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Abstract 29 

Amazonia encompasses forests that grow in areas that are periodically inundated by overflowing 30 

rivers. The inundation depth and duration vary according to the slope of the terrain, creating a 31 

flooding gradient. This gradient directly affects the biota, but the effect on soil organisms 32 

remains elusive. Here, we use DNA metabarcoding to estimate prokaryote and eukaryote 33 

diversity from soil and litter samples in a seasonally flooded forest and its adjacent unflooded 34 

forest in central-western Amazonia using 16S and 18S gene sequences, respectively. We 35 

characterize the below-ground diversity and community composition based on Amplicon 36 

Sequence Variants (ASVs) along the flooding gradient. We test for the relationship of soil biota 37 

with the flooding gradient, soil properties and above-ground woody plant diversity. The flooding 38 

gradient did not explain below-ground biodiversity. Nor was the below-ground diversity 39 

explained by the above-ground woody plant diversity. However, we found taxonomic groups not 40 

previously reported in Amazonian seasonally flooded forests. Also, the flooding gradient and 41 

woody plant diversity did, in part, explain the community composition of soil bacteria. Although 42 

the effects of the flooding gradient, soil properties and above-ground woody plant diversity is 43 

hard to quantify, our results thus indicate that flood stress could influence below-ground bacterial 44 

community composition. 45 

Keywords: Amazonia; Below-ground biodiversity; Juruá; Metabarcoding; Seasonally flooded 46 

forests; Flooding gradient.  47 
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1. Introduction 48 

Amazonia comprises the largest continuous tropical rainforest in the world. Accounting for only 49 

3.6% of the terrestrial global surface, Amazonia harbours 10% of the world’s known biodiversity 50 

(Maretti, 2014) and potentially hosts the largest Linnaean biodiversity knowledge deficit on 51 

Earth (Moura and Jetz, 2021). Amazonia is heterogeneous and encompasses several distinct 52 

environments. These include tropical rainforests known as terra firme, non-forested areas, such 53 

as the edaphic open areas associated with white sand soils, and seasonally flooded forests 54 

(Myster, 2016). Seasonally flooded forests grow in areas that are periodically inundated by 55 

overflowing rivers, lakes and perennial streams (Prance, 1996). These forests are characterized 56 

by low taxonomic diversity compared to terra firme forests (Haugaasen and Peres, 2006; Myster, 57 

2016; ter Steege and Hammond, 2001). However, they have a characteristic fauna and flora often 58 

restricted to these environments (Myster, 2016; Ramalho et al., 2016). At least 9% of the 59 

Amazon basin is formed by seasonally or permanently flooded forests (Hess et al., 2015), which 60 

are crucial for the maintenance of biodiversity and climatic dynamics in the region (Castello and 61 

Macedo, 2016). 62 

Two determinants are decisive for the extent of periodically flooded forests in Amazonia. The 63 

first is the uneven annual distribution of rainfall. In most parts of Amazonia, the rainy season is 64 

followed by a drier period lasting several months, but this is not synchronous across the basin. 65 

The second is the topography of the Amazon basin and its low-lying floodplains. Combined, 66 

these factors lead to an annual rise in fluvial discharge which causes an enormous flood pulse 67 

(Junk, 1989; Kubitzki, 1990) and gives rise to an aquatic and a terrestrial phase in the flooded 68 

areas. The inundation depth and duration of the flood waters vary according to the slope of the 69 

terrain and the volume of the rivers that flood the landscape (Assis et al., 2015; Wittmann et al., 70 
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2010). This creates a gradient in flood depth and duration from low-lying areas flood to greater 71 

depths for longer periods of time to areas higher up in the terrain that flood for shorter periods. 72 

This gradient directly affects the biota, generating thresholds for species establishment (Petit and 73 

Hampe, 2006). Additionally, the physical and chemical properties of the waters also affect the 74 

distribution of biota in inundated areas (Prance, 1979). 75 

In the Amazon basin, seasonally flooded forests can be classified into two major types according 76 

to the hydro-chemical characteristics of the rivers that flood them (Assis et al., 2015; Haugaasen 77 

and Peres, 2006; Myster, 2016; Prance, 1979). Whereas eutrophic várzea forests are flooded by 78 

nutrient-rich white-water rivers originating in the Andes, oligotrophic igapó forests are inundated 79 

by nutrient poor, black- or clear-water rivers (Ríos-Villamizar et al., 2020). Thus, fluvial 80 

geochemistry determines the physical properties of substrate, such as moisture retention and 81 

hydraulic conductivity, accumulation of organic matter, nutrient availability and soil biota 82 

(Parolin et al., 2004). It has been demonstrated that changes in above-ground species richness 83 

and composition in seasonally flooded forests can occur due to the physicochemical 84 

characteristics of the water (Myster, 2016) and/or flood depth (Julião et al., 2018). Few studies 85 

have evaluated this difference in soil biota (Ritter et al., 2019b), and to our knowledge no study 86 

has yet examined the influence of the flooding gradient on seasonally flooded forest soil 87 

biodiversity. 88 

Soil biota represent a large reservoir of terrestrial biodiversity and provide fundamental 89 

ecosystem services that are key to the functionality of terrestrial ecosystems (Bardgett and Van 90 

