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ABSTRACT 

Temporal lobe epilepsy (TLE), a common drug-resistant epilepsy in adults, is primarily a limbic 

network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has 

provided an in vivo window into whole-brain grey matter pathology in TLE relative to controls, by 

either mapping (i) atypical inter-hemispheric asymmetry or (ii) regional atrophy. However, 

similarities and differences of both atypical asymmetry and regional atrophy measures have not been 

systematically investigated. Here, we addressed this gap using the multi-site ENIGMA-Epilepsy 

dataset comprising MRI brain morphological measures in 732 TLE patients and 1,418 healthy 

controls. We compared spatial distributions of grey matter asymmetry and atrophy in TLE, 

contextualized their topographies relative to spatial gradients in cortical microstructure and functional 

connectivity, and examined clinical associations using machine learning. We identified a marked 

divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy 

mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and 

bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was 

significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry 

did not show a significant relationship to these clinical variables. Our findings highlight that the 

mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary 

aspects of TLE-related pathology, with the former revealing primary substrates in ipsilateral limbic 

circuits and the latter capturing bilateral disease effects. These findings refine our notion of the 

neuropathology of TLE and may inform future discovery and validation of complementary MRI 

biomarkers in TLE. 

 

KEYWORDS: temporal lobe epilepsy; asymmetry; cortical thickness; multi-site; gradients 
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INTRODUCTION 

Temporal lobe epilepsy (TLE) is the most common drug-resistant epilepsy in adults. Its hallmark is 

pathology of mesiotemporal structures, notably the hippocampus, entorhinal cortex, amygdala, and 

temporal pole (Falconer et al., 1964; Margerison and Corsellis, 1966; Blanc et al., 2011; Blümcke et 

al., 2013; Thom, 2014). The degree of atrophy in these regions correlates with the tendency to express 

epileptic activity (Bartolomei et al., 2005; Ogren et al., 2009). Moreover, unilateral anteromesial 

resection leads to worthwhile improvement in approximately 90% of patients and long-term seizure 

freedom in more than 50% (Wiebe et al., 2001; de Tisi et al., 2011; Bernhardt et al., 2015). 

Magnetic resonance imaging (MRI) can identify the pathological substrate of TLE in vivo, and 

lateralize and define the surgical target. Indeed, MRI has provided biomarker candidates for TLE 

diagnostics, prognostics, and disease staging (Bernhardt et al., 2013a; Winston et al., 2013, Larivière 

et al., 2020a). MRI analyses in TLE traditionally focus on manually or automatically delineating 

individual mesiotemporal structures, followed by (i) the analysis of inter-hemispheric grey matter 

asymmetry or (ii) the regional comparison of morphometric measures in patients relative to healthy 

controls. Studies focusing on mesiotemporal grey matter consistently reported atrophy and marked 

asymmetry, reaffirming that TLE is primarily a limbic disorder (Cascino et al., 1991; Cendes et al., 

1993; van Paesschen et al., 1995; Kuzniecky et al., 1997; Briellmann et al., 1998; Bernasconi et al., 

2003; Bonilha et al., 2004, 2007; Bernhardt et al., 2015).  

With advancements and automation of image processing techniques, quantitative MRI analysis has 

been extended to the whole-brain level using volumetric analysis and voxel-based morphometry 

(Bonilha et al., 2004, 2005, 2009, 2010; Seidenberg et al., 2005; Pulsipher et al., 2007; Keller and 

Roberts, 2008) as well as surface-based cortical thickness analysis (Lin et al., 2007; Bernhardt et al., 

2008, 2010; McDonald et al., 2008; Galovic et al., 2019). These studies have mainly been cross-

sectional regional comparisons between TLE and healthy controls, and explored patterns of inter-

hemispheric asymmetry in TLE only sporadically. Whole-brain analyses often showed asymmetric 

mesiotemporal damage, and also revealed widespread and bilateral decreases in cortical grey matter 

outside the mesiotemporal lobe, with neither a limbic nor lateralized predominance (McDonald et al., 

2008, Bernhardt et al., 2009a; Whelan et al., 2018; Galovic et al., 2019; Weng et al., 2020). Similar 

findings were confirmed by a multi-site initiative aggregating and analyzing brain morphometric 

measures in common epilepsies (Whelan et al., 2018; Sisodiya et al., 2020).  

