
Interpreting Neural Networks for Biological Sequences by Learning
Stochastic Masks

Johannes Lindera,b, Alyssa La Fleurb, Zibo Chenc, Ajasja Ljubetičc, David Bakerc, Sreeram Kannand,
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Supplemental Information

Table S1: An overview of interpretation methods based on masking. The columns describe (in order): Interpretation Algorithm –

Whether the method uses a generative model to infer masks, or whether the masks are optimized individually; Masking Operator

– Whether masked features are faded, blurred, zeroed or replaced with sampled values from either marginal distributions or

from a generator (”counterfactual”); Application – What application the method was demonstrated on.

Interpretation Algorithm Masking Operator Application

Scrambler Network (this paper) Generative Model Samples Bio

Fong et al. (2017) (Fong et al., 2017) Per-example SGD Fade, Blur Comp Vis

Dabkowski et al. (2017) (Dabowski et al., 2017) Generative Model Fade, Blur Comp Vis

Yoon et al. (2018) (INVASE) (Yoon et al., 2017) Generative Model Zero Comp Vis, NLP

Chen et al. (2018) (L2X)(Chen et al., 2018) Generative Model Zero Comp Vis, NLP

Carter et al. (2019) (SIS) (Carter et al., 2019) Per-example Recursion Mean, Samples Comp Vis, NLP, Bio

Zintgraf et al. (2017) (Zintgraf et al., 2017) Per-example Sampling Samples Comp Vis

Chang et al. (2018) (FIDO-CA) (Chang et al., 2018) Per-example SGD Counterfactual Comp Vis
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Figure S1: Scrambling neural networks. (A) Scrambler network architecture. The network is based on groups of residual blocks.

This particular network configuration has 5 groups of residual blocks, with 32 channels, filter width 3 and varying dilation factor

(1x, 2x, 4x, 2x, 1x). There is a skip connection (single convolutional layer with 32 channels and filter width 1) before each

residual group. All skip connections are added together with the output of the final residual group. A softplus activation is

applied to the final tensor in order to get importance scores that are strictly larger than 0. (B) Each residual group consists

of 4 identical residual blocks connected in series. (C) Each residual block consists of 2 dilated convolutions, each preceded by

batch normalization and ReLU activations. A skip connection adds the input tensor to the output of the final convolution.
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Figure S2: Scrambler extension MNIST demonstrations. (A) Uniformly random mask dropout training procedure, which teaches

the Scrambler to find alternate salient feature sets. For each input pattern, we sample a random dropout pattern containing

squares of varying width. The pattern is multiplied with the predicted importance scores, effectively zeroing out certain regions

(forcing the background distribution to be used). The dropout pattern is also passed as additional input to the Scrambler (it is

concatenated along the channel dimension), allowing the network to learn which other feature set to choose. (B) Biased dropout

training procedure. Instead of randomly sampling dropout patterns, we first let the Scrambler predict importance scores with

an all-ones dropout pattern (no dropout), which we use to form an importance sampling distribution. We then sample a

dropout pattern and use it for training the same way we trained on uniformly random patterns. (C) Another biased dropout

training approach. We first use the Scrambler to predict the importance scores given the all-ones dropout pattern as input (no

dropout). The top 5% most important features are subtracted from the all-ones pattern. Then, with a certain probability, we

either re-run the Scrambler on this updated pattern (repeating the previous steps), or we end the loop and choose this as our

final dropout pattern to train on. (D) Procedure for training the Scrambler to dynamically change the entropy of its solutions.

Instead of fitting the network to a constant KL-divergence of its scrambled input distribution, we here randomly sample bit

values and use them both as input to the network and as the target for the conservation penalty. The bit value is broadcasted

and concatenated along the input channel dimension. (E) Example attributions of MNIST digit ’2’ and ’4’ with dynamically

resized feature sets, by passing increasingly large target ’lum’ values as input to the Scrambler (’lum’ values are normalized

KL-divergence bits, see Methods). 3
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Figure S3: APARENT attributions. (A) Example attribution of a strong polyadenylation signal sequence from the APARENT

(Bogard et al., 2018) test set, using Inclusion-Scramblers trained with increasingly large tbits of conservation. Known regulatory

motifs annotated. (B) Example attributions of a polyadenylation signal sequence, comparing different methods. (C) Inclusion

and occlusion benchmark, comparing the Scrambler to Perturbation, Gradient Saliency (Simonyan et al., 2013), Integrated

Gradients (Sundararajan et al., 2017), DeepLIFT (Rescale) (Shrikumar et al., 2017) and DeepSHAP (Lundberg et al., 2017) on

the APARENT test set. In the inclusion benchmark (left), the top 20%, 10%, 5% and 2% most important nucleotide positions

per sequence is kept fixed (according to each method) while other nucleotides are replaced with random samples. In the occlusion

benchmark, these highest-scoring nucleotides are instead replaced with random samples while the remaining sequence is kept

fixed. In each, we measure how much the prediction KL-divergence is either preserved or perturbed compared to the original

sequences. (D) Non-trainable convolutional filter with a 1D gaussian kernel (filter width 6) is prepended to the final softplus

activation function of the Scrambler. (E) APARENT isoform predictions of original sequences and of corresponding sampled

sequences from the PSSMs generated by an Occlusion-Scrambler trained with tbits = 1.8, with and without the Gaussian filter.