Der Putten, 2014; Pereira et al., 2018; Pietramellara et al., 2002). For instance, larger soil 91 

invertebrates are responsible for processing large amounts of detritus and make it available to 92 

other organisms (García�Palacios et al., 2013; Hättenschwiler and Gasser, 2005). Similarly, 93 
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micro-organisms are essential for nutrient cycling (Delgado-Baquerizo et al., 2020), and 94 

ectomycorrhizal fungi underlie ecosystem processes such as soil carbon cycling (Johnson et al., 95 

2016). Yet, soil biodiversity remains elusive and has been neglected in many global biodiversity 96 

assessments and policies (Cameron et al., 2019; Ritter et al., 2017). This omission is undoubtedly 97 

related to the scarcity of comprehensive information on soil biodiversity, especially in 98 

megadiverse and remote tropical environments, such as Amazonia. Fortunately, molecular 99 

approaches, including high throughput sequencing (HTS), such as metabarcoding (Creer et al., 100 

2016), are now able to address many previous obstacles to understanding the diversity and 101 

composition of soil communities (Cameron et al., 2019; Ritter et al., 2019b; Tedersoo et al., 102 

2014). 103 

In this study we use a metabarcoding approach to characterize the soil biodiversity along the 104 

flooding gradient of an Amazonian várzea landscape. More specifically, we investigate the 105 

diversity and composition of soil communities across three flood-levels and explore if, and how, 106 

soil biota changes along the flooding gradient. In addition, by comparing the soil communities to 107 

the above-ground woody plant community, we examine the degree to which the above- and 108 

below-ground biodiversity are congruent. The results are discussed in relation to other studies 109 

and interpreted in light of differences experienced by seasonal flooding, soil characteristics and 110 

above-ground woody plant diversity. Finally, we draw some general implications to the 111 

conservation of Amazonian biota. 112 

2. Materials and Methods 113 

2.1. Study area: We conducted the study in the Uacari Sustainable Development Reserve 114 

(RDS Uacari) and nearby forests along the central reaches of the Juruá River, western Brazilian 115 

Amazonia (Fig. 1). The climate of the region is hot and humid with a mean annual temperature 116 
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of ~27°C, average annual rainfall of ~3,679 mm, and a well-defined rainy season from December117 

until May (Hawes and Peres, 2016). We sampled above-ground woody plant communities and118 

below-ground microbial communities at three different flood levels in várzea (VZ) and adjacent119 

upland forest (i.e. terra firme, TF) that does not flood on a seasonal basis. This “unflooded”120 

forest is growing on Pleistocene floodplain sediments (i.e., paleo-várzea sediments; Assis et al.,121 

2015) abandoned by the meandering Juruá River and at higher elevations than the river’s122 

maximum flood level. The várzea communities were sampled during the 2016 and 2017 dry123 

seasons and the terra firme communities were sampled in the 2017 wet and dry seasons.  124 

125 

Fig. 1. Sampling localities along the central Juruá River (main map) in the central-western126 

Brazilian Amazon (upper left inset). The lower right inset shows a schematic cross-section of127 
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flood levels in the várzea forest, with low- and high-water states separated by the dotted vertical 128 

lines. Low-várzea is low-lying and subject to the longest flooding periods (5-12 mo/yr); mid-129 

várzea is subject to intermediate periods of flooding (2-4 mo/yr); and high-várzea is located 130 

higher up in the terrain and subject to the shortest flooding periods (0-1 mo/yr). Terra firme 131 

forests are beyond the maximum flood levels of rivers and perennial streams. Map created using 132 

QGIS3 software (Q. D. Team, 2015). 133 

 134 

2.2. Determination of the hydro-topographic gradient: To position the plots along the hydro-135 

topographic gradient, we used inundation period mapped with multi-date ALOS-1 PALSAR 136 

satellite imagery (Fine-beam mode, resampled to 30 m) freely available from the Alaska Satellite 137 

Facility Distributed Active Archive Center (asf.alaska.edu). Water levels at the Porto Gavião 138 

gauge on the Juruá River (66.9 W, 4.88 S) were retrieved from Brazil's Agência Nacional de 139 

Águas (ANA; http://www.snirh.gov.br/hidroweb/serieshistoricas) for each of the 28 PALSAR 140 

imaging dates between 2007 and 2011 (9-10 dates for each of 3 PALSAR swaths covering the 141 

forest plots). The average number of months inundated per year were calculated over the 47-year 142 

