
 1 

 

  

 

 

 

 

Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events 

 

 

 

Hongmi Lee1*, Janice Chen1 
 

1Department of Psychological and Brain Sciences,  

Johns Hopkins University,  

Baltimore, MD 21218, USA 

 

* Correspondence: Hongmi Lee (hongmi.lee@jhu.edu) 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.24.441287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441287
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

ABSTRACT  

 

Human life consists of a multitude of diverse and interconnected events. However, extant 

research has focused on how humans segment and remember discrete events from continuous 

input, with far less attention given to how the structure of connections between events impacts 

memory. We conducted an fMRI study in which subjects watched and recalled a series of 

realistic audiovisual narratives. By transforming narratives into networks of events, we found 

that more central events—those with stronger semantic or causal connections to other events—

were better remembered. During encoding, central events evoked larger hippocampal event 

boundary responses associated with memory consolidation. During recall, high centrality 

predicted stronger activation in cortical areas involved in episodic recollection, and more similar 

neural representations across individuals. Together, these results suggest that when humans 

encode and retrieve complex real-world experiences, the reliability and accessibility of memory 

representations is shaped by their location within a network of events.  
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INTRODUCTION 

 

Remembering the experiences of our lives requires collecting and connecting the pieces and 

reasons for what transpired. When we tell each other about the minutes and hours leading up to 

this moment, the tale will be composed of a string of time periods, "events"1,2, distinguished by 

properties such as their locale or mood, and by our companions or goals at the time. Traditional 

experimental memory paradigms3,4 rely on isolated stimuli in which meaningful connections 

between memoranda across time are removed via trial randomization. Yet in reality, each event 

exists within, and is to some extent defined by, a dense network of connections across time. 

These connections come in multiple forms: different timepoints could share properties to greater 

or lesser degrees, and actions earlier may have consequences later. When remembering and 

retelling, we often need to recapitulate not only the most important individual events, but also 

the overall structure of the experience, i.e., the pattern of connections across time5,6. Thus, it is 

important to understand in what ways the web of interrelations between events contributes to 

our memories of those experiences. 

In order to test how inter-event structure relates to later memory, experimenters must 

use study material which contains inter-event structure. Recently, researchers have sought to 

incorporate the complex, multi-event nature of real-world input into laboratory experiments by 

using auditory and/or visual narratives7,8. Since narratives are temporally continuous, a major 

question in the literature has been how the human brain identifies and remembers discrete 

events from continuous experiences2,9,10. As input arrives from the world, the perceiver 

constructs a mental model of the situation, which consists of agents, objects, spatiotemporal 

contexts, and the relations between these components11. Changes in the ongoing situation 

trigger the registration of the just-concluded event into long-term memory, evoking transient 

responses in the hippocampus and its cortical partners12,13. The boundaries between events are 

also associated with shifts in neural activation patterns in higher associative areas in the default 

mode network (DMN14)15. DMN activity patterns specific to individual events are thought to 

represent situation models16, and are reinstated during narrated memory recall17,18. However, 

these studies focus on how each event is segmented from its temporally adjacent neighbors. 

How do the myriad connections between events, both temporally proximal and distal, impact the 

cognitive and neural underpinnings of naturalistic memory? 

Inter-event connections could benefit both memory encoding and retrieval. At encoding, 

events with strong connections to numerous other events might be frequently reactivated by 

these links to form robust and integrated representations19,20. At retrieval, events with many 
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connections might be more likely to be cued by other events, enhancing their accessibility. 

These enhancing effects of inter-event connections on memory have been demonstrated in the 

reading comprehension literature, which focused on casual relations in relatively short and 

carefully designed text passages21,22. For example, statements that form causal chains are 

better remembered than isolated statements, and memory accuracy for a statement increases 

with the number of causal connections that it has22,23. Causal connectivity between statements 

also predicts how important readers will deem a given statement to be, and what they will judge 

to be the gist of the narrative22,24. The current study aims to examine the mnemonic benefits of 

inter-event connections in light of the burgeoning cognitive neuroscience of memories for 

events. Using previously unavailable neuroimaging approaches, we investigate the effect of 

inter-event structure on brain functions supporting the encoding and retrieval of event 

representations. In addition to testing the influence of causal relations, we take advantage of 

natural language processing techniques which allow effortless quantification of semantic 

similarity between text descriptions of complex events25,26. These non-causal (“semantic”) 

relations, based on shared meaning and overlapping components between events, may 

constitute a previously underexplored pathway through which inter-event connections enhance 

memory.   

Here, we propose that when people view and recall realistic, continuous audiovisual 

stimuli (e.g., movies), events with stronger and more numerous semantic or causal connections 

to other events will be better remembered, with concomitant hippocampal and DMN activity 

reflecting enhanced encoding and retrieval-related processing for these events. We conducted a 

functional magnetic resonance imaging (fMRI) study in which participants watched a series of 

movies and then verbally recounted the movie plots. To quantify and assess the semantic 

relationship between events within a movie, we employed a novel approach scalable and easily 

generalizable to different types of narratives (Figure 1). In this method, each narrative is 

transformed into a network of interconnected events based on semantic similarity measured 

from sentence embedding distances. Behavioral results revealed that events with higher 

centrality (i.e., connected to a larger number of other events) were more likely to be recalled, 

without showing primacy and recency effects typical in traditional random list memory 

experiments3,27. High centrality events were also associated with the neural signatures of 

stronger and more accurate recall: greater activation and more consistent neural patterns 

across individuals in the DMN areas including the posterior medial cortex (PMC). The 

hippocampus showed higher activation following the offset of high centrality events, suggesting 

that stronger hippocampus-mediated encoding contributed to the high centrality advantages. 
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Causal relations, defined by human judgments, predicted memory success and neural 

responses in a similar way to semantic relations, but also made an independent contribution to 

each. Overall, our findings demonstrate that memories for events are shaped by their location 

within a narrative network, highlighting the importance of considering inter-event structure when 

studying the cognitive and neural mechanisms of complex and continuous real-world memory. 

 

 

 
 

Figure 1. Semantic narrative networks. a. To create semantic narrative networks, each movie 
was split into events, and independent annotators provided text descriptions of the events. The 
text descriptions were transformed into sentence embedding vectors using Google’s Universal 
Sentence Encoder (USE)25. Semantic similarity between events was computed as the cosine 
similarity between the USE vectors. A semantic narrative network was defined as a network 
whose nodes are movie events and the edge weights are the semantic similarity between the 
events. b. Semantic narrative networks of four example movies used in the fMRI experiment. 
Edge weights were thresholded at cosine similarity = .6 for visualization purposes. Node size is 
proportional to centrality. Edge thickness is proportional to edge weights. c. Semantic centrality 
(normalized degree) for individual movie events of the 10 movies used in the fMRI experiment. 
Different colors denote different movies.    

 

 

RESULTS  

 

Behavioral characteristics of unguided narrative recall 

We first examined the behavioral characteristics of free spoken narrative recall. Subjects 

watched a series of short movies with unique narratives (Supplementary Table 1) and then 

verbally recalled the movie plots while undergoing functional MRI. Subjects were instructed to 
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describe what they remembered from the movies in their own words in as much detail as they 

could, regardless of the order of presentation. No external cues or experimenter guidance were 

provided during recall.  

 

 

 
 

Figure 2. Unguided spoken narrative recall behavior. a. The duration and order of spoken 
recall for two example fMRI subjects. Each colored rectangular dot represents a movie event. 
Different colors denote different movies. The x and y coordinates of a dot represent the temporal 
position of the event during recall and movie watching, respectively. The width and height of a dot 
represent the duration of the event during recall and movie watching, respectively. b. Recall order 
(top) and recall probability (bottom) of the ten movies used in the fMRI experiment. c. Recall order 
of individual movie events in four example movies. d. Recall probability of individual movie events 
for the ten movies shown in different colors. In b and c, recall order was defined as the rank 
among recalled movies or events (i.e., 1 = recalled first, N = recalled last, where N is the total 
number of movies or events). Shaded areas indicate SEM across subjects. In b and d, recall 
probability was calculated as the proportion of subjects who recalled each movie or event. 
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Two example subjects’ recall behaviors are depicted in Figure 2a. On average, subjects 

recalled 9 out of the 10 movies (s.d. 1.2) and the recall lasted 32.4 minutes in total (s.d. 14.5 

min). Each movie was divided into 10 – 35 events by an independent coder based on major 

shifts in the narrative (e.g., time, location, action). Subjects on average recalled 77.6% of the 

events within each recalled movie (s.d. 11.2%). Movies tended to be recalled in the original 

presentation order (mean Spearman’s ρ between the presentation order and the recalled order 

= .52, s.d. across subjects = .55; Figure 2b, top panel). Although subjects were not explicitly 

instructed to perform serial recall, events were recalled strictly in the order in which they 

occurred within each movie (mean ρ = .97, s.d. = .03; Figure 2c). Thus, recalling an event likely 

served as a strong cue for the following event which was often semantically/causally related.  

Contrary to traditional random list memory experiments3,27, we did not observe the 

classic primacy and recency effects on recall probability3 either at the movie level or the event 

level. The proportion of subjects who successfully recalled a movie was not higher for the first or 

last few movies compared to the movies presented in the middle of the list (Figure 2b, bottom 

panel). Likewise, the recall probability of the first/last few events was not higher than that of the 

events presented in the middle, either within each movie or across all movies (Figure 2d). 

Specifically, there was no difference between the mean recall probabilities of the first/middle/last 

three events of each movie (F(2,18) = .78, p = .47, η2 = .05). These results suggest that 

memorability of a movie event was largely influenced by narrative properties beyond the serial 

position of events.   

 

Narrative network centrality predicts what people will remember later  

One important factor that may have affected the behavioral characteristics of movie event recall 

is the inter-event structure inherent in narratives. We used a novel approach to quantify 

narrative structure by transforming each movie plot into a network of events (Figure 1), in which 

the connections between events were determined by their similarity based on semantic 

contents. To measure semantic similarity between movie events, we first converted the text 

descriptions of the events, generated by independent annotators, into vectors of 512 numbers 

using Google’s Universal Sentence Encoder (USE25). Consistent with a recent study26, the 

trajectories of movie annotations in the high-dimensional vector space were highly consistent 

across annotators (Supplementary Figure 1), demonstrating that the text embeddings captured 

the semantic gist despite the differences in specific words used to describe the events. 

