes require a sepa-
rate investigation in the future.
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C. Applications and further developments

Our TAMSD-based approach to reset stochastic pro-
cesses seems more natural for examining the continuous
trajectories, emerging e.g. as outputs in SPT experi-
ments, as compared to the MSD-based methods. Some
methods for the analysis of abrupt transitions and the
detection of change-points in time series, i.a. in the
presence of measurement uncertainties, were developed
recently215 and applied to predicting the moments of sev-
eral economic crashes. With our quantifiers, the pre-
dicted differences in the short-lag-time scaling of the
mean TAMSD for reset FBM—namely, a sublinear and
linear TAMSD growth depending on the value of Hurst
exponents, see Sec. VC—could help us to assess (e.g.,
upon varying H and comparing with the MSD growth)
if the underlying dynamics is indeed of FBM-type.

Straightforward future developments of this study is to
apply the TAMSD- and EB-based formulation
(•) to other stochastic processes with a resetting dynam-
ics imposed—such as CTRWs16,37,38,55,62,71,124,216, Lévy
walks/flights217, SBM53,54,125, exponential SBM131,
diffusion with multiple mobility states, the OU
process214,218, geometric BM219–223, diffusion mod-
els with distributed224,225 and ”diffusing diffusivity”
(DD)144,226–231 as well as various ”hybrid” processes
(SBM-HDPs126, FBM-DD144, SBM-DD129, etc.),
(•) to employ other types of resetting protocols/setups
(periodic, power-law, and other functional forms for ψ(r)
distributions; resetting when particular xmax values are
reached, resetting to distributed resetting points, with
memory effects, etc.),
(•) to consider the underdamped versions129,131 of
anomalous-diffusion processes [with the initially ballis-
tic MSD] with resetting in order to unveil the differences
from and the similarities to the behaviors found here for
reset FBM, HDPs, and HDP-FBM as well as to mimic
relevant experimental situations.

Recently, an experimental realization of diffusion of a
colloidal particle with resetting implemented via holo-
graphic optical tweezers was reported67, possibly al-
lowing position- or energy-dependent resetting of trap-
confined beads36 and dragging particles73 in external
traps. The ability and sensitivity of such optical-trap-
based setups to infer the underlying stochastic process
governing the particles’ motion—as a function of reset-
ting conditions and reset rates being imposed as well
as other relevant parameters—remains to be quanti-
fied. Moreover, performing such optical-traps experi-
ments with micron-sized beads in crowded environments
of living cells—in order to infer whether FBM or vis-
coelastic diffusion or restricted/compartmentalized dif-
fusion is at play—can potentially have additional com-
plications.

We hope that the theoretical and experimental reset-
ting communities will find our current time-averaging
single-trajectory-based approach—with the concepts of
TAMSDs and TAMSD-irreproducibility embodied by the

EB parameter—useful to infer the degree of nonergodic-
ity for other diffusion models and real physical systems
in the presence of [stochastic] resetting dynamics.
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Appendix A: Derivation of the mean TAMSD of
reset FBM: the limit of short lag times

We start with the autocorrelation function of FBM
with Poissonian resetting at a constant rate r obtained
in Ref.42, namely

〈x(t + Δ)x(t)〉

= K2He−rΔ

{∫ t

0

re−rτ
(
τ2H + (τ + Δ)2H − Δ2H

)
dτ

−e−rt
(
t2H + (t + Δ)2H − Δ2H

)}
, (A1)

and with the expression for the MSD of SBM under a
constant-rate resetting (substituting the SBM exponent
α via the Hurst exponent H of FBM as α = 2H),53,54

〈
x2(t)

〉
= 2K2Ht2He−rt + 2K2Hr−2Hγ(2H + 1, rt),

(A2)
where the (lower) incomplete Gamma function is

γ(a, z) =
∫ z

0

e−xxa−1dx. (A3)

The TAMSD (9), with the integrand

〈
[x(t + Δ) − x(t)]2

〉

=
〈
x2(t + Δ)

〉
+
〈
x2(t)

〉
− 2 〈x(t + Δ)x(t)〉 , (A4)
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can then be presented as a combination of two terms

〈
δ2(Δ)

〉
=

2K2H

T − Δ

∫ T−Δ

0

dt
{

(t + Δ)2He−r(t+Δ)

+t2He−rt − e−rΔe−rt
(
t2H + (t + Δ)2H − Δ2H

)}

+
2K2H

T − Δ

∫ T−Δ

0

dt
{
r−2Hγ(2H + 1, r(t + Δ))

+r−2Hγ(2H + 1, rt)

−e−rΔ

∫ t

0

re−rτ
(
τ2H + (τ + Δ)2H − Δ2H

)
dτ

}

.

(A5)

In the limit of vanishing lag times, at Δ/T � 1, at the
condition of multiple resetting events within a trajectory
of length T , given by

rT � 1, (A6)

the first integral in Eq. (A5) can be neglected compared
to the second term. The second term (after taking the
integrals) yields the approximate result for the TAMSD

〈
δ2(Δ)

〉
≈

2K2H

T − Δ

∫ T−Δ

0

dt
{(

1 − e−rΔ
)
r−2Hγ(2H + 1, rt)

+Δ2He−rΔ
(
1 − e−rt

)}
. (A7)

In the limit of long enough trajectories and short enough
lag times, at

rΔ � 1, (A8)

the first term in the integrand of Eq. (A7) yields that for
the range of exponents

2 > 2H > 1 (A9)

the leading TAMSD behavior is given by

〈
δ2(Δ)

〉
≈ 2K2HΓ(2H + 1)r1−2H × Δ1. (A10)

On the contrary, for

0 < 2H < 1, (A11)

the second term in Eq. (A7) gives the leading contri-
bution to the short-lag-time TAMSD asymptotic that is
sublinear in Δ, namely

〈
δ2(Δ)

〉
≈ 2K2H × Δ2H . (A12)

The asymptotes (A10) and (A12)—which are the asymp-
totic relations (30) and (31) in the main text—can clearly
be obtained also via first expanding the integrand of the
TAMSD in expression (A5) for small Δ and then taking
the limit of long times (not shown in detail).