Gavião river level record (1972-2018). Due to small-scale variability in flood duration even at 143 

the 0.1 ha scale, we defined the flooding gradient by approximating the average number of 144 

months each plot was flooded annually. Thus, plots were grouped into the following four flood 145 

levels: (1) terra firme = not seasonally flooded (n = 6); (2) high-várzea = 0-1 mo/yr, maximum 146 

high-water levels < 1.5 m (n = 6); (3) mid-várzea = 2-4 mo/yr, maximum high-water levels = 1-2 147 

m (n = 6); and (4) low-várzea = 5-12 mo/yr, maximum high-water levels ≥ 2 m (n = 4). Flood 148 

depth within each plot was determined by measuring the height of visible watermarks left on tree 149 
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trunks within each plot after the most recent inundation peak. These measurements were made 150 

with a measuring tape to the nearest mm. 151 

2.3. Above-ground woody plant diversity: We used 0.1 ha floristic plots (100 m x 10 m) 152 

placed perpendicular to the main river channel to minimize variability in flood depth and 153 

duration within plots. We inventoried woody plant diversity as described in Bredin et al. (2020). 154 

Briefly, within each floristic plot, all trees, hemiepiphytes, and palms ≥10cm diameter at breast 155 

height (dbh) – as well as all high-climbing woody lianas ≥ 5 cm dbh – were measured and 156 

identified. Individuals that could not be determined to species level were sorted to morpho-157 

species or, where applicable, higher taxonomic levels. For the following analyses we only 158 

retained floristic data from plots where we also obtained information about substrate biota (n = 159 

18).  160 

2.4. Below-ground microbial diversity: To allow for comparisons with other studies of below-161 

ground biodiversity, we used the sampling strategy described in Tedersoo et al. (2014) and Ritter 162 

et al. (2019b). Briefly, we superimposed 22 circular plots with a 28 m radius over the floristic 163 

plots by matching exactly the midpoints of the circular substrate plot with those of the 164 

rectangular floristic plots. Within each circular plot, we randomly selected 20 trees and collected 165 

litter and soil samples at the opposite sides of each stem. We first took a litter sample at every 166 

sampling point. After removing the leaf litter, we used a soil auger (2.5 cm in diameter) to collect 167 

the top 5 cm of the soil. In total, we collected litter and soil at 40 points per plot. The samples 168 

were then mixed to provide one composite litter sample and one composite soil sample per plot. 169 

For each plot, soil samples were divided into two parts. The first part was sun-dried and 170 

transported to the EMBRAPA laboratory in Manaus (Brazil) where physicochemical analyses 171 

were performed following standardized procedures (Donagema et al., 2011; Ritter et al., 2018). 172 
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The second part of the soil samples, as well as the litter samples, were dried with sterilized white 173 

silica gel 1–4 mm and transported to the University of Gothenburg, Sweden, for DNA extraction. 174 

2.5. DNA extraction and sequencing: For total DNA extraction, we used the PowerMax® Soil 175 

DNA Isolation Kit (MO BIO Laboratories, USA) according to the manufacturer’s instructions. 176 

We used 10 g (dry weight) from all soil samples and 15 ml of the litter samples (corresponding 177 

to 3–10 g of dry weight litter, depending on texture and composition). We checked DNA 178 

extraction quality and concentration in a Qubit 30® fluorimeter (Invitrogen, Sweden). The soil 179 

and litter samples from which DNA was successfully extracted were sent to Aimethods 180 

(Germany) for amplification and sequencing. We targeted prokaryotes with the V3-V4 region 181 

(~460 bases) of the 16S rDNA gene using the forward primer (5’-CCTACGGGN 182 

GGCWGCAG-3’) and the reverse primer (5’-GACTACH VGGGTATCTAATCC-3’) from 183 

Klindworth et al. (2013). Eukaryotes were targeted with the V7 region of the 18S rDNA gene 184 

using the forward and reverse primers (5’-TTTGTCTGSTTAATTSCG-3’) and (5’-185 

TCACAGACCTGTTATTGC-3’) designed by Guardiola et al. (2015) to yield 100–110 bases 186 

long fragments. The 16S rDNA fragment was sequenced with the Illumina MiSeq 2×300 187 

platform, and the 18S rDNA fragment with Illumina Microarray 2×150. We sequenced negative 188 

controls in all steps: three for the extraction, two for the amplification, and two for the index 189 

ligation. 190 

2.6. Sequence analyses and taxonomic assessment: We used the Cutadapt package (Martin, 191 

2011) in Python v.3.3 (Van Rossum and Drake, 2009) to remove primers. We then used the 192 

DADA2 package (Callahan et al., 2016) in R v. 4.0.2 (R Core Team, 2020) to quality filter reads, 193 

merge sequences, remove chimeras, and to infer amplicon sequence variants (ASVs). We 194 

excluded reads with ambiguous bases (maxN=0). Based on the quality scores of the forward and 195 
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reverse sequences, each read was required to have <3 or <5 errors, respectively (maxEE=c (3,5), 196 

truncQ=2). Therefore, ASVs were inferred for forward and reverse reads for each sample using 197 

the run-specific error rates. To assemble paired-end reads, we considered a minimum of 12 base 198 

pairs of overlap and excluded reads with mismatches in the overlapping region. Chimeras were 199 

removed using the consensus method of "removeBimeraDenovo" implemented in DADA2. We 200 

removed ASVs present in negative controls in a proportion larger than 40% of the reads for 18S 201 

and all ASVs present in negative control for 16S. We used the SILVAngs 132.1 reference 202 

database (Quast et al., 2012) for assessment of the taxonomic composition of the ASVs for both 203 

markers. The ASV reads by sample and taxonomic affiliation are provided in the Appendix 1 204 