Likewise, the USE vectors of recall transcripts were similar to those of movie annotations and 

were also similar across subjects (Supplementary Figure 2). Semantic similarity between events 
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was defined as the cosine similarity between their USE vectors.  

 Our main variable of interest reflecting the inter-event narrative structure was the 

centrality (i.e., normalized degree) of individual events within a narrative network (Figure 1c). By 

definition, events with stronger (higher semantic similarity) and greater numbers of connections 

with other events had higher centrality. Critically, semantic centrality positively predicted 

subsequent event recall probability measured as the proportion of subjects recalled each event 

(r(202) = .20, p = .004, 95% confidence interval (CI) = [.07, .33]; Figure 3a). To further test the 

effect of semantic centrality in individual subjects, we grouped events into high or low centrality 

conditions within each movie (i.e., events whose semantic centrality values are within the 

top/bottom 40%), and measured the proportion of successfully recalled events in each 

condition. The recall probability averaged across movies was higher for high than low semantic 

centrality condition (t(14) = 6.12, p < .001, Cohen’s dz = 1.58, 95% CI of the difference = 

[.06, .12]; Figure 3b).   

 We next demonstrated that inter-event semantic relation and causal relation each 

uniquely explains narrative memory performance. Classic studies on story comprehension have 

reported that the number of causal connections with other events predicts the perceived 

importance and memorability of an event22,24. To test the effect of causal relations, we created 

the causal narrative networks of the movies (Supplementary Figure 3) by having independent 

coders identify causally related events within each movie (see Supplementary Figure 4 for 

detailed descriptions of causality responses). The connection strength between a pair of events 

was defined as the proportion of coders who responded that the pair is causally related. 

Centrality (i.e., normalized degree) of each event was then computed within each causal 

narrative network. The causal centrality was positively correlated with semantic centrality (r(202) 

= .28, p < .001, 95% CI =[.15, .41]) and recall probability (r(202) = .29, p < .001, 95% CI = 

[.16, .42]; Figure 3c). Recall probability was also higher for high than low causal centrality 

events within each subject (t(14) = 8.23, p < .001, Cohen’s dz = 2.12, 95% CI of the difference = 

[.1, .17]; Figure 3d), replicating earlier studies22,23. Importantly, a mixed-effects logistic 

regression analysis (see Methods) revealed that semantic centrality explains successful event 

recall even after controlling for causal centrality (β = .17, standard error (SE) = .05, χ2(1) = 

12.24, p < 0.001) and vice versa (β = .38, SE = .05, χ2(1) = 55.04, p < 0.001).  

 We conducted a pre-registered online experiment (N = 393) and replicated the same 

behavioral characteristics of narrative recall using a new set of 10 short movies (Supplementary 

Figure 5). Each subject watched one of the movies and then performed a free written recall of 

the movie plot. Consistent with the behavioral results from the fMRI experiment, semantic 
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centrality (β = .17, SE = .03, χ2(1) = 48.52, p < 0.001) and causal centrality (β = .44, SE = .03, 

χ2(1) = 255.67, p < 0.001) each uniquely predicted the successful recall of an event, without any 

clear evidence of serial position effects (i.e., no difference between the mean recall probabilities 

of the first/middle/last three events of each movie, F(2,18) = .85, p = .44, η2 = .04).     

   

 

 
 

Figure 3. Effects of narrative centrality on recall performance. a. Correlation between semantic 
centrality and recall probability. b. Recall probability for High (top 40%) vs. Low (bottom 40%) semantic 
centrality events defined within each movie (averaged across movies). c. Correlation between causal 
centrality and recall probability. d. Recall probability for High (top 40%) vs. Low (bottom 40%) causal 
centrality events defined within each movie (averaged across movies). In a and c, each dot represents 
an individual movie event. Different colors denote different movies. In b and d, white circles represent 
individual subjects. Black diamonds represent the mean across subjects within each condition. Error 
bars show SEM across subjects. **p < .01, ***p < .001. 

 

 

High centrality events more strongly activate DMN during recall  

Narrative network centrality predicted successful memory recall of movie events. Does it also 

predict brain responses associated with movie watching and recall? We first identified brain 

regions whose activation scaled with the semantic centrality of events. In this and all following 
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analyses, we excluded the first event of each movie from the movie watching data. This was to 

minimize the influence of transient changes in activation associated with the boundaries 

between narratives12,28. The movie boundary-related responses also disrupted event-specific 

neural patterns by creating similar activation patterns across all movies (Supplementary Figure 

6).  

We performed a whole-brain general linear model (GLM) analysis designed to predict 

the mean activation of individual events with their semantic centrality. Group-level analysis of 

the subject-specific beta maps showed that, at a liberal threshold (uncorrected p < .001), higher 

semantic centrality of an event was associated with stronger activation in several regions 

including visual and auditory association cortices and precuneus during movie watching 

(Supplementary Figure 7a). The involvement of sensory areas may reflect potential high-level 

perceptual differences between the high and low centrality events, although low-level visual and 

auditory features including luminance, contrast, and audio amplitude were not significantly 

modulated by semantic centrality (all χ2(1)s < 1.94, ps > .16). More importantly, during recall, 

events with higher semantic centrality more strongly activated default mode network (DMN) 

areas including the angular gyrus (ANG) and PMC (Supplementary Figure 7b). DMN areas have 

been strongly associated with episodic recollection16,29. We also observed higher activation 

during recall for high than low semantic centrality events in the bilateral hippocampus (t(14) = 

2.71, p = .017, Cohen’s dz = .7, 95% CI of the difference = [.01, .05]). These results are in 

accordance with the positive relationship between recall performance and semantic centrality, 

and may suggest that high centrality events were more strongly recollected with rich episodic 

details.  

We used causal centrality as a regressor in the GLM analysis and again found greater 

activation in the same DMN areas for higher centrality events during recall (Supplementary 

Figure 7d). In this and following fMRI analyses, the effects of causal centrality were generally 

comparable to those of semantic centrality, except that causal centrality effects were weaker in 

analyses involving intersubject similarity. Thus, we focus on the semantic centrality effects and 

report the causal centrality effects in Supplementary Figure 8. We consider potential differences 

between semantic and causal centrality in Discussion.   

 

Neural patterns in DMN reflect both event-specific representations and narrative network 

structure 

Prior studies have shown that narrative events are represented as distributed patterns of 

activation in DMN17,18. How does the inter-event structure relate to the neural representations of 
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events during movie watching and recall? To answer this question, we performed an 

intersubject pattern correlation (pISC) analysis17. Within a brain region, event-specific pISC was 

computed as the mean spatial similarity (i.e., Pearson correlation) between a subject’s 

activation pattern of an event and each of the other subjects’ activation pattern of the matching 

event (Figure 4a). By measuring neural signals shared across subjects, the intersubject 

correlation method was expected to reduce the influence of task-unrelated idiosyncratic 

noise30,31.  

 We first created whole-brain pISC maps to identify brain regions that showed robust 

event representations shared across subjects. For each cortical parcel of an atlas32, we 

computed the mean pISC averaged across events and subjects. We then performed a 

nonparametric randomization test to determine whether the mean pISC was significantly 

different from a null distribution generated by randomly shuffling event labels across all movies. 

Replicating our prior study17, positive pISC was observed in widespread cortical regions during 

both movie watching and recall (FDR corrected q < .05). During movie watching 

(Supplementary Figure 9a), the strongest pISC was found in sensory cortices, as all subjects 

processed the same audiovisual stimuli. During recall (Figure 4d), DMN areas, especially PMC, 

showed the strongest pISC, consistent with the view that PMC and functionally connected areas 

are engaged in the episodic construction and representation of events or situation models16.  

 We next demonstrated that neural patterns in the DMN areas reflect not only the 

situations specific to individual events within each movie, but also the semantic relationships 

between them during recall. We used whole-brain representational similarity analysis (RSA33): 

for each cortical parcel and movie, we correlated the event-by-event similarity matrix based on 

the text descriptions of events (i.e., USE vectors from the movie annotations) and the similarity 

matrix based on neural responses during recall (Figure 5). The neural similarity was again 

computed as intersubject pattern correlation, but here the pISC was computed between different 

events rather than matching events. Statistical significance was determined by randomization 

tests using event labels randomly shuffled within each movie, and then corrected for multiple 

comparisons across parcels (FDR q < .05). We found positive correlations between the 

semantic similarity and neural similarity in parcels mostly within DMN, especially those in and 

around PMC (Figure 5). We also observed similar but stronger effects in DMN using the 

semantic similarity matrix generated from subjects’ recall transcripts rather than movie 

annotations (Supplementary Figure 10b).  
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Figure 4. Event-specific intersubject pattern correlation. a. Intersubject pattern correlation 
(pISC) was computed for each movie event by correlating the event-specific activation pattern 
(averaged across times within the event) of a subject and that of each of the other subjects. b. 
Posterior medial cortex (PMC; orange) and early visual cortex (EVC; green) regions-of-interest 
visualized on the inflated surface of a template brain (medial view). c. pISC in PMC and EVC 
during movie watching (left) and recall (right). Black diamonds show the mean pISC averaged 
across all subjects and movie events. Orange and green histograms show the null distributions 
of the mean pISC in PMC and EVC, respectively. d. Whole-brain surface map of mean pISC 
during recall. pISC was computed for each of 400 parcels in a cortical atlas32. The pISC map was 
arbitrarily thresholded at r = .015 for visualization purposes. pISC values in all visualized parcels 
were significantly greater than zero based on randomization tests (FDR-corrected q < .05 across 
parcels). e & f. pISC for High vs. Low semantic centrality events during recall and the difference 
(Diff) between the two conditions in PMC (e) and EVC (f). For High and Low semantic centrality 
conditions, white circles represent individual subjects. Black diamonds represent the mean across 
subjects within each condition. Error bars show SEM across subjects. For the difference between 
High and Low conditions (Diff), black diamonds show the true subject average, and histograms 
show the null distribution of the mean difference. In c, e, and f, statistical significance reflects 
difference from zero based on randomization tests. *p < .05, ***p < .001. 
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Figure 5. Representational similarity during recall. To identify brain regions whose activation 
patterns during recall reflect the whole semantic narrative network structure, we performed a 
representational similarity analysis (RSA33). For each cortical parcel, the representational similarity 
between the fMRI patterns and movie annotations was computed within each movie by correlating the 
cross-event intersubject pattern similarity matrix and the USE sentence embedding vector similarity 
matrix. The correlation coefficients were averaged across movies and subjects. The resulting mean 
representational similarity was tested for statistical significance against zero using a randomization 
test. The whole-brain RSA map was thresholded at q < .05 (FDR-corrected across parcels). 