(F) Example attributions of tbits = 1.8- and 1.5 Occlusion-Scramblers, with and without the Gaussian filter. (G) Attributions of

four human polyadenylation signals which are associated with known deleterious variants, comparing the Perturbation method

to the reconstructive Inclusion-Scrambler (tbits = 0.25 target bits) on hypothetical variants which have not been found in

the population. Gene names and clinical condition associated with the PAS annotated above each sequence (Stacey et al.,

2011; Medina-Trillo et al., 2016; Altay et al., 1991; Garin et al., 2010). In each of the four examples, the Scrambler correctly

detects the loss of the presumed RBP binding site or otherwise important motif due to each respective variant (loss of the CstF

binding motif in FOXC1, TP53 ; loss of the SRSF10 binding motif in INS ; loss of the T-rich DSE motif in HBB). (H) Left:

Example attributions of a medium-strength polyadenylation signal sequence, using three Scramblers which have been optimized

for different objectives: (Reconstructive features) reconstructing the original prediction, (Negative features) minimizing the

prediction, and (Positive features) maximizing the prediction. Right: APARENT isoform predictions of original sequences

and of corresponding sampled sequences from the PSSMs generated by the Negative-feature and Positive-feature Scrambler

respectively.
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Figure S4: Optimus 5-Prime attributions. (A) Optimus 5-Prime (Sample et al., 2019) MRL predictions of test sequences com-

pared to predictions of sequence samples drawn the corresponding Scrambler PSSMs (tbits = 0.125). (B) Inclusion benchmark

on synthetic test sequences. For 1 start / 1 stop, 6 nucleotides are fixed, for 1 start / 2 stop and 2 start / 1 stop, 9 nucleotides

are fixed and for 2 start / 2 stop, the 12 most important nucleotides are fixed. Remaining nucleotides are replaced with random

samples and the prediction KL-divergence is compared to the original sequences is used to evaluate reconstruction quality. (C)

Mean importance scores (and standard deviation) for positions containing either an arbitrary nucleotide (’Bkgr’), a start codon

or a stop codon, measured across the synthetic test of sequences per logic function. (D) Average recall for finding one of the

start codons and one of the stop codons in the 6 most important nucleotides, as identified by each method, measured across

the synthetic test sets. (E) Example attribution of a 5’ UTR sequence with two IF start codons (marked with red letters in the

top sequence) and two IF stop codons (marked with blue letters). (F) Example attributions using a Scrambler network trained

with the mask dropout procedure (see Methods for details). By masking different parts of the sequence, the Scrambler discovers

other valid salient feature sets (IF uORFs). (G) Left: Attribution of a ClinVar variant, rs779013762, in the ANKRD26 5’

UTR, which is predicted by Optimus 5-Prime to be a functionally silent mutation. The variant creates an IF uORF overlapping

an existing IF uORF. The per-example fine-tuning step (which starts from the Low entropy penalty-Scrambler scores) finds

a minimal salient feature set in the variant sequence (one IF uORF), while the per-example optimization (which starts from

randomly initialized scores) gets stuck in a local minimum. Middle: Attribution of a ClinVar variant, rs201336268, in the

TARS2 5’ UTR, which destroys two overlapping IF uORFs and is predicted to lead to upregulation. Both the fine-tuning step

and the independent per-example optimization finds that no features are important in the variant sequence (both IF uORFs

were removed by the variant and a fully random sequence has on average the same predicted MRL as the variant sequence).

The Perturbation method has trouble explaining either of these variants due to saturation effects of the multiple IF stop codons.