(for 16S) and Appendix 2 (for 18S). Additionally, we identified the functional guild for the 205 

ASVs assigned to the fungal kingdom using the FungalTraits database (Polme et al., 2020). 206 

2.7. Statistical analysis: We conducted all analyses in R using RStudio (2015). We used the 207 

tidyverse package v. 1.3.0 (Wickham, 2017) for data curation and ggplot2 v. 3.3.2 (Wickham, 208 

2016), ggfortify v. 0.4.11 (Tang et al., 2016), gridExtra v. 2.3 (Auguie and Antonov, 2016), and 209 

ggpubr v. 0.4.0 (Kassambara and Kassambara, 2020) for data visualisation (scripts in Appendix 210 

3).  211 

2.7.1. Soil properties – To compare our results with other areas, we included the soil property 212 

data from terra firme and várzea in Benjamin Constant (far western Brazilian Amazonia) and 213 

Caxiuanã (far eastern Amazonia), available in Ritter et al. (2018), in our data analyses (Appendix 214 

4 Table A1). We first normalized all soil variables to zero mean and unit variance using the 215 

“scale'” function of vegan v. 2.4-3 (Oksanen et al., 2010). We then performed a principal 216 

component analysis (PCA) to reduce the number of soil property variables for subsequent 217 

analyses and visualise soil physicochemical properties in relation to forest type and flood level 218 
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(i.e. terra firme, high-várzea, mid-várzea, low-várzea, or várzea where information on placement 219 

along the flooding gradient was absent).  220 

2.7.2. Alpha diversity – As the richness estimates could be biased by rare ASVs (Haegeman et 221 

al., 2013), we calculated ASV Fisher’s alpha diversity (i.e., the relationship between the number 222 

of ASVs in any given plot and the number of reads of each ASV) using the phyloseq R package 223 

v.1.34.0 (McMurdie and Holmes, 2013) separately for the prokaryote (16S) and eukaryote (18S) 224 

datasets. For the woody plant communities, we used an abundance species matrix. We calculated 225 

the metrics within each plot and compared visually the non-normalized Fisher’s alpha diversity 226 

indices of the below-ground biota and above-ground plant communities. We analysed soil and 227 

litter Fisher’s alpha diversity as a function of flood level (modelled as a continuous variable 228 

represented by the measured floodwater marks on trees, with terra firme being zero, and 229 

categorically according to forest type, i.e. flood level), soil properties (represented by PC1 of the 230 

soil PCA), type of sample (litter or soil), and above-ground Fisher’s alpha diversity for woody 231 

plants. We normalized all the Fisher’s alpha diversities to zero mean and unit variance using the 232 

“scale'” function in vegan. Thus, we defined a set of models to explain below-ground alpha 233 

diversity. The final model set included models with flood level, inundation depth of the last 234 

flood, PC1 from the soil properties PCA, type of sample (litter or soil) and woody plant Fisher’s 235 

alpha diversity as predictor variables, and additional models with interaction terms among the 236 

flood levels and sample types with woody plant Fisher’s alpha diversity and the flood levels with 237 

soil PC1. The final model set also included a constant, intercept-only model, comprising a total 238 

of nine models for each dependent variable (Table 1).  239 

Models were selected using an information theory approach based on AIC (Akaike, 1974) and 240 

corrected AICs (AICc) for small sample sizes (Burnham and Anderson, 2002). Models with 241 
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dAIC ≤ 2 were considered equally plausible, and we used the normalized model weight (wi) to 242 

contrast the best model to the constant (no-effect) model. We used generalized linear models 243 

(Crawley, 2007) with Gaussian error distributions after checking for the distributions of 244 

residuals. The GLM analyses were performed using the vegan package, and model selection was 245 

carried out using the bbmle package v.1.0.20 (Bolker and Bolker, 2017).  246 

2.7.3. Beta diversity – We constructed two-dimensional non-metric multidimensional scaling 247 

(NMDS) ordinations of the abundance (reads) matrices of prokaryotes (16S) and eukaryotes 248 

(18S). We first transformed read counts using the ‘varianceStabilizingTransformation’ function 249 

in DESeq2 v.1.30.1 (Love et al., 2014) as suggested by McMurdie & Holmes (2013). This 250 

transformation normalizes the count data with respect to sample size (number of reads in each 251 

sample) and variances, based on fitted dispersion-mean relationships (Love et al., 2014). We 252 

then used the ‘metaMDS’ function and Bray-Curtis distances in the vegan package to assess 253 

community dissimilarity among all samples in the NMDS. We used the ‘envfit’ method in vegan 254 

to fit flood levels and sample types onto the NMDS ordination as a measure of the correlation 255 

among these factors with the NMDS axes. Additionally, we constructed two-dimensional non-256 

metric multidimensional scaling (NMDS) ordinations based on the abundance data of the woody 257 

plants. 258 

3. Results 259 

We were able to extract, amplify, and sequence DNA for both prokaryotes (16S) and eukaryotes 260 