 

 

Narrative network centrality predicts the between-brain similarity of event 

representations  

Our next key question was whether the centrality of events modulates the quality of event-

specific neural representations in DMN measured as pISC. Here, we used a region-of-interest 

(ROI) approach (Figure 4b) and focused on PMC, which showed the strongest effects in the 

whole-brain pISC and RSA analyses above. As a lower-level control region, we used the early 

visual cortex (EVC). Both regions showed event-specific neural patterns (i.e., significantly 

positive pISC) during movie watching (pISC in PMC = .12, EVC = .3, one-tailed randomization 

ps < .001; Figure 4c, left panel) and recall (pISC in PMC = .06, EVC = .01, ps < .001; Figure 4c, 

right panel).  

 For each ROI, we compared the mean pISC of high vs. low semantic centrality events 

defined within each movie. Randomization tests were used to test the statistical significance of 

the difference between conditions. During recall, higher semantic centrality of an event was 

associated with higher pISC in PMC (high − low difference = .019, two-tailed randomization p 
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= .036; Figure 4e), whereas lower semantic centrality was associated with higher pISC in EVC 

(difference = −.013, p = .011; Figure 4f). These findings indicate that high semantic centrality 

events were represented in a more reliable and convergent manner across brains within a 

higher associative region supporting situation model representations, but not within a sensory 

control area. In contrast, no significant difference between conditions was observed in either 

ROI during movie watching, although the direction of effect was consistent with that during recall 

in both ROIs (PMC difference = .019, p = .17; EVC difference = −.031, p = .12; Supplementary 

Figure 9b). While speculative, the diminished effect of centrality on pISC during movie watching 

may reflect that the structure of the whole narrative becomes apparent only after subjects 

finished watching the movies (i.e., during recall).  

In this and all the above analyses involving pISC during recall, twelve events recalled by 

fewer than five subjects were excluded. However, our main pISC analysis results remained 

qualitatively identical when all events were included in the analysis (Supplementary Figure 11).  

 

Narrative network centrality modulates hippocampal encoding signals during movie 

watching 

Hippocampus has been known to play a crucial role in encoding continuous narratives as 

discrete events34. Hippocampus activation increases at the offset of a movie event, and the 

magnitude of the activation predicts subsequent remembering and neural reactivation of the 

event12,15,35. This offset response has been interpreted as the registration or consolidation of the 

just-concluded event into long-term memory. We tested whether the centrality of events 

influences the offset-triggered hippocampal encoding signal during movie watching, potentially 

mediating the behavioral effect of narrative network centrality. We measured the time courses of 

hippocampal BOLD activation locked to the boundaries between events, and found that 

hippocampal responses were higher following the offset of high than low semantic centrality 

events (Figure 6a). In contrast, hippocampal responses following the onset of high vs. low 

centrality events were not significantly different from each other (Figure 6b), confirming that 

semantic centrality specifically affected the encoding of information accumulated during just-

concluded events. These results may support the idea that rich connections between events 

lead to stronger hippocampus-mediated encoding.          

Hippocampus also interacts with higher associative cortices when encoding naturalistic 

events36, and increased hippocampus-cortex connectivity during encoding is associated with 

successful learning and memory formation37,38. Does the centrality of events affect 

hippocampal-cortical coupling as well? We used intersubject functional connectivity analysis 
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(ISFC31) to measure the interaction between the hippocampus and cortical ROIs during movie 

watching. ISFC computes correlations between activation time courses of different brain regions 

across subjects rather than within subjects, which makes it possible to isolate stimulus-locked 

activity from background noise31. We first computed ISFC between the hippocampus and PMC 

during the 26 movie events which were 22.5 seconds (15 TRs) or longer, and then correlated 

the ISFC values with the semantic centrality of the events. We found that the hippocampal-PMC 

interaction was stronger for higher centrality events (r(26) = .49, p = .01, 95% CI = [.13, .74]). 

No such relationship with centrality was observed for the hippocampal-EVC interaction (r(26) 

= .01, p = .95, 95% CI = [−.38, .4]). We observed comparable results when expanding the 

analysis to the 44 events which were 19.5 seconds (13 TRs) or longer (PMC r(44) = .29, p 

= .06, 95% CI = [−.01, .54]; EVC r(44) = .05, p = .75, 95% CI = [−.25, .34]). The stronger 

hippocampal-PMC connectivity during higher centrality events might reflect greater 

reinstatement of other event representations cued by overlapping components (e.g., ref.39). 

However, due to the limited number of movie events included in the analysis, it will be important 

to replicate these findings with a larger dataset.    

 

 

 
 

Figure 6. Effects of semantic centrality on hippocampal event boundary responses. a & b. 
Mean hippocampal BOLD response time courses aligned at the offset (a) or onset (b) of events 
during movie watching. Solid lines and dotted lines show responses for the high and low semantic 
centrality events, respectively. The BOLD time course of each event was first baseline corrected 
by subtracting the mean response of the two TRs immediately preceding the offset/onset of the 
event from each time point. The baseline-corrected time courses were averaged across events 
within each movie and then across movies and subjects. Shaded areas indicate SEM across 
subjects. Statistical significance reflects the difference between High vs. Low centrality events at 
each time point. *q < .05 (FDR corrected across time points). 
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DISCUSSION 

 

In this study, we found that the structure of inter-event connections in complex naturalistic 

experiences predicts the behavioral and neural signatures of their memory traces. We applied a 

novel approach of transforming audiovisual movies into networks, whose nodes are events and 

whose edges are based on semantic similarity or cause-effect relationships between events. 

Subjects watched and recounted the movies in their own words; events highly connected with 

other events within the narrative network, i.e., “high centrality” events, were more likely to be 

recalled. Consistent with this behavioral effect, higher centrality was associated with greater 

hippocampal activity at event boundaries, as well as with increased hippocampal-cortical 

interaction during movie watching. Furthermore, recalling high centrality events more strongly 

recruited high-order cortical regions in the DMN involved in episodic recollection, and the 

multivoxel patterns of high-centrality events were reinstated in a more convergent manner 

across individuals, relative to lower-centrality events. These findings demonstrate that the 

specific structure of relations between events in a natural experience predicts both what will be 

remembered and what the properties of hippocampal and DMN regions will be during later 

recollection.  

Recent years have seen an explosion in the use of naturalistic stimuli such as movies 

and narratives in exploring the behavior and neuroscience of human memory, as they provide 

an engaging laboratory experience with strong ecological validity compared to isolated words or 

pictures7,8,40. These studies have suggested that findings from traditional random-item list 

paradigms, which have dominated the field for decades, do not always fully extend to 

naturalistic recall (e.g., ref.26). In line with this, we observed that the recall probability of events 

from a movie does not show serial position effects typically reported in random-item list 

learning3,27 where the first and last few items in a list tend to be better remembered than items in 

the middle. This finding was consistent regardless of whether each subject watched a single 

movie (Supplementary Figure 5c) or a series of movies in a row (Figure 2d). The lack of clear 

primacy or recency advantages may be due to the inter-event dependencies which made each 

narrative a coherent structure, supporting memories for central events which did not necessarily 

occur at the beginning or end of the story. At the same time, centrality effects may not be 

specific to narratives; semantically related items in a random list trigger recall of each other4,41, 

which could lead to better memory performance for those items. Furthermore, the event 

complexity of narratives is not likely to be the main reason for the lack of serial position effects: 

in a highly realistic encoding setting (a real-world walk) where the events consisted of unrelated 
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activities (e.g., visiting a number of artworks), naturalistic recall showed similar characteristics to 

random-item list recall42. Further studies are needed to determine the roles of structural 

coherence and event complexity in centrality effects on memory. Understanding when and how 

classic list-based memory effects fail to extend to narratives and other natural stimuli will be 

essential for evaluating the results of future studies which use complex realistic conditions to 

study memory. 

Why does higher event centrality improve memory performance? Distinct benefits may 

be present at recall and at encoding. During recall, high centrality events may have greater 

opportunity to be cued during recall, as by definition they have higher association strengths with 

other events. In our experiment, recall itself took the form of a narrative; under these conditions, 

high centrality events may have been especially likely to be recounted, because omitting them 

might disproportionately affect the logical structure and coherence of the reconstructed story. 

Inter-event connections may also benefit encoding. During movie watching, events highly 

connected with other events are more likely to reactivate and be reactivated by the other events 

containing shared components39,43. Consistent with this, we found that the coupling between the 

hippocampus and a cortical region involved in representing events (PMC16,44, see below) was 

stronger when subjects were watching events with higher semantic centrality. The reactivation 

of high centrality events during encoding may result in more robust memory for those events by 

functioning as repeated encoding, and/or integrating the interconnected events to form joint 

representations19,20,45. The benefit of high centrality during encoding is also reflected in the 

greater hippocampal responses following the offset of high than low centrality movie events 

(Figure 6a). Such hippocampal event boundary responses have been linked to successful 

encoding, and have been suggested to reflect the consolidation of just-concluded 

episodes12,13,34. It has been shown that DMN connectivity during movie-viewing is modulated by 

surprise46; one possibility is that the conclusion of a higher centrality event produces greater 

uncertainty in the ongoing narrative, thereby resulting in a more salient boundary and stronger 

boundary-evoked encoding signals.  