Outside the mesiotemporal regions, the scarcity of asymmetry analyses precludes insights into how 

similar or different patterns of atypical structural asymmetry are relative to patterns of regional 

atrophy in TLE. Analyzing both atrophy and asymmetry features could inform the development of 

individualized MRI biomarkers (Bernasconi et al., 2003; Bonilha et al., 2003, 2004; Alhusaini et al., 

2012). Moreover, comparing these patterns could clarify whether these reflect different disease 

processes. One emerging family of approaches stratifies cortical areas along spatial gradients of 

cortical microstructure and connectivity (Margulies et al., 2016; Huntenburg et al., 2018, Paquola et 

al., 2019b). Cortical areas indeed show variable microstructural characteristics, often following 

sensory-fugal spatial gradients that relate to plasticity and neural excitability (Deco et al., 2013; Wang 

and Knösche, 2013; Burt et al., 2018, Paquola et al., 2019a, b; Wang, 2020; Weng et al., 2020). For 

example, paralimbic circuits differ from sensory networks by having an agranular architecture with 

only subtle laminar differentiation and relatively low myelin content, while sensorimotor areas have 

a marked layer IV and higher intracortical myelin (Flechsig Of Leipsic, 1901; Barbas and García-

Cabezas, 2015; Palomero-Gallagher and Zilles, 2019; Drenthen et al., 2020; Weng et al., 2020). 

Complementing these microstructural variations, recent work has shown gradients of functional 

connectivity running from sensorimotor networks towards heteromodal systems, notably the default 

mode network (Margulies et al., 2016). Contextualizing atrophy and atypical asymmetry patterns 
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along these microstructural and functional connectivity gradients may shed light on potential 

anatomical determinants of cortical pathology in TLE.  

We used the ENIGMA-Epilepsy dataset to map patterns of atypical inter-hemispheric asymmetry and 

regional atrophy in 732 individuals with TLE and 1,418 healthy controls. We systematically assessed 

the commonalities and divergences of these patterns, and contextualized findings with respect to 

microstructural and functional connectivity gradients, derived from parallel myelin-sensitive 

microstructural MRI and resting-state functional acquisitions (Margulies et al., 2016, Paquola et al., 

2019b; Vos de Wael et al., 2020). We formulated the following hypotheses: (i) the spatial distribution 

of TLE-related cortical asymmetry and atrophy would differ, with the former being particularly 

temporo-limbic; (ii) atypical asymmetry and atrophy maps would relate to cortical gradients, with the 

asymmetry map being more closely related to the primary temporo-limbic gradients derived from 

cortical microstructure. We also assessed whether inter-hemispheric asymmetry and regional atrophy 

mapping would show differential associations with clinical parameters, notably effects of disease 

duration and age of onset. In addition to benefiting from the high power of ENIGMA-Epilepsy, we 

validated the consistency of our findings at the level of single patients and individual sites.  

 

METHODS 

Participants 

We analyzed 2,150 T1-weighted MRI datasets from 732 patients with TLE and confirmed/suspected 

mesiotemporal sclerosis (55% females, mean age ± SD = 38.56 ± 10.61 years; 391/341 left/right TLE) 

and 1,418 healthy controls (55% females, mean age ± SD = 33.76 ± 10.54 years) obtained from 19 

different sites via the Epilepsy Working Group of ENIGMA (Whelan et al., 2018, Larivière et al., 

2020c; Sisodiya et al., 2020) (Table 1). Individuals with epilepsy were diagnosed by epilepsy 

specialists at each center according to classifications of the International League Against Epilepsy 

(ILAE) (Berg et al., 2010). TLE patients were diagnosed based on electroclinical and neuroimaging 

findings. Participants with a primary progressive disease (e.g., Rasmussen’s encephalitis), visible 

malformations of cortical development, or prior neurosurgery were excluded. For each site, local 

institutional review boards and ethics committees approved each included cohort study, and written 

informed consent was provided according to local requirements.  