(18S) in 13 soil samples, 17 litter samples for prokaryotes (16S), and 16 litter samples for 261 

eukaryotes (18S). We obtained a total of 787,834 reads and 10,213 ASVs for the prokaryotes 262 

(16S). After removing the negative controls, we kept 757,827 reads and 9,337 ASVs. For the 263 

eukaryotes (18S), we obtained 616,237 reads belonging to 2,267 ASVs and we kept 572,953 264 
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reads belonging to 2,004 ASVs after removing the negative controls. See Appendix 4, Table A2 265 

for the number of reads and ASV richness for each plot, and Appendix 5 and 6 for krona charts 266 

of 16S and 18S taxonomic composition, respectively. The raw sequences are deposited in 267 

Genbank under the Bioproject PRJNA723037, BioSample SAMN18800640: Jurua (TaxID: 268 

410658), accession SRA numbers: SRR14286278 - SRR14286277. 269 

3.1. Soil properties: The principal component analysis showed that edaphic properties varied 270 

between terra firme and várzea plots and that flood depth or duration had no apparent effect on 271 

várzea soil physicochemical composition (Fig. 2; Appendix 4 Table A3). Hence, várzea soils 272 

from Juruá largely overlapped (Fig. 2). Várzea soils were dominated by clay and silt, whereas 273 

terra firme soils were sandier (Fig 2). Terra firme soils were less fertile than várzea soils, with 274 

lower concentrations of important nutrients, such as potassium (K), calcium (Ca), and 275 

magnesium (Mg) (Fig 2). Compared with the terra firme and várzea soils from Benjamin 276 

Constant (far western Brazilian Amazonia) and Caxiuanã (far eastern Brazilian Amazonia), the 277 

Juruá várzea is characterized by more exchangeable bases and clay, and less phosphorous (P). 278 

The Juruá terra firme soils are placed between the Benjamin Constant and Caxiuanã terra firme 279 

soils (Fig. 2). 280 
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281 

Fig. 2. Principal component analysis (PCA) showing the clustering of inventory plots along the282 

first two PCA axes in relation to the soil physicochemical composition. The colours of the283 

clusters reveal the geographic location (Juruá - this study - in green nuances; Benjamin Constant284 

and Caxiuanã = purple) and the flooding gradient represented by the Juruá flood levels: TF:285 

Terra firme; HV: High-várzea; MV: Mid-várzea; and LV: Low-várzea. The shape of the points286 

indicates plot locality: Juruá = squares, Benjamin Constant = circle; and Caxiuanã = triangles. 287 
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3.2. Below-ground taxonomic composition: The taxonomic composition of the prokaryote289 

component shows that the groups with the highest number of ASVs were Alphaproteobacteria290 

(~25% of the taxa identified in our samples, equivalent to ~2000 ASVs per flood level; Fig. 3A;291 

Appendix 4 Fig. A1A), Actinobacteria (~23%, average ~1700 ASVs; Fig. 3A; Appendix 4 Fig.292 

A1A), and Acidobacteria (~18%, average ~1300 ASVs; Fig. 3A; Appendix 4 Fig. A1A). Among293 

eukaryotes, Fungi had the highest number of ASVs (~43%, ~600 ASVs), mainly Ascomycota294 

and Basidiomycota (Fig. 3B; Appendix 4 Fig. A1B) followed by Cercozoa (~18%, ~300 ASVs;295 

Fig. 3B; Appendix 4 Fig S1B) and Ciliophora (~15%, ~250 ASVs; Fig. 3B; Appendix 4 Fig296 

A1B). Most fungi were classified as saprotrophs (Appendix 4 Fig. A2). Other groups present297 

were pathogens, parasites, mycorrhizae fungi and unclassified (Appendix 4 Fig. A2).  298 
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Fig. 3: Fraction of ASVs by taxonomic group and flood level for (A) prokaryotes and (B) 300 

eukaryotes. Flood levels are TF: Terra firme; H-VZ: High-várzea; M-VZ: Mid-várzea; and L-301 

VZ: Low-várzea. 302 

 303 

3.3. Alpha diversity: We found that the best model to explain bacterial (16S) diversity 304 

included woody plant Fisher’s alpha diversity and sample type (soil or litter) with an interaction 305 

effect between the two (Table 1), but only sample type was significant (Table 2). For eukaryotes 306 

(18S), three models had a delta AICc lower than 2 (Table 1). The first model (dAICc = 0) 307 

included only sample type, the second (dAICc = 1.1) included only the woody plant Fisher’s 308 

alpha diversity, and the third model (dAICc = 1.3) included the woody plant Fisher’s alpha 309 

diversity and sample type with an interaction effect between the two (Table 1). In all models, 310 

only sample type was significant (Table 2). Bacterial Fisher’s alpha diversity was higher than the 311 