We demonstrated for the first time that DMN activity during remembering was modulated 

by the recollected event’s position in the narrative network. High level associative areas in the 

DMN14, especially the PMC and its functionally connected subregions, have been implicated in 

the episodic construction and representation of events16,17,44. In accordance with this view, we 

observed event-specific neural activation patterns in DMN areas during recall, and 

representational similarity analysis revealed that the relational structure of these neural event 

patterns could be predicted by human-generated descriptions of the movie and by recall 
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transcripts (for a similar approach, see ref.26). Critically, higher semantic centrality predicted 

greater activation (Supplementary Figure 7b) and between-subject pattern convergence in PMC 

(Figure 4e), neural signatures of stronger and more accurate recall of episodic details17,29,47. 

Additionally, higher intersubject similarity for high centrality events might arise from “design 

pressure” on narratives. Highly connected events are likely to be logically important in a story; 

indeed, we found that semantic centrality was positively correlated with the perceived 

importance of events as retrospectively rated by independent coders (r(202) = .22, p = .002, 

95% CI = [.08, .34]). Thus, to aid the understanding of their linked events and eventually the 

whole story, high centrality events need to be designed in a way that minimizes the variability or 

ambiguity in how people interpret them. This adoption of a similar canonical interpretation of an 

event across people gives rise to more similar neural responses across individuals48–50. Future 

work may investigate whether real-life everyday events without such design pressure would 

show similar centrality effects to what we observed here using fictional narratives.  

In contrast with the pattern in the DMN, we observed that a low-level sensory region 

(EVC) showed higher between-brain convergence for low semantic centrality events during 

recall (Figure 4f). This result should be interpreted with caution as the overall pISC was 

extremely low in EVC during recall due to the absence of shared visual stimulation (below the 

level typically considered reliable signal, in line with prior reports17,18,51). Nonetheless, we can 

speculate that the opposite effects obtained in PMC and EVC may reflect switching between 

internal and external modes of processing, primarily involving higher-order cortices in the DMN 

and sensory areas, respectively52,53. Subjects are more likely to be in internal mode that 

prioritizes retrieval54,55 while watching high centrality events that reactivate associated events, 

whereas external mode is more likely to prevail during low centrality events as subjects would 

focus primarily on the novel current input. This may result in more visually-driven memory 

reinstatement (e.g., involving salient visual fragments rather than the gist of the event) and thus 

stronger pISC in EVC for low centrality events. EVC indeed tended to show higher activation for 

low semantic centrality events during movie watching (Supplementary Figure 7a), even though 

low-level visual features such as luminance and contrast were not modulated by semantic 

centrality. Similarly, a recent study56 reported that the visual sensory network is more activated 

when subjects report a lower understanding of an ongoing narrative.   

One might have expected that the effects of narrative structure would not be apparent in 

brain responses measured during ongoing movie watching, as the full structure of inter-event 

connections is only available after all movie events are completed. Still, as discussed above, 

event centrality significantly influenced hippocampal and cortical univariate responses during 
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movie watching. A simple explanation for these results is that centrality based on partial 

narrative networks (i.e., a network that excluded events not-yet-presented) was sufficiently 

similar to the full-narrative centrality values, especially later in a movie. Another interesting, and 

not mutually exclusive, possibility is that subjects were able to predict the full-narrative centrality 

of a current event by anticipating the potential connections with future events. In support of this 

interpretation, we found a strong positive correlation between the perceived importance of 

events obtained concurrently with watching the movies and those obtained retrospectively, after 

the movie ended (r(202) = .67, p < .001, 95% CI = [.58, .74]). Predictions of event centrality 

could be based on the learned schema of canonical story structures57,58 as well as on director’s 

cues used in popular movies such as luminance and shot motion59. Future work will explore how 

brain responses are driven by the temporally evolving, rather than static, inter-event structure 

when subjects consume unpredictable stories, or actively engage in selecting upcoming 

narrative events.     

Causal relations have long been considered an important organizing factor for event and 

narrative memories22,57,60. Consistent with earlier work, we found that events with stronger 

causal connections with other events are better remembered (Figures 3c-d). Yet, while the 

effects of causality on univariate responses during movie-viewing (see also ref.56) were 

comparable to the effects of semantic centrality (Supplementary Figures 7c, 8c), multivoxel 

pattern effects of causality during recall were not as clear as those of semantic similarity 

(Supplementary Figures 8b, e). Several characteristics of causal relations in movie stimuli might 

have reduced the reliability of the effects of causal narrative network structure. First, causal 

relations were sparse and mostly identified between adjacent events (Supplementary Figures 

3a, 4d). Causal relations also have directionality (i.e., cause vs. effect) which was not 

considered in the current study. In addition, causality judgments may be more idiosyncratic: 

average across-coder correlation was lower for causal (mean r(202) = .34) than semantic 

centrality (mean r(202) = .52) when centrality was computed from each individual coder’s 

causality rating or movie annotation. It is also noteworthy that semantic and causal connections 

reflect different types of information: semantic connections are based on similar or shared 

features such as people, places, and objects, whereas causal connections additionally require 

an action, its outcome, and internal models providing a logical dependency between the two61,62. 

In this study, we did not focus on dissociating semantic and causal relations, as they are 

correlated in the movie stimuli and other naturalistic experiences. Future studies designed to 

orthogonalize different types of inter-event relations, including semantic and causal relations as 

well as other dimensions such as emotional similarity63,64, will be able to further clarify their 
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unique influences on the behavioral and neural signatures of memory.  

In summary, we applied a recently developed natural language model and neuroimaging 

techniques to a universal and natural form of human memory recall: telling stories about the 

past. This approach allowed us to demonstrate that rich connections between events in complex 

realistic experiences protect against forgetting and predict the neural responses associated with 

successful memory encoding, as well as the properties of brain activity during spoken recall. 

Consideration of the effects of inter-event structure on real-world memory may benefit practical 

applications such as the development of memory interventions for clinical and healthy aging 

populations65 or promoting learning in educational settings66–68. In addition, our work 

demonstrates that holistic metrics which capture the interrelations of events within episodes 

may be important to incorporate into models of learning and comprehension, especially as these 

models grow in their sophistication and power to explain complex experiences in the real 

world69,70. 

 

 

METHODS 

 

Participants 

Twenty-one healthy subjects were recruited from the Princeton community (12 female, ages 20 

– 33 years, mean age 26.6 years). All subjects were right-handed native English speakers and 

reported normal hearing and normal or corrected-to-normal vision. Informed consent was 

obtained in accordance with procedures approved by the Princeton University Institutional 

Review Board. Data from 6 of the 21 subjects were excluded from analyses due to excessive 

head motion (absolute displacement greater than 4 mm) in at least one scanning run.  

 

Stimuli 

The audiovisual stimuli consisted of 10 short movies including 3 animations and 7 live-action 

movies. The movies were on average 4.54 minutes long (ranged 2.15 – 7.75 minutes) and had 

narratives that varied in content and structure. Two of the movies consisted of short clips edited 

from longer full movies (Catch Me If You Can, The Prisoner). Detailed information about each 

movie is provided in Supplementary Table 1. Each movie was prepended with a 6-second long 

title scene in which the title in white letters appeared at the center of the black screen and then 

gradually disappeared. Five movies were presented in the first movie watching phase scanning 

run and the other five were presented in the second run. The movies were played consecutively 
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within each scanning run without gaps in between other than the title scenes. The presentation 

order of the ten movies was fixed across subjects. As in our prior study17, an additional 39-

second audiovisual cartoon (Let’s All Go to the Lobby) unrelated to the movie stimuli was 

prepended at the beginning of each movie watching scanning run. The introductory cartoon was 

excluded from analyses.   

 

Experimental procedures 

The experiment consisted of three phases: movie watching, free spoken recall, and cued 

spoken recall. All three phases were performed inside the scanner. Before the movie watching 

phase, subjects were told that they would be watching a series of short movies. As in our prior 

study17, we instructed subjects to pay attention to the movies as they would normally do in real 

life. Subjects were also told that they would be asked to verbally describe the movie plots later. 

The movie watching phase consisted of two consecutive scanning runs. Subjects watched five 

movies in each run (first run video duration = 24.9 minutes, second run video duration = 22.9 

minutes). No behavioral responses were required from the subjects during scanning. 

         The free spoken recall phase immediately followed the movie watching phase. Subjects 

were instructed to describe aloud what they remembered from the movies in as much detail as 

they could, regardless of the order of presentation. We encouraged subjects to speak for at 

least ten minutes and told them that if they chose to speak for longer, that would be even better. 

Subjects were also allowed to return to a movie that they had described earlier in case they 

realized they had missed something while speaking about another movie. We instructed 

subjects to verbally indicate that they were finished by saying “I’m done” after recalling 

everything they could remember. A white fixation dot was presented on the black screen while 

subjects were speaking; subjects were told that they did not need to fixate on this dot. In case 

subjects needed to take a break or the duration of the scanning run exceeded the scanner limit 

(35 minutes), we stopped the scan in the middle and started a new scanning run where subjects 

resumed from where they had stopped in the previous run. 4 of the 15 subjects included in the 

analysis had such a break within their spoken recall session.      

         During the cued spoken recall phase immediately following the free spoken recall phase, 

subjects viewed a series of titles of the ten movies they watched. For each movie, subjects were 

instructed to first read the title out loud and then describe the movie. Subjects were told to 

provide a short summary of a few sentences in case they previously described the movie during 

the free spoken recall, but describe the movie in as much detail as they could if the movie was 

previously forgotten. The cued spoken recall phase was not analyzed for the current study. 
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         All visual stimuli were projected using an LCD projector onto a rear-projection screen 

located in the magnet bore and viewed with an angled mirror. The Psychophysics Toolbox 

(http://psychtoolbox.org/) for MATLAB was used to display the stimuli and to synchronize 

stimulus onset with MRI data acquisition. Audio was delivered via in-ear headphones. Subjects’ 

speech was recorded using a customized MR-compatible recording system (FOMRI II; 

Optoacoustics Ltd.). 