Gradients were derived from two independent cohorts containing healthy controls and patients with 

TLE: (i) A sample of 207 unrelated healthy young adults (60% females, mean age ± SD = 28.73 ± 

3.73 years) from the HCP (Van Essen et al., 2013), (ii) A sample of 53 healthy controls (38% females, 

mean age ± SD = 30.84 ± 7.59 years) and 23 TLE patients (52% females, mean age ± SD = 37.29 ± 

11.96 years) from our local site at the MNI (microstructure-informed connectomics; MICs). All 

participants gave written and informed consent. 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442117doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442117
http://creativecommons.org/licenses/by-nd/4.0/


6 

Park et al. | Divergence of atypical grey matter asymmetry and atrophy in TLE   

6 

Table 1 | Demographic information of individuals with TLE and site-matched controls. Means and SDs are reported. 

Information 
ENIGMA-Epilepsy 

HCP (HC) 
MICs 

TLE HC TLE HC 

Number 732 1,418 207 23 53 

Age (years) 38.56 ± 10.61 33.76 ± 10.54 28.73 ± 3.73 37.29 ± 11.96 30.84 ± 7.59 

Sex 

(male:female) 
329:403 643:775 83:124 11:12 33:20 

Age at onset 

(years) 
16.07 ± 12.27 N/A N/A 21.59 ± 11.65 N/A 

Side of focus 

(left/right) 
391/341 N/A N/A 

15/7 

(1 bilateral) 
N/A 

Duration of 

illness (years) 
22.74 ± 14.06* N/A N/A 15.82 ± 12.45 N/A 

*Information available in 695 TLE patients. 

Abbreviations: SD, standard deviation; TLE, temporal lobe epilepsy; HC, healthy control; HCP, Human Connectome 

Project; MICs, microstructure-informed connectomics; N/A, not available. 

 

Data preprocessing 

a) ENIGMA data: Participants underwent T1-weighted scans at each of the 19 centers, with 

acquisition protocols detailed elsewhere (Whelan et al., 2018). Imaging data were processed by each 

center through the standard ENIGMA workflow. In brief, individual surface modeling was performed 

using FreeSurfer 5.3.0 (Dale et al., 1999, Fischl et al., 1999a, b; Fischl, 2012), including magnetic 

field inhomogeneity correction, non-brain tissue removal, intensity normalization, and segmentation. 

White and pial surfaces were fit along tissue boundaries. Surfaces were inflated to spheres, followed 

by spherical registration to standard (fsaverage) space. Based on the Desikan-Killiany atlas (Desikan 

et al., 2006), cortical thickness was measured across 68 grey matter brain regions.  

b) HCP data: T1- and T2-weighted, as well as rs-fMRI data, were obtained using a Siemens Skyra 

3T at Washington University (Van Essen et al., 2013). The T1-weighted images were acquired using 

a magnetization-prepared rapid gradient echo (MPRAGE) sequence (repetition time (TR) = 2,400 ms; 

echo time (TE) = 2.14 ms; inversion time (TI) = 1,000 ms; flip angle = 8º; field of view (FOV) = 224 

× 224 mm2; voxel size = 0.7 mm isotropic; and number of slices = 256). T2-weighted data were 

obtained with a T2-SPACE sequence (TR = 3,200 ms; TE = 565 ms; flip angle = variable; FOV = 

224 × 224 mm2; voxel size = 0.7 mm isotropic; and number of slices = 256). The rs-fMRI data were 

collected using a gradient-echo echo-planar imaging sequence (TR = 720 ms; TE = 33.1 ms; flip 

angle = 52º; FOV = 208 × 180 mm2; voxel size = 2 mm isotropic; number of slices = 72; and number 

of volumes = 1,200 per time series). During the rs-fMRI scan, participants were instructed to keep 

their eyes open, looking at a fixation cross. Two sessions of rs-fMRI data were acquired; each 

contained data of left-to-right and right-to-left phase-encoded directions, providing up to four time 

series per participant.  