Fisher’s alpha diversity of either eukaryotes or woody plants. In terra firme, bacterial diversity in 312 

soil and litter, but not eukaryotes, appears to correlate with woody plant diversity. For várzea, no 313 

pattern was observed (Fig. 4). 314 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.28.441795doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441795
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

315 

Fig. 4. Above-ground woody plant Fisher’s alpha diversity versus below-ground Fisher’s alpha316 

diversity of A) prokaryotic (16S) and B) eukaryotic (18S) organisms in Juruá litter and soil317 

samples. Prokaryotic and eukaryotic diversity are shown in negative values. Woody plant318 

diversity is shown in positive values. Flood levels are TF: Terra firme; H-VZ: High-várzea; M-319 

VZ: Mid-várzea; and L-VZ: Low-várzea. 320 

 321 

3.4. Beta diversity: Community compositions were similar among plots across flood levels322 

and sample types (litter and soil). For bacteria, there is a grouping of terra firme plots with some323 

overlap with várzea plots (Fig. 5A). No clear pattern was observed for soil eukaryotes (Fig. 5B).324 

For woody plant communities, there is a turnover in species compositions across different flood325 
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levels (Fig. 5C). The envfit test indicated a significant effect of flood level on both the326 

prokaryote (R2 = 0.24; p = 0.022) and woody plant (R2 = 0.48; p = 0.003) communities, but not327 

for soil eukaryotes (R2 = 0.14; p = 0.28). The envfit test also indicated a significant effect of328 

sample type on the prokaryote (R2 = 0.25; p = 0.001) and eukaryote (R2 = 0.22; p = 0.006)329 

communities. 330 

331 

Fig. 5. Community structure in relation to substrate type and flood levels. Visualisation of332 

non-metric multidimensional scaling (NMDS) for (A) prokaryotes (16S), (B) eukaryotes (18S),333 

and (C) woody plants using Bray-Curtis dissimilarity indices. Symbols represent different334 

substrates (i.e. sample types) where filled circles = litter samples and filled triangles = soil335 

samples. Colours represent the different flood levels: TF = Terra firme; H-VZ = High-várzea; M-336 

VZ = Mid-várzea; and L-VZ = Low-várzea.  337 
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 338 

4. Discussion 339 

Our analyses have documented, for the first time, the degree to which soil and litter biota 340 

biodiversity are affected by the flooding gradient in central-western Amazonian forests of 341 

varying floristic diversity. We show a weak correlation between soil and litter community 342 

composition and inundation period but find that below-ground Fisher’s alpha diversity cannot be 343 

explained by the flooding gradient. We also show that the edaphic properties differed between 344 

terra firme and várzea, but not among várzea forests along the flooding gradient.  345 

4.1. Edaphic properties: Várzea edaphic properties in the Juruá differed from the other two 346 

Amazonian várzeas that we included in our analyses (Fig. 2). For instance, the Juruá várzea was 347 

poorer in phosphorus (P) and silt, but rich in magnesium (Mg), calcium (Ca), potassium (K), and 348 

clay. This high-density clay content in the Juruá várzea may act as a physical barrier to water 349 

infiltration. On the other hand, clayey soils also have a high water holding capacity (Hillel, 350 

2013), which prevents it from drying out completely during the non-flooded periods. The high 351 

clay content additionally made várzea samples hard to collect and to break once dried. Possibly, 352 

this was the main factor that hindered DNA extraction in our study. 353 

Compared to the terra firme soils, the Juruá várzea soils were more fertile, presumably due to the 354 

yearly inflow of nutrient-rich alluvial sediments by the Juruá River. Moreover, the Juruá terra 355 

firme soils presented similar edaphic properties to those of the terra firme forests in Benjamin 356 

Constant and Caxiuanã. This was unexpected since the terra firme forest that we sampled in the 357 

Juruá grow on paleo-várzea sediments (Assis et al., 2015), and therefore presumably should have 358 

been relatively nutrient rich compared to typically well-drained and heavily leached terra firme 359 
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soils on older geological formations (Sombroek, 2000). However, these soils presented similar 360 

edaphic properties to those of the terra firme forests in Benjamin Constant and Caxiuanã, 361 

suggesting that nutrients are soon leached from várzea substrates once they no longer experience 362 

flooding and an influx of river sediments. 363 

4.2. Below-ground taxonomic composition: Alphaproteobacteria and Planctomycetes were 364 

abundant in our samples, accounting for 40% of our 16S data (Fig. 3A). These groups are known 365 

to be very diverse in undisturbed forests (de Carvalho et al., 2016) and they are generally 366 

common in Amazonian soils (Ritter et al., 2019b; Zinger et al., 2019). Interestingly, other 367 

bacterial groups commonly found in Amazonian soils (Ritter et al., 2019b; Zinger et al., 2019) 368 

and elsewhere (Delgado-Baquerizo et al., 2018) – notably Betaproteobacteria and Bacteroidetes - 369 

were not present in the Juruá samples. Because these groups are known form a diverse range of 370 

habitats, including várzea and terra firme, this surprised us and clearly highlight that we have 371 

much to discover about Amazonian soil biodiversity. 372 

Patescibacteria (e.g., the candidate phyla radiation group), not previously reported in other 373 

várzea soils, were found in the Juruá samples (Fig. 3A). This group was recently described 374 