Right: Attribution of a rare variant, rs886054324, in the C19orf12 5’ UTR, which creates two IF uORFs overlapping a strong

OOF uAUG (hence a silent mutation). All attribution methods identify the OOF uAUG as the major determinant, however

the Low entropy penalty-Scrambler incorrectly marks an (unmatched) stop codon in the wildtype sequence as important. Both

the High entropy penalty-Scrambler and the fine-tuning step based off the Low penalty-Scrambler correctly filters the stop

codon. (H) Benchmarking results on the 1 Start / 2 Stop dataset (see Supplementary Fig. S4B-D), comparing the Low entropy

penalty-Scrambler network to running per-example fine-tuning of those scores and to the baseline method of optimizing each

example from randomly initialized scores. Reported are the mean squared error between predictions on original and scrambled

sequences (’MSE’), the error rate (1 − Accuracy) of not finding one Start codon and one Stop codon in the top 6 nt (’Error

Rate’), and the mean per-nucleotide KL-divergence between the scrambled PSSM and the background PSSM (’Conservation’).

(I) Example Scrambler attributions with the mask dropout mechanism on two native human 5’ UTRs.
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Figure S5: Heterodimer predictor attributions. (A) Protein heterodimer binder RNN predictor, which was trained on compu-

tationally designed (dimerizing) pairs for positive data and randomly paired binders as negative data (see Methods for details).

The RNN consists of a shared GRU layer, a dropout layer, and two fully-connected layers applied to the concatenated GRU out-

put vectors. The final output (sigmoid activation) is treated as the Bind / No Bind classification probability. (B) Supplemental

benchmark of Gradient Saliency (Simonyan et al., 2013), DeepLIFT (Shrikumar et al., 2017) and DeepSHAP (Lundberg et al.,

2017), using only the positive-valued importance scores. Left: Prediction KL-divergence of scrambled sequences compared to

original test set sequences when either replacing all but the top X% most important amino acid residues with random samples

(inclusion) or, conversely, when replacing the top X% nucleotides with random samples and keeping the remaining sequence

fixed (occlusion). Right: Mean ddG Difference for the top 8 most important residues according to each method, measured across

the test set, and HBNet (Maguire et al., 2018) Average Precision based on each method’s importance scores. (C) Supplemental

comparison of different versions of the Scrambling Neural Network (see Methods for a full description of each version). Left:

KL-divergence benchmark based on the predictor RNN. Right: Mean ddG Differences and HBNet Discovery Precisions. (D)

Supplemental comparison of other methods that optimize similar objectives as the Scrambler (see Methods for a full description

of each method). Left: KL-divergence benchmark based on the predictor RNN. Right: Mean ddG Differences and HBNet

Discovery Precisions. (E) Supplemental comparison between Scrambling Neural Networks and Sufficient Input Subsets (SIS)

with ’hot-deck’ sampled masking (the number of samples used at each iteration is varied from 1 to 32; see Methods for details).

Left: KL-divergence benchmark based on the predictor RNN, Mean ddG Differences and HBNet Discovery Precisions annotated

on top of the bar chart. Right: Average number of predictor queries used to interpret a single input pattern (for the Scrambler,

this is the amortized cost of training divided by the number of test patterns interpreted).

Figure S6: Heterodimer comparative attribution visualization. Example attributions of a designed heterodimer binder pair, for

a selection of benchmarked methods.
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Figure S7: Native and de novo protein trRosetta attributions. (A) Four different Inclusion-PSSMs optimized to reconstruct

the structural trRosetta (Yang et al., 2020) prediction of a Sensor Histidine Kinase. Each PSSM is optimized for increasingly

larger tbits. The bottom sequence logo represents the Rosetta score function breakdown per residue (−REU). Spearman r

ranged between 0.25 and 0.32 when comparing the absolute numbers of Rosetta energy values to the optimized importance

scores. Shown is also the average structure prediction for 512 samples. (B) Inclusion-Scrambled PSSMs of the Hen Egg-white

Lysozyme. The PSSM was re-optimized for three different target conservation bits. Spearman r ranged between 0.25 and 0.33

compared to the Rosetta score function. (C) Architecture for per-example scrambling of a single protein sequence according to

the contact distributions predicted by trRosetta. Here, we do not use a Multiple Sequence Alignment (MSA), but instead pass

the Gumbel-sampled sequence to the PSSM input and an all-zeros matrix to the DCA input. Total KL-divergence between

trRosetta-predicted distributions (distance and angle-grams) of the original sequence and samples drawn from the scrambled

PSSM is either minimized or maximized (inclusion or occlusion respectively). (D) Reference sequence and predicted contact

distribution for a hairpin protein engineered by Activation Maximization. (E) Top: Inclusion-PSSM of the engineered hairpin

protein, obtained after optimization with a highly conserved background distribution (generated by HHblits (Remmert et al.,

2020)). Bottom: Inclusion-PSSM of the engineered hairpin protein with a less conserved background distribution (smoothed

with pseudo counts).
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Feijoo, J., and Escribano, J., 2016. Rare FOXC1 variants in congenital glaucoma: identification of translation

regulatory sequences. Eur. J. Hum. Genet., 24, 672–680.
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