 

Behavioral data collection and preparation 

Movie event segmentation. Each of the ten movie stimuli was segmented into 10 – 35 events 

(mean 20.2, excluding the title scenes) by an independent coder who was not aware of the 

experimental design or results. The coder was instructed to identify event boundaries based on 

major shifts in the narrative (e.g., location, topic, and/or time). The coder gave each event a 

descriptive label (for example, “girl inside room alone with a pizza”). The start and stop 

timestamps of each event were recorded. There were 202 movie events in total and the duration 

of events ranged from 2 to 42 s (s.d. = 7.4 s). The number and the mean duration of events for 

individual movies are summarized in Supplementary Table 2.         

 

Movie annotations. Movie annotations were provided by three independent annotators who did 

not participate in the fMRI experiment. Each annotator identified finer-grained sub-event 

boundaries within each of the 202 movie events based on their subjective judgments. The 

beginning and end of the fine-grained sub-events were also timestamped. For each sub-event, 

the annotators provided written descriptions about what was happening in the movie at that 

moment in their own words. No edits were made on the written descriptions other than 

correcting typos and removing/replacing special characters not recognized by our text analysis 

scripts. Supplementary Table 2 summarizes the number of fine-grained sub-events and the 

number of words generated by individual annotators for each movie. 

 

Recall transcripts. The audio recording of each subject’s free spoken recall was transcribed 

manually. Each recall transcript was segmented into discrete utterances based on pauses and 

changes in the topic. The recall transcripts were segmented such that each utterance was not 

longer than 50 words. Timestamps were also identified for the beginning and end of each 

utterance. Each utterance was categorized as one of the followings based on its content: 1) 

recall of specific movie events, 2) general comment about the movie, 3) memory search attempt 

(e.g., “Let’s see…”), 4) end of recall (e.g, “I’m done.”), and 5) speech unrelated to the task (e.g., 
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“Can I start now?”). In case an utterance was a recall of movie events, the specific movie events 

described in the utterance were identified. Among the different types of utterances, only the 

recall of specific movie events was used in the behavioral and fMRI analyses in the current 

study. 

  

Importance ratings. Importance ratings for each of the 202 movie events were collected from 

four independent raters who did not participate in the fMRI experiment. The raters watched each 

movie and then retrospectively rated how important each event was for understanding what 

happened within the movie on a scale from 1 (not important at all) – 10 (very important). The 

ratings were averaged within each event across raters for analyses (range 1.5 – 10 across 

events, mean 6.09, s.d. 1.92). We additionally collected importance ratings from a separate 

group of four independent raters while they were watching the 10 movies for the first time. At the 

end of each movie event, the movie stopped playing, and the raters rated the importance of the 

just-played event on a scale from 1 – 10. These rate-as-you-go importance ratings averaged 

across the raters were positively correlated with the retrospective ratings (r(202) = .67, p < .001, 

95% CI = [.58, .74]).  

 

Narrative networks 

To quantify and assess the inter-event structure of the movie stimuli, we transformed each 

movie plot into a graph/network. In this narrative network, the events within a movie (nodes) 

form connections with each other (edges), and the connection strength between a pair of events 

(edge weight) is determined by their content similarity or causality. The narrative network edges 

were unthresholded (except for the visualization of semantic narrative networks) and undirected. 

The centrality of each individual event within a movie was defined as the degree of each node 

(i.e., the sum of the weights of all edges connected to the node) in the network, normalized by 

the sum of degrees and then z-scored within each movie. Events with stronger and greater 

numbers of connections with other events had higher centrality.  

  

Semantic narrative networks. Movie annotations were used to generate narrative networks 

based on the semantic similarity between events (Figure 1). For each annotator and movie, the 

text descriptions for the fine-grained sub-events were concatenated within each movie event. 

The text descriptions were then encoded into high-dimensional vectors with Google’s Universal 

Sentence Encoder (USE25) such that each movie event was represented as a 512-dimensional 

vector. The USE vectors from the three annotators were highly similar to each other (mean 
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event-wise cross-annotator cosine similarity between all possible annotator pairs = .78; 

Supplementary Figure 1); thus the USE vectors were averaged across annotators within each 

movie event. For each movie, the narrative network was generated by using the cosine 

similarity between the USE vectors of movie event pairs as the edge weights between nodes 

(events). 

 

Causal narrative networks. To generate narrative networks based on the causal relationship 

between events (Supplementary Figure 3), we had 18 independent coders identify causally 

related event pairs (the ‘cause’ event  and the ‘effect’ event) within each movie. Each coder 

coded different subsets of the ten movies and each movie was coded by 12 (Catch Me If You 

Can) or 13 coders (all the other movies). The coders watched the movies and were given the 

movie annotation with sub-event segmentation by the annotator JL. The coders were instructed 

to consider two movie events as causally related if any fine-grained sub-event of an event is a 

strong cause of any (at least one) sub-event of the other event. Whether a causal relationship 

was strong enough to be identified depended on the coders’ subjective criteria; the coders were 

instructed to keep the criteria as consistent as possible. The coders were also told to ignore any 

causal relationship between the sub-events within the same event. Thus, an event pair always 

consisted of two different events. For each movie, the edge weights between nodes in the 

narrative network was defined as the proportion of coders who identified a movie event pair as 

causally related, regardless of the cause-effect direction. 

 

Mixed-effects logistic regression analysis of recall behavior 

We performed a mixed-effects logistic regression analysis to test the unique effect of semantic 

centrality and causal centrality on recall performance after controlling for each other. Each event 

from each subject served as a data point. Data were concatenated across all subjects. The 

dependent variable of each data point was the event recall success (1 = recalled, 0 = not 

recalled). Normalized semantic and causal centrality were included as fixed effects. Individual 

subjects and movie stimuli were included as random effects. Statistical significance of the 

unique effect of each type of centrality was tested by performing a likelihood ratio test for the full 

model against a null model including all independent variables except for the variable of interest.  

 

fMRI acquisition 

fMRI scanning was conducted at Princeton Neuroscience Institute on a 3T Siemens Prisma 

scanner with a 64-channel head/neck coil. Functional images were acquired using a T2*-
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weighted multiband accelerated echo-planar imaging (EPI) sequence (TR = 1.5 s; TE = 39 ms; 

flip angle = 50°; acceleration factor = 4; shift = 3; 60 oblique axial slices; grid size 96 × 96; voxel 

size 2 × 2 × 2 mm3). Fieldmap images were also acquired to correct for B0 magnetic field 

inhomogeneity (60 oblique axial slices; grid size 64 × 64; voxel size 3 × 3 × 2 mm3). Whole-brain 

high-resolution anatomical images were acquired using a T1-weighted MPRAGE pulse 

sequence. Scanning parameters for the anatomical images varied across subjects (15 subjects 

had 176 sagittal slices with voxel size 1 × 1 × 1 mm3; 6 subjects had 192 sagittal slices with 

voxel size .9 × .86 × .86 mm3), as the anatomical images of a subset of subjects were originally 

obtained for other projects unrelated to the current study.  

 

fMRI preprocessing 

Preprocessing of high-resolution anatomical images and cortical surface reconstruction were 

performed using FreeSurfer’s recon-all pipeline. For each scanning run, functional images were 

corrected for head motion and B0 magnetic inhomogeneity using FSL’s MCFLIRT and FUGUE, 

respectively. Functional images were then coregistered to the anatomical image, resampled to 

the fsaverage6 template surface (for cortical analysis) and the MNI 305 volume space (for 

subcortical analysis), and then smoothed (FWHM 4 mm) using the FreeSurfer Functional 

Analysis Stream. The smoothed functional data were then high-pass filtered within each 

scanning run (cutoff = 140 s). For intersubject functional connectivity analysis, we additionally 

projected out the following nuisance regressors from the filtered functional data: the average 

time courses (z-scored within each run) of 1) high s.d. voxels outside the grey matter mask 

(voxels in the top 1% largest s.d.), 2) cerebrospinal fluid, and 3) white matter31. The resulting 

time series were z-scored within each vertex or voxel across TRs. The first 2 TRs of movie 

watching scanning runs were discarded as the movies were played 2 TRs after the scanning 

onset. The first 3 TRs of both movie watching and free spoken recall scanning runs were 

additionally removed, shifting the time-courses by 4.5 s, to account for the hemodynamic 

response delay.  

 

Cortical parcellation and region of interest (ROI) definition 

For whole-brain pattern-based analyses, we used a cortical parcellation atlas based on fMRI 

functional connectivity patterns32. Specifically, we used the atlas where the cortical surface of 

the brain is divided into 400 parcels (200 parcels per hemisphere) which are clustered into 

previously reported 17 functional networks71. For region-of-interest analyses, we defined the 

bilateral posterior-medial cortex (PMC) and the bilateral early visual cortex (Figure 4b) by 
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combining parcels from the 400-parcel atlas that correspond to the areas of interest. The PMC 

ROI consisted of the posterior cingulate cortex and precuneus parcels in the default mode 

network. The early visual cortex ROI consisted of parcels around the primary visual cortex (see 

Supplementary Table 3 for the list of parcels used to create the ROIs). The bilateral 

hippocampus mask was extracted from FreeSurfer’s subcortical (Aseg) atlas on the MNI volume 

space.  

  

Univariate activation analysis 

We performed whole-brain univariate activation analysis on the cortical surface to identify 

regions whose activation scales with the narrative network centrality (Supplementary Figure 7). 