(Brown et al., 2015) and until now it had only been registered in Amazonian pasture soils 375 

(Lemos et al., 2020). An interesting characteristic of Patescibacteria is the small size of their 376 

genomes (usually <1.5 Mbp) and their lack of biosynthetic capabilities (Brown et al., 2015). 377 

These characteristics indicate that they could be co-metabolic interdependent (He et al., 2015; 378 

Lemos et al., 2019). Such interdependencies with other organisms would suggest a restrict 379 

occurrence or different functionality dependent on the community in which they occur. Yet, 380 

Patescibacteria show similar functional profiles under distinct climate conditions (tropical soils 381 

and permafrost; Lemos et al., 2020). Although their apparent plasticity is interesting, very little 382 
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information is available for this group. The design of new 16S rRNA gene primers that better 383 

amplify Patescibacteria is required to elucidate the ecology and distribution of Patescibacteria in 384 

Amazonian soils and worldwide. Additionally, analysis of metatranscriptomes could improve our 385 

understanding of the metabolism in Patescibacteria and other bacteria under different substrate 386 

conditions. 387 

Among the eukaryotes, we found a higher proportion of fungi in the Juruá substrates than 388 

previously documented for other areas in Amazonia (Ritter et al., 2019b). Whereas Ritter et al. 389 

(2020) found fewer fungi in várzea than in other environments, we found more fungi in várzea 390 

than in the adjacent terra firme, most of which were saprotrophs (Appendix 4 Fig. A2). Singer et 391 

al. (1983) hypothesized that ectomycorrhizal fungi increase the ability of their host plants to 392 

acquire nutrients and water in low-fertility soils, such as in the Amazonian sandy-soil 393 

ecosystems. However, we found very few ectomycorrhizal fungi in both várzea (more fertile) 394 

and terra firme (less fertile; Appendix 4 Fig. A2). Yet, around 35% of the fungi could be not 395 

assigned to any functional guild. This makes comparisons difficult and highlights the need to 396 

further investigate Amazonian soil biodiversity and its ecology. 397 

Some eukaryotic groups detected in other Amazonian localities by the same 18S primers as the 398 

ones used here (Ritter et al., 2019b; Zinger et al., 2019), were absent in the Juruá samples. Such 399 

groups include nematodes and arthropods (Fig. 2B). Although the 18S primers that we used are 400 

not optimal for sequencing animals, it was surprising not to find these groups in our samples 401 

(except for one nematode sequence in várzea and terra firme). Low nematode diversity in 402 

Amazonian várzeas was previously reported by Cares (1984). One reason for the absence of 403 

these animals in várzea substrates could be that the high amount of clay in the soil and the 404 

seasonal floods, make várzea soil and litter unfit for nematode occupation. However, this does 405 
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not explain the absence of soil animals in our terra firme samples since these were relatively 406 

clay-free and unflooded. To test this hypothesis, we need further studies in soils with a gradual 407 

difference in clay proportion and specific primers targeting nematodes (e.g. Kawanobe et al., 408 

2021) alongside morphological examination of the diversity in the samples. 409 

4.3. Above- versus below-ground diversity: There was no relationship between above- and 410 

below-ground alpha diversity across the different forest types included in this study. This 411 

mismatch could be explained by the flood pulse that may have masked any pattern by carrying 412 

organisms across all flood levels. A lack of clear relationships between above- and below-ground 413 

biodiversity has previously been demonstrated globally (Cameron et al., 2019) and for other 414 

Amazonian areas (Ritter et al., 2019a). However, for Amazonia this mismatch was partial. 415 

Across habitats, no correspondence was found between below-ground prokaryote or eukaryote 416 

alpha diversity and above-ground bird or tree alpha diversity (Ritter et al., 2019a). Nevertheless, 417 

there was a gradual decrease in below- and above-ground alpha diversity from the west to the 418 

east across the Amazon basin (Ritter et al., 2019a). Indeed, bacterial diversity appears to 419 

correlate with woody plant diversity in terra firme forests (Fig. 3A), but due to the sample 420 

limitation, just four terra firme plots, we could not find a significance in this relationship.  421 

4.4 Flooding gradient and community composition: Most ASVs occur throughout the 422 

flooding gradient (Appendix 1 and 2). This result was partly expected since the seasonal flood 423 

waters could carry DNA (e.g. of inactive spores, dead or living organisms) across all várzea 424 

flood levels. Yet, the bacterial community composition of the Juruá substrate varied with flood 425 

level and woody plant diversity. This result indicates that below-ground bacteria may present 426 

different tolerances to hydrological stressors and or interdependencies with certain woody plant 427 

species. For instance, nodulation caused by nitrogen fixing bacteria are more frequent in 428 
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Amazonian seasonally flooded forests, indicating that nodulation may be favored in flooded 429 

areas (Parolin and Wittmann, 2010).  430 

 431 

5. Conclusion 432 

This is the first study to investigate the degree to which soil and litter biota are affected by the 433 

flooding gradient in Amazonian forests. In fact, as far as we are aware, substrates from only six 434 

other Amazonian várzeas have previously been investigated using a metabarcoding approach, 435 

and these studies did not consider the flooding gradient (Ritter et al., 2019b, 2019a; Ritter, 2018). 436 