Appendix B: MSD of reset HDP-FBM

For the resetting dynamics of a stochastic process with
the Gaussian PDF for particle displacements P0(x, t) in
the presence of exponential resetting (a constant rate of
resetting, Eq. (2)), the PDF of the reset process P (x, t)
can be expressed via the PDF of the unperturbed process
P0(x, t) through the following relation53,54

P (x, t) = e−rtP0(x, t) +
∫ t

0

re−rτ × P0(x, τ )dτ. (B1)

The first term in (B1) signifies the probability of no re-
setting events taking place from time 0 to time t (with
the exponentially decaying probability of such an event),
while the second term integrates over all multiple reset-
ting events possible to occur in incremental time-steps
during the same time period. Multiplying both sides of
Eq. (B1) by x2 and integrating over all possible particle
positions one gets for the MSD of the reset HDP-FBM
process that
〈
x2(t)

〉
= e−rtCpt

2Hp +Cpr
−2Hp×γ(2Hp+1, rt), (B2)

where the definitions/notations (39) and (A3) are used.
The height of the MSD plateau at long times (for rt � 1
and many resetting events taking place by time t [long-
time limit of NESS]) is dominated by the second term in
Eq. (B2), namely

〈
x2

pl

〉
≈ CpΓ(2Hp + 1)/r2Hp, (B3)

that yields expression (48) in the main text. At short
times (when the condition rt � 1 is satisfied) the Tay-
lor expansion of (B2) yields that the MSD starts nearly
unperturbed, as150

〈
x2(t)

〉
≈ Cpt

2Hp, (B4)

that is expressions (37) and (47) in the main text.

Appendix C: Derivation of the PDF for reset
HDP-FBM processes

Starting with the PDF of HDP-FBM in the absence of
resetting150,

P (x, t) =
|x|1/p−1

√
4πD0t2H

exp



−

(
|x|1/p

(2/p)
√

D0t2H

)2


 ,

(C1)
and using the relation (B1) connecting the stan-
dard/nonreset and the reset PDFs, in the limit of long
times (when the term of no-resetting up to time t,
e−rtP0(x, t) in (B1), can be neglected) we arrive at

P (x, t) ≈ r
|x|1/p−1

√
4πD0

∫ t

0

e−rτ τ−He−Dp(x)τ−2H

dτ, (C2)
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where we defined for brevity

Dp(x) = |x|2/p
/[

D0(2/p)2
]
. (C3)

Following the strategy outlined in Ref.53,54 for the PDF
of reset SBM, we use the Laplace method to approximate
the exponent-containing integral in (C2). The maximum
of a negative-power exponent in (C2) is achieved at the
minimum of its argument, namely at

τmin = [2HDp(x)/r]
1

2H+1 . (C4)

This yield for the second derivative

(
rτ + Dp(x)τ−2H

)′′
τ,τ

∣
∣
∣
τmin

= 2H(2H+1)Dp(x)×τ−2H−2
min

(C5)
so that the power of the exponent becomes

rτmin + Dp(x)τ−2H
min

= r
2H

2H+1 [Dp(x)]
1

2H+1

(
(2H)

1
2H+1 + (2H)−

2H
2H+1

)
. (C6)

For the prefactor of the exponent in the resulting PDF,
exp

[
−
(
rτmin + Dpτ

−2H
min

)]
, obtained after applying the

Laplace method to expression (C2), one gets

r
|x|1/p−1

√
4πD0

√
2π

2H(2H + 1)Dp(x)τ−2H−2
min

τ−H
min

=

√
2r

√
2H(2H + 1)

(
2Hp2

4D0r

) 1
2H+1

(
1
p

)

|x|
1−2Hp
p+2Hp . (C7)

Combining (C6) with (C7) and substituting the explicit
x-dependence of Dp from (C3), we arrive at the final
approximate result for the PDF of HDP-FBM in Eq. (49)
of the main text,

P (x) ≈

√
2r

√
2H(2H + 1)

(
2Hp2

4D0r

) 1
2H+1 1

p
|x|

2−p(2H+1)
p(2H+1)

× exp

[

−

(
|x|2/pr2H

D0(2/p)2

) 1
2H+1 (

(2H)
1

2H+1 + (2H)−
2H

2H+1

)
]

,

(C8)

Naturally, in the absence of space-dependent diffusion
(when the MSD is linear, p = 1) the NESS PDF of HDP-
FBM (49) turns after putting 2H = α into the PDF of
SBM with fully renewal resetting53,54, see also Eq. (26).

Appendix D: Supplementary figures

Here we present some auxiliary figures supporting the
claims in the main text.
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FIG. S3: Exemplary trajectories of reset (red) and nonreset
(blue) FBM for subdiffusive and superdiffusive Hurst expo-
nents, H = 0.2 for panel (a) and H = 0.8 for panel (b), with
other parameters being the same as in Fig. 2.
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FIG. S5: The same as in Fig. 3, for r = 10, dt = 10−2, and
H = 0.2. The results of numerical integration of the exact
PDF expression (B1) are the cross symbols.
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FIG. S6: The same as in Fig. S5, for the same parameters,
except for dt = 10−3 and r = 10 being used in simulations.
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