The analysis was performed separately for the movie watching phase and the recall phase. For 

each vertex of each subject, we first computed the mean activation for each movie event by 

averaging the preprocessed BOLD signal across TRs that correspond to the event. The first 

event of each movie was excluded from this and all other univariate analysis of the movie 

watching phase (see Supplementary Figure 6). For the recall phase, only the events 

successfully recalled by the subject were included in the analysis. We then performed a linear 

regression where the event-by-event activation (combined across all 10 movies) was explained 

by the semantic or causal centrality of the events, after regressing out the overall movie-level 

activation from the event-by-event activation. Finally, one-sample t-tests against zero (two-

tailed) were applied on the subject-specific vertex-wise parameter estimate maps to generate 

the group-level t-statistic map.  

We also compared the ROI-specific univariate activation for high vs. low centrality movie 

events during each experimental phase. High and low centrality events were defined as the 

events whose semantic/causal centrality metrics were within the top and bottom 40% in each 

movie, respectively. For each subject and event, the preprocessed BOLD signals were first 

averaged across voxels or vertices within an ROI and across all TRs corresponding to the 

event. The mean signal was then averaged across events in the same condition and then 

across movies, resulting in a single value per subject and condition. Two-tailed paired t-tests 

were used to test the statistical significance of the difference between the high vs. low centrality 

conditions.  

To compare hippocampal activation following the onset/offset of high vs. low centrality 

events during movie watching (Figure 6), we averaged TR-by-TR BOLD signals across voxels 

within the hippocampus for each subject. We then extracted time series around the onset/offset 

(-2 – 15 TRs) of each high/low centrality event. The first and last events of each movie were 
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excluded to minimize the effect of between-movie transitions. Each time series was baseline 

corrected by subtracting the mean activation of the two TRs immediately preceding the 

onset/offset of the event from each time point. The subject-specific time series were then 

averaged across events within each condition and then across movies. Two-tailed paired t-tests 

were used for each time point to compare the high vs. low centrality conditions. We applied the 

Benjamini-Hochberg procedure (q < .05) to correct for multiple comparisons across time points. 

 

Intersubject pattern correlation analysis 

Whole-brain intersubject pattern correlation (pISC17,30) maps were generated for the movie 

phase (Movie-Movie similarity; Supplementary Figure 9a) and the recall phase (Recall-Recall 

similarity; Figure 4d) separately. pISC was calculated in a subject-pairwise manner using the 

following procedures. For each cortical parcel of each subject, first the mean activation pattern 

of each event was generated by averaging the preprocessed movie or recall phase BOLD data 

across TRs within the event in each vertex within the parcel. Note that as recall BOLD data 

existed only for successfully recalled events, each subject had a different subset of recall event 

patterns. For each subject and event, we computed the Pearson correlation between the event 

pattern of the subject and the pattern of the matching event from each of the remaining 

subjects, which resulted in N – 1 correlation coefficients (N = the total number of subjects who 

watched/recalled the event). The correlation coefficients were then averaged to create a single 

pISC (r) value per event per subject. These pISC values were averaged across events 

(combined across all 10 movies) and subjects, resulting in a single pISC value for each parcel. 

We performed a randomization test for each parcel to test the statistical significance of the 

mean pISC. Parcel-wise mean pISC values were obtained using the same procedures as 

described above, except that we randomly shuffled the event labels before computing the 

between-subjects pattern similarity. That is, one subject’s neural pattern of an event was 

correlated with another subject’s neural pattern of a non-matching event. This procedure was 

repeated 1000 times to generate a null distribution of pISC. A one-tailed p-value was defined as 

the proportion of values from the null distribution equal to or greater than the actual mean pISC. 

The p-values from the entire cortical surface were corrected for multiple comparisons across all 

400 parcels using the Benjamini-Hochberg procedure (q < .05). 

We also computed pISC in the PMC and early visual cortex to test the relationship 

between the semantic/causal narrative network centrality metrics and event-specific neural 

representations in the ROIs. The subject-specific, event-by-event pISC values were computed 

for each ROI in the same way we computed pISC for each parcel of the whole-brain pISC map 
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above (Figure 4a), separately for movie watching and recall. We compared the pISC for high vs. 

low centrality events, defined as the events whose centrality metrics were within the top or 

bottom 40% in each movie. The pISC values were first averaged across events within the 

high/low centrality condition for each movie and then across movies, resulting in a single pISC 

value per condition per subject. We then ran a randomization test to assess whether the 

difference of pISC between the high vs. low centrality conditions, averaged across subjects, was 

significantly different from zero. A null distribution of the mean difference between the conditions 

was generated by randomly shuffling the event labels of the event-specific pISC values within 

each movie and then computing the difference 1000 times. A two-tailed p-value was defined as 

the proportion of values from the null distribution equal to or more extreme than the actual 

difference. 

In all analyses involving intersubject neural similarity (including the representational 

similarity analysis and the intersubject functional connectivity analysis), the first event of each 

movie was excluded from movie phase analyses to minimize the effect of movie onset 

(Supplementary Figure 6). For recall phase analyses, we excluded twelve events recalled by 

fewer than five subjects (1 – 3 events per movie from 6 movies). However, we obtained 

qualitatively identical results when we included all events in the analyses (Supplementary Figure 

11). 

 

Representational similarity analysis 

We performed representational similarity analysis33 by comparing the event-by-event similarity 

matrices based on two different types of event representations: the text descriptions of events 

(i.e., movie annotations or recall transcripts) and neural activation patterns measured during 

recall (Figure 5, Supplementary Figure 10b). The similarity matrix based on movie annotations 

was generated for each movie by computing the pairwise cosine similarity between the USE 

vectors of all events within the movie. This matrix was identical to the adjacency matrix of the 

semantic narrative network. To create the similarity matrix based on recall, we first extracted the 

sentences from each subject’s recall transcript describing each event and then converted them 

into USE vectors. The similarity matrix was generated for each subject and movie by computing 

the cosine similarity between the USE vectors of all events recalled by the subject. The matrices 

were then averaged across all subjects. As subjects recalled different subsets of events, the 

number of subjects averaged was different across event pairs.  

The fMRI recall pattern similarity matrix was generated for each parcel of the Schaefer 

atlas. Within each of the ten movies, we computed pattern correlations (Pearson r) between all 
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possible pairs of events between all pairs of subjects. For each subject and movie, this resulted 

in N – 1 fMRI pattern similarity matrices with the size of M × M, where N is the total number of 

subjects and M is the number of events within the movie. We took the average of each matrix 

and its transpose to make the similarity matrix symmetric (i.e., similarity between events a and b 

across subjects i and j = average of corr(subject i event a, subject j event b) and corr(subject j 

event a, subject i event b)), and then averaged the N – 1 similarity matrices to generate a single 

fMRI similarity matrix per movie and subject.  

The representational similarity between a text-based similarity matrix and an fMRI 

pattern-based similarity matrix was measured by computing the Pearson correlation between 

the lower triangles (excluding the diagonal values) of each matrix. The correlation coefficients 

were next averaged across movies and then across subjects to create a single value per parcel. 

For each parcel, a randomization test was performed to test whether the mean representational 

similarity was significantly greater than zero. We randomly shuffled the event labels of the text-

based similarity matrix within each movie and then computed the mean representational 

similarity as described above. This procedure was repeated 1000 times to generate a null 

distribution, and a one-tailed p-value was defined as the proportion of values from the null 

distribution equal to or greater than the actual mean representational similarity. The whole-brain 

p-values were corrected for multiple comparisons across parcels using the Benjamini-Hochberg 

procedure (q < .05). 

 

Intersubject functional connectivity analysis 

We performed intersubject functional connectivity analysis (ISFC31) to test the relationship 

between narrative network centrality and the hippocampus-cortex interaction during movie 

watching. We first averaged the TR-by-TR time courses of the preprocessed (non-neuronal 

signals removed; see fMRI preprocessing) functional data across all voxels/vertices within each 

of the hippocampal and cortical ROIs (PMC, early visual cortex). For each movie event as long 

as 22.5 seconds or longer (total number of events used across all movies = 26), we computed 

the ISFC between the hippocampus and a cortical ROI. Functional connectivity patterns 

computed within windows as short as 22.5 seconds have previously been shown to robustly 

predict cognitive states72. For each subject, we correlated the subject’s hippocampal time series 

of the event and the cortical ROI time series averaged across all other subjects. We then 

averaged the Pearson correlation coefficients across all subjects. This procedure was repeated 

by correlating each subject’s cortical ROI time series and the hippocampal time series averaged 

across all other subjects. Again, the correlation coefficients were averaged across subjects. We 
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then took the mean of the two averaged correlations to produce a single ISFC between the 

hippocampus and the cortical ROI for each event. Finally, we computed the Pearson correlation 

between the event-wise ISFC and the semantic/causal narrative network centrality.    

 

Low-level sensory characteristics of movie events 
We measured the low-level visual and auditory features of movie events to examine whether the 

sensory characteristics can explain the effects of centrality on neural responses during movie 

watching. For visual features, we measured luminance and contrast averaged across grayscale-

converted movie frames within each event. In each frame, luminance was defined as the mean 

of pixel values, and contrast was defined as the difference between the maximum and minimum 

pixel values. For an auditory feature, we measured the mean amplitude of sounds played during 

each event. We extracted the single-channel downsampled (8000 Hz) version of audio signals 

from the movie clips. Within each event, the audio signals were divided into 100-ms segments, 

and each segment’s amplitude was computed as the difference between the maximum and 

minimum signal intensities. The amplitudes were then averaged across all segments within 

each event. The first events of each movie were excluded from the analysis to be consistent 

with the movie phase fMRI analyses. All sensory features were z-scored across events. We 

performed mixed-effects linear regression analyses to test whether each of the event-wise low-

level sensory features was modulated by semantic centrality, using semantic centrality as a 

fixed effect and movies as a random effect. Statistical significance of the effect of centrality was 

tested via likelihood ratio tests for the full models against the null models including the random 

effect of movies only.   
 