Hence, the DNA barcoding data herein – consisting of a total of 19,550 ASVs, from 14 várzea 437 

and four terra firme plots – more than doubles the total database from Amazonian várzeas 438 

available to date. Considering the extent of lowland Amazonian floodplain forests, approx. 439 

516,000 km2 (Hess et al., 2015), the need for more data from different geographical areas is 440 

obvious.  441 

Studying below-ground communities along complex environmental gradients, like the one in the 442 

present study, offers an excellent opportunity to explore the responses of substrate biota to 443 

varying degrees of environmental stressors. Such studies can further our understanding of the 444 

patterns in below-ground biodiversity, their roles in the dynamics of seasonally flooded forests, 445 

and how these communities might respond to anthropogenic pressure and climate change. 446 

Therefore, the characterization of below-ground biodiversity in flooded forests, has theoretical 447 

implications for elucidating the patterns of biological diversity distribution. Practical 448 

implications include the identification of strategically important areas or areas of greater 449 

environmental sensitivity, for the conservation of biological diversity in face of environmental 450 
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change. This not trivial, as infrastructural development (e.g. hydroelectric dams) and climate 451 

change (more frequent extreme floods and droughts) are severely affecting the natural flood 452 

pulse and threaten the ecological integrity of seasonally flooded forests across Amazonia (Gloor 453 

et al., 2013; Junk et al., 2018; Latrubesse et al., 2020). Increased pressures in these ecosystems 454 

highlight the urgency for more studies of this kind to improve our understanding of biodiversity 455 

patterns and community structures as these will allow us to better foresee and mitigate climate 456 

change impacts on ecosystem functions. 457 
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Tables: 686 

 687 

Table 1. Variables used in model selection with their respective delta dAICc and weight values. 688 

The best fit model has a dAICc = 0 and is presented in bold as the alternative good models 689 

(dAICc =< 2). The response variables are below-ground Fisher's diversity for prokaryotes (16S) 690 

and eukaryotes (18S). The independent variables are flood level, sample type, water mark 691 

(measured floodwater marks on trees, with terra firme being zero), and the woody plant Fisher's 692 

diversity. The model used flood level and sample type as a fixed factor or as interacting variable. 693 

Marker Model AICc dAICc df weight 

Pr
ok

ar
yo

te
 (

16
S)

 

~ 1 89 15.9 2 <0.001 

~ Flood level 96.5 23.4 5 <0.001 

~ Sample type 75.5 2.3 3 0.2355 

~ Water mark 89.7 16.5 3 <0.001 

~ PC1 91.9 18.7 3 <0.001 

~ PC1 * Flood level 127.2 54 9 <0.001 

~ Fisher div. 85.6 12.5 3 0.0015 

~ Fisher div. * Flood level 113.3 40.1 9 <0.001 

~ Fisher div. * Sample 73.1 0 5 0.7625 

E
uk

ar
yo

te
 (

18
S)

 

~ 1 86.2 3.8 2 0.066 

~ Flood level 94 11.6 5 0.0013 

~ Sample type 82.4 0 3 0.4357 

~ Watermark 89.2 6.8 3 0.0148 

~ PC1 91.9 9.4 3 0.0039 

~ PC1 * Flood level 127.2 44.7 9 <0.001 
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~ Fisher div. 83.6 1.1 3 0.2454 

~ Fisher div. * Flood level 111.7 29.3 9 <0.001 

~ Fisher div. * Sample 83.7 1.3 5 0.2328 

 694 

 695 

  696 
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Table 2. Estimated parameters (values estimated with standardize error, t-value and respective p-697 

value) of the best fit model for 16S and the third best fit model (that included the variables 698 

selected) for 18S selected in model selection. The response variables are below-ground Fisher's 699 

alpha diversity and (above-ground) woody plant Fisher's alpha diversity with an interaction term 700 

between the above-ground alpha diversity and sample type (soil or litter). Significant factors (p < 701 

0.05) are marked in bold. 702 

  
Coefficients Estimate 

Std. 
Error t value Pr(>|t|) 

P
ro

ka
ry

ot
e 

(1
6S

) 

(Intercept) 0.6427 0.1815 3.54 0.00167 

fisher.alpha -0.2288 0.1947 -1.175 0.2515 

SampleSoil -1.3463 0.2774 -4.853 6.03E-05 

fisher.alpha:SampleSoil 0.4439 0.2797 1.587 0.12566 

E
uk

ar
yo

te
 (1

8S
) (Intercept) 0.43232 0.23733 1.822 0.0816 

fisher.alpha -0.03453 0.25159 -0.137 0.892 

SampleSoil -0.89964 0.35607 -2.527 0.0189 

fisher.alpha:SampleSoil 0.43738 0.36073 1.212 0.2376 

 703 

 704 
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