HCP data underwent minimal preprocessing pipelines using FSL, FreeSurfer, and Workbench, briefly 

summarized as follows (Fischl, 2012; Jenkinson et al., 2012; Glasser et al., 2013): 

b-i) T1- and T2-weighted data: Data were corrected for gradient nonlinearity and b0 distortions, and 

the T1- and T2-weighted data were co-registered using a rigid-body transformation. The bias field 

was adjusted using the inverse intensities from the T1- and T2-weighting. White and pial surfaces 

were generated using FreeSurfer (Dale et al., 1999, Fischl et al., 1999a, b; Fischl, 2012). A 

midthickness surface was generated by averaging white and pial surfaces, and used to generate the 

inflated surface that was registered to the Conte69 template (Van Essen et al., 2012) using MSMAll 

(Glasser et al., 2016) and downsampled to a 32k vertex mesh.  
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b-ii) Microstructure data: HCP provides a myelin-sensitive proxy based on the ratio of the T1- and 

T2-weighted contrast (Glasser and Van Essen, 2011; Glasser et al., 2014). Here, we first generated 

14 equivolumetric cortical surfaces within the cortex and sampled T1w/T2w ratio values along these 

surfaces (Paquola et al., 2019b). A microstructural similarity matrix was constructed by calculating 

linear correlations of cortical depth-dependent T1w/T2w intensity profiles between different 

Desikan-Killiany parcels (Desikan et al., 2006), controlling for the average whole-cortex intensity 

profile (Paquola et al., 2019b). The matrix was thresholded at zero and log-transformed (Paquola et 

al., 2019b). A group-average matrix was constructed by averaging matrices across participants. 

b-iii) rs-fMRI data: Data were corrected for distortions and head motion, and were registered to the 

T1-weighted data and subsequently to MNI152 space. Magnetic field bias correction, skull removal, 

and intensity normalization were performed. Noise components attributed to head movement, white 

matter, cardiac pulsation, arterial, and large vein related contributions were removed using FMRIB’s 

ICA-based X-noiseifier (ICA-FIX) (Salimi-Khorshidi et al., 2014). Time series were mapped to the 

standard grayordinate space, with a cortical ribbon-constrained volume-to-surface mapping algorithm. 

The total mean of the time series of each left-to-right/right-to-left phase-encoded data was subtracted 

to adjust the discontinuity between the two datasets, and these were concatenated to form a single 

time series data. A functional connectivity matrix was constructed via linear correlations of the fMRI 

time series of different Desikan-Killiany atlas parcels (Desikan et al., 2006). Fisher’s r-to-z 

transformations rendered connectivity values more normally distributed (Thompson and Fransson, 

2016), and we averaged the connectivity matrices across participants to construct a group-average 

functional connectome, also available via the ENIGMA Toolbox (https://github.com/MICA-

MNI/ENIGMA) (Larivière et al., 2020b).  

c) MICs data: Data were acquired on a Siemens Prisma 3T scanner. Acquisition parameters were 

similar to the HCP dataset (T1-weighted: TR = 2,300 ms; TE = 3.14 ms; TI = 900 ms; flip angle = 9º; 

FOV = 256 × 180 mm2; voxel size = 0.8 mm isotropic; and number of slices = 320; quantitative T1 

(qT1): same as T1-weighted except for TR = 5,000 ms and TE = 2.9 ms; TI = 940 ms; flip angle 1 = 

4º; flip angle 2 = 5º; rs-fMRI: TR = 600 ms; TE = 30 ms; flip angle = 52º; FOV = 240 × 240 mm2; 

voxel size = 3 mm isotropic; number of slices = 48; and number of volumes = 700). MICs data were 

preprocessed using micapipe (https://github.com/MICA-MNI/micapipe), which integrates AFNI, 

FSL, FreeSurfer, ANTs, and Workbench (Cox, 1996; Avants et al., 2011; Fischl, 2012; Jenkinson et 

al., 2012; Glasser et al., 2013). 

c-i) T1-weighted data: Data were de-obliqued, reoriented, intensity non-uniformity corrected, and 

skull stripped. Models of the inner and outer cortical surfaces were generated using FreeSurfer (Dale 

et al., 1999, Fischl et al., 1999a, b; Fischl, 2012), and segmentation errors were manually corrected.  

c-ii) qT1 data: After registering qT1 data to FreeSurfer space using a boundary-based registration 

(Greve and Fischl, 2009), we generated 14 equivolumetric intracortical surfaces and sampled qT1 

intensity as in vivo proxies of depth-dependent cortical microstructure (Paquola et al., 2019b). The 

microstructural profile similarity matrix was constructed using the same procedures as for the HCP 

data. 

c-iii) rs-fMRI data: We discarded the first five volumes, removed the skull, and corrected for head 

motion. Magnetic field inhomogeneity was corrected using topup with reversed phase-encoded data 

(Andersson et al., 2003). After applying a high-pass filter at 