Pre-registered online experiment 

We conducted an online experiment to replicate and generalize the behavioral results of the 

fMRI experiment with a larger number of subjects and a new set of movie stimuli 

(Supplementary Figure 5). The online experiment was pre-registered at AsPredicted 

(https://aspredicted.org/fw59g.pdf). We recruited a total of 393 subjects on Amazon’s 

Mechanical Turk using the psiTurk system73. Each subject watched one of 10 short movies and 

then provided a written recall of the movie plot. The audiovisual movie stimuli were different 

from the ones used in the fMRI experiment and included both animations and live-action 

movies. The movies were on average 9.1 minutes long (ranged 5.9 – 12.7 minutes). Each 

movie was watched by 38 – 49 subjects (mean = 39.3). Additional 99 subjects were excluded 

from the analysis because their recall was too short (< 150 words) or they had watched the 
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movie before the experiment. All subjects were provided with an informed consent form 

approved by the Johns Hopkins University Institutional Review Board.   

The experiment was run in web browsers using JavaScript. After reading instructions, 

subjects watched a 2-minute-long example video clip. An example recall of the example video 

clip was also provided to inform subjects about the level of detail they need to produce during 

recall. Subjects then watched a short movie and performed the written recall task by typing in a 

text box to retell the movie plot in their own words. To mimic the irreversible nature of the 

spoken recall used in the fMRI experiment, subjects were not allowed to backspace beyond the 

current sentence and correct already-written sentences. Subjects were encouraged to take as 

much time as needed to provide as much detail as they can remember. During the delay 

between movie watching and recall, subjects completed a short demographic questionnaire and 

the Mind-Wandering Questionnaire74, and then practiced using the text box by providing written 

descriptions of simple shapes. Subjects also completed a series of questionnaires at the end of 

the experiment, including the Survey of Autobiographical Memory75 and the Plymouth Sensory 

Imagery Questionnaire76. Findings from the delay period and post-experiment questionnaires 

will be reported elsewhere.     

As in the fMRI experiment, independent coders segmented each movie into discrete 

events (mean number of events per movie = 25.2) and provided written descriptions of each 

event. The written recall of each subject was also segmented into sentences, and the movie 

events that each sentence describes were identified. The semantic and causal narrative 

networks of the movies were generated using procedures identical to those used in the fMRI 

experiment, except that 1) the USE vectors were not averaged across annotators as each 

movie was annotated by a single coder, and 2) a total of 16 independent coders identified the 

causally related events and each movie was rated by 10 coders.  
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DATA AVAILABILITY 

The fMRI and behavioral data for this work will be publicly available via OpenNeuro 

(https://openneuro.org).  

 

CODE AVAILABILITY 

The analyses in the current manuscript used code available through MATLAB, R, and Python. 

All custom scripts used in the manuscript are available upon request from the corresponding 

author.  
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CITATION DIVERSITY STATEMENT 

Recent work in several fields of science has identified a bias in citation practices such that 

papers from women and other minority scholars are under-cited relative to the number of such 

papers in the field77–81. Here we sought to proactively consider choosing references that reflect 

the diversity of the field in thought, form of contribution, gender, race, ethnicity, and other 

factors. First, we obtained the predicted gender of the first and last author of each reference by 

using databases that store the probability of a first name being carried by a woman81,82. By this 

measure (and excluding self-citations to the first and last authors of our current paper), our 

references contain 10.45% woman(first)/woman(last), 14.93% man/woman, 25.37% 

woman/man, and 49.25% man/man. This method is limited in that a) names, pronouns, and 

social media profiles used to construct the databases may not, in every case, be indicative of 

gender identity and b) it cannot account for intersex, non-binary, or transgender people. 

Second, we obtained predicted racial/ethnic category of the first and last author of each 
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reference by databases that store the probability of a first and last name being carried by an 

author of color83,84. By this measure (and excluding self-citations), our references contain 4.56% 

author of color (first)/author of color(last), 12.06% white author/author of color, 18.89% author of 

color/white author, and 64.49% white author/white author. This method is limited in that a) 

names, Census entries, and Wikipedia profiles used to make the predictions may not be 

indicative of racial/ethnic identity, and b) it cannot account for Indigenous and mixed-race 

authors, or those who may face differential biases due to the ambiguous racialization or 

ethnicization of their names. We look forward to future work that could help us to better 

understand how to support equitable practices in science.  
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SUPPLEMENTARY TABLES 
 
 
Supplementary Table 1. Movie stimuli details. 

 

Order Title (*animation) Duration 

(min:sec) 

Original title Release 

year 

Director(s) 

1 Catch Me If You Can 5:46 Catch Me If You 

Can 

2002 Steven 

Spielberg 

2 The Record* 2:12 A Single Life 2014 Marieke 

Blaauw, 

Joris Oprins, 

Job Roggeveen 

3 The Boyfriend 7:45 High Maintenance 2006 Phillip Van 

4 The Shoe 2:09 How They Get 

There 

1997 Spike Jonze 

5 Keith Reynolds* 5:48 Keith Reynolds 

Can’t Make It 

Tonight 

2008 Felix Massie 

6 The Rock* 5:25 An Object at Rest 2015 Seth Boyden 

7 The Prisoner 4:20 Arrival (First episode 

of the TV series 

“The Prisoner”) 

1967 Don Chaffey 

8 The Black Hole 2:22 The Black Hole 2008 Philip Sansom, 

Olly Williams 

9 Post-It Love 2:41 Post-It Love 2009 Simon Atkinson, 

Adam Townley 

10 Bus Stop 6:54 Stray Dogs 2015 Minka Farthing-

Kohl 
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Supplementary Table 2. Descriptive statistics for movie annotations (title scenes excluded). 

 

Movie Number 

of 

events 

Mean 

event 

dur. 

(sec) 

Mean number of words 

used to describe each 

event 

Mean number of sub-

events within each 

event 

RC JL KM Mean RC JL KM Mean 

Catch Me If You Can 23 15.1 50.3 52.7 71.8 58.3 2.6 2.5 2.5 2.5 

The Record 14 9.4 37.3 65.7 78.4 60.5 2.1 3.5 2.8 2.8 

The Boyfriend 25 18.4 48.3 71.4 89.1 69.6 2.9 4.1 3.4 3.5 

The Shoe 12 10.8 66.2 46.4 49.7 54.1 3.2 2.4 2.2 2.6 

Keith Reynolds 25 14.1 30 61.2 70.4 53.9 2.0 2.3 1.7 2 

The Rock 27 12.0 35.6 53.4 44.8 44.6 1.9 3.2 1.9 2.3 

The Prisoner 16 16.3 53.4 66.4 97.8 72.5 2.8 3.1 3.2 3.0 

The Black Hole 10 14.3 88.3 67.1 87 80.8 3.6 4.2 3.2 3.7 

Post-It Love 15 10.7 31.6 42.5 41.5 38.5 1.7 2.3 1.7 1.9 

Bus Stop 35 11.9 30.4 59.7 48.5 46.2 1.6 2.7 1.9 2.1 

Mean across movies 20.2 13.3 47.1 58.7 67.9 57.9 2.4 3.0 2.5 2.6 

 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.24.441287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441287
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Supplementary Table 3. List of Schaefer 400 parcels used to create regions of interest. 

 

Region of interest Hemisphere Schaefer 

parcel ID 

Schaefer parcel name 

Posterior medial cortex Left 154 17Networks_LH_DefaultA_pCunPCC_1 

155 17Networks_LH_DefaultA_pCunPCC_2 

156 17Networks_LH_DefaultA_pCunPCC_3 

157 17Networks_LH_DefaultA_pCunPCC_4 

158 17Networks_LH_DefaultA_pCunPCC_5 

159 17Networks_LH_DefaultA_pCunPCC_6 

160 17Networks_LH_DefaultA_pCunPCC_7 

Right 363 17Networks_RH_DefaultA_pCunPCC_1 

364 17Networks_RH_DefaultA_pCunPCC_2 

365 17Networks_RH_DefaultA_pCunPCC_3 

366 17Networks_RH_DefaultA_pCunPCC_4 

367 17Networks_RH_DefaultA_pCunPCC_5 

Early visual cortex Left 7 17Networks_LH_VisCent_Striate_1 

18 17Networks_LH_VisPeri_StriCal_1 

19 17Networks_LH_VisPeri_StriCal_2 

20 17Networks_LH_VisPeri_ExStrSup_1 

Right 207 17Networks_RH_VisCent_Striate_1 

218 17Networks_RH_VisPeri_StriCal_1 

219 17Networks_RH_VisPeri_StriCal_2 
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SUPPLEMENTARY FIGURES 
 
 

 
 
Supplementary Figure 1. Similarity of movie event descriptions across annotators. a. 
Visualization of three independent annotators’ movie event descriptions as trajectories in the 

Universal Sentence Encoder (USE)
25

 text embedding space (for a related method, see ref.
26

). T-

distributed stochastic neighbor embedding (t-SNE) was applied on the USE vectors 

(concatenated across annotators) for dimensionality reduction into a two-dimensional space. 

Events within each movie formed visible clusters in the space, and the overall configuration of the 

trajectories was highly similar across annotators. Each dot represents a movie event. Temporally 

adjacent events are connected with gray lines. Different colors indicate different movies. b. Two 

example movies’ annotation trajectories from the three annotators (isolated from the trajectories 

in a). Numbers and the color of dots indicate the order of events within each movie. Dots (events) 

in brighter colors were presented earlier in the movie. c. Cosine similarity between the USE 

vectors of all 202 events (combined across 10 movies) generated from each annotator’s movie 

event descriptions. Each black square on the diagonal indicates an individual movie (i.e., within-

movie similarities). d. We performed a randomization test to test the statistical significance of the 

cross-annotator similarity between movie event USE vectors. The red line shows the true mean 

event-wise cross-annotator cosine similarity between all possible annotator pairs. The histogram 

shows the null distribution of the mean cross-annotator similarity (N = 1000), generated by 

shuffling the event labels within each movie and annotator. The mean cross-annotator similarity 

was significantly greater than zero (p < .001, two-tailed).  
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 5 

 

 
Supplementary Figure 2. Individual subjects’ recall trajectories in a text embedding space. 
Each subject’s recall transcript was segmented into utterances based on pauses and changes in 

the topic. Each utterance was transformed into vectors using the Universal Sentence Encoder 

(USE)
25

. T-distributed stochastic neighbor embedding (t-SNE) was applied on the USE vectors 

concatenated across all subjects’ recall transcripts and the movie annotation vectors (averaged 

across annotators). This allowed us to visualize the USE vectors of the movie annotation (top left 

cell in the red frame) and recall transcripts (all the other cells in black frames) into a shared two-

dimensional space. Each dot in the movie annotation trajectory represents a movie event. Each 

dot in the recall trajectories represents an utterance during recall. Temporally adjacent 

events/utterances are connected with gray lines. Different colors indicate different movies. 

Consistent with a prior study
26

, the overall configuration of the recall trajectories was similar to 

that of the movie annotation trajectory. The recall trajectories were also similar across subjects, 

although the number of movies recalled and the number of utterances made varied across 

subjects.   
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Supplementary Figure 3. Causal narrative networks. a. Causal relationship matrices of the 10 

movies used in the fMRI experiment. Causal relatedness between a pair of events within a movie 

was computed as the proportion of independent coders who identified the pair as causally related. 

b. Causal narrative networks whose nodes are movie events and edge weights are the causal 

relatedness shown in a. Node size is proportional to centrality (normalized degree). Edge 

thickness is proportional to edge weights. c. Causal centrality for individual movie events 

concatenated across the 10 movies. Different colors denote different movies.     
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Supplementary Figure 4. Causality rating responses. a. Average number of event pairs 

identified as causally related within each of the 10 movies used in the fMRI experiment (mean 

across movies 10.47, s.d. 4.18). b. Average percentage of event pairs identified as causally 

related among all possible event pairs within each movie (mean 6.78 %, s.d. 3.95 %). c. Average 

distance between a pair of causally related events (i.e., the number of events between the two 

events) within each movie. Lag = 1 if the events are adjacent to each other (mean 1.79 events, 

s.d. .51 events). d. The distribution of lags between causally related events, combined across all 

movies and coders. Most (73.1%) identified causal relationships occurred between temporally 

adjacent events. In a, b, and c, gray dots represent individual coders and black bars show the 

mean across coders. CMIYC = Catch Me If You Can, KR = Keith Reynolds.  
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Supplementary Figure 5. Online behavioral experiment. a. The semantic similarity matrices 

(top) and semantic narrative networks (bottom) of two example movies used in the pre-registered 

online behavioral experiment. b. The causal relationship matrices (top) and causal narrative 

networks (bottom) of the same two example movies shown in a. c. Recall probability for individual 

movie events of the ten movies used in the online behavioral experiment, concatenated across 

movies. As in the fMRI experiment, primacy/recency effects were not observed. Different colors 

indicate different movies. d. Recall order of individual movie events in two example movies. Recall 

order was calculated as the rank (1 = recalled first, N = recalled last, where N is the total number 

of events in the movie) among recalled events. Subjects’ written recall strictly followed the original 

event presentation order. e. Recall probability was positively correlated with semantic centrality 

(left) and causal centrality (right). Each dot represents a movie event. Different colors denote 

different movies. ***p < .001.  
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Supplementary Figure 6. Cortical responses at between-movie boundaries during movie 
watching. a. Example movie frame images around a boundary between two movies presented 

in the movie watching phase of the fMRI experiment. At between-movie boundaries, the last 

scene of the preceding movie was followed by a 6-second-long title scene of the upcoming movie. 

The transition between the 39-s introductory cartoon (presented at the beginning of each scanning 

run) and the first movie of each scanning run was also counted as a between-movie boundary. b. 
Whole-brain maps of cortical activity (z-scored BOLD signals) from 10 TRs before to 29 TRs after 

between-movie boundaries during movie watching (1 TR = 1.5 s). The BOLD signals were 

averaged across times within each 10-TR time window and then across movies and subjects. 

Time 0 means the onset of the movie title scene. The maps were arbitrarily thresholded to 

visualize brain areas whose activation was relatively higher (red-yellow) or lower (cyan-blue) than 

the mean activation across all time points within a scanning run (z = 0). Between-movie 

boundaries evoked transient changes in activation across widespread cortical areas. The black 

outlines indicate the posterior medial cortex (PMC) and early visual cortex (EVC) regions-of-

interest. c. Activation time courses around between-movie boundaries in PMC (left) and EVC 

(right). Gray lines show individual subjects’ time courses, averaged across all between-movie 

boundaries. Black lines show the averages across subjects. The four shades of the gray bars at 

the top of each panel correspond to the four time windows used in b. d. Intersubject pattern 

correlation between the mean activation patterns of the first four events in each of the 10 movies. 
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Each row and column of the similarity matrix represents an event, and the events are grouped by 

their temporal positions in the movie (i.e., row/column 1 – 10 = the first events of the 10 movies, 

row/column 11 – 20 = the second events, etc.). The black squares on the diagonal indicate cross-

movie similarity within the first, second, third, and fourth events of the movies. In PMC (left), all 

first events showed similar patterns regardless of specific movies, and this tendency decreased 

in later events further away from between-movie boundaries. EVC (right) showed relatively 

weaker pattern similarity across movies within the first events compared to PMC.   
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Supplementary Figure 7. Univariate activation. a & b. Whole-brain t-statistic maps showing 

the brain regions whose activation scale with semantic centrality during movie watching (a) and 

recall (b). c & d. Whole-brain t-statistic maps showing the brain regions whose activation scale 

with causal centrality during movie watching (c) and recall (d). All maps were liberally thresholded 

at p < .001 (uncorrected).     
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Supplementary Figure 8. Effects of causal narrative structure on neural responses. a & b. 
Intersubject pattern correlation (pISC) for High vs. Low causal centrality events and the difference 

(Diff) between the two conditions during movie watching (a) and recall (b) in the posterior medial 

cortex (PMC; left panels) and early visual cortex (EVC; right panels). For High and Low causal 

centrality conditions, white circles represent individual subjects. Black diamonds represent the 

mean across subjects within each condition. Error bars show SEM across subjects. For the 

difference between High and Low conditions (Diff), black diamonds show the true subject 

average, and histograms show the null distribution of the mean difference. Randomization tests 

showed that the difference between High vs. Low causal centrality conditions was not significantly 

different from zero in any of the experimental phases and ROIs (ps > .05, two-tailed). c. Mean 

hippocampal BOLD response time courses aligned at the offset (left) or onset (right) of events 

during movie watching. Solid lines and dotted lines show responses for the high and low causal 

centrality events, respectively. Shaded areas indicate SEM across subjects. Statistical 

significance reflects the difference between High vs. Low centrality events at each time point (two-

tailed paired t-tests).  Higher hippocampal responses were observed following the offset, but not 

onset, of high causal centrality events. *q < .05 (FDR corrected across time points). d & e. Whole-

brain RSA maps showing the brain regions whose activation patterns reflect the whole causal 
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narrative network structure during movie watching (d) and recall (e). For each cortical parcel, the 

causal relationship matrix (Supplementary Figure 3a) of a movie was correlated with the movie’s 

cross-event intersubject fMRI pattern similarity matrix. The correlation coefficients were averaged 

across movies and subjects and then tested for statistical significance against zero using a 

randomization test (one-tailed). All maps were thresholded at q < .05 (FDR-corrected across 

parcels).  
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Supplementary Figure 9. Intersubject pattern correlation during movie watching. a. Whole-

brain surface map of mean pISC across matching events during movie watching. The pISC map 

was arbitrarily thresholded at r = .05 for visualization purposes. pISC values in visualized parcels 

were all significantly greater than zero (FDR-corrected q < .05 across parcels, one-tailed). b. pISC 

for High vs. Low semantic centrality events during movie watching and the difference (Diff) 

between the two conditions in the posterior medial cortex (PMC; left) and early visual cortex (EVC; 

right). For High and Low semantic centrality conditions, white circles represent individual subjects. 

Black diamonds represent the mean across subjects within each condition. Error bars show SEM 

across subjects. For the difference between High and Low conditions (Diff), black diamonds show 

the true subject average, and histograms show the null distribution of the mean difference. The 

difference between High vs. Low semantic centrality events was not significantly different from 

the null distribution in either ROI (ps > .05, two-tailed).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.24.441287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441287
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 

 
Supplementary Figure 10. Representational similarity analysis using movie watching 
phase data and recall transcripts. a. Brain regions that show positive correlations between the 

movie watching phase cross-event intersubject pattern similarity matrix and the movie annotation 

sentence embedding vector similarity matrix. b. Brain regions that show positive correlations 

between the recall phase cross-event intersubject pattern similarity matrix and the recall transcript 

sentence embedding vector similarity matrix. The recall transcript similarity matrix was first 

generated within each subject by computing the cosine similarity between the USE vectors of the 

subject’s recall of movie events. The subject-specific similarity matrices were then averaged 

across subjects. In both a and b, representational similarity (i.e., fMRI–text correlation averaged 

across movies and subjects) for each parcel was tested for statistical significance against zero 

using a randomization test (one-tailed). All maps were thresholded at q < .05 (FDR-corrected 

across parcels).     
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Supplementary Figure 11. Effects of semantic centrality on event-specific intersubject 
pattern correlation including all events. a & b. Intersubject pattern correlation (pISC) for High 

vs. Low semantic centrality events and the difference (Diff) between the two conditions during 

movie watching (a) and recall (b) in the posterior medial cortex (PMC; left panels) and early visual 

cortex (EVC; right panels). All movie events were included in the analysis. The results were 

qualitatively identical to those obtained after excluding the first events from movie watching data 

and after excluding the events recalled by fewer than five subjects from recall data. For High and 

Low causal centrality conditions, white circles represent individual subjects. Black diamonds 

represent the mean across subjects within each condition. Error bars show SEM across subjects. 

For the difference between High and Low conditions (Diff), black diamonds show the true subject 

average, and histograms show the null distribution of the mean difference. Randomization tests 

were performed to test whether the differences between High vs. Low semantic centrality 

conditions were significantly different from zero (two-tailed). *p < .05, **p < .01. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.24.441287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441287
http://creativecommons.org/licenses/by-nc-nd/4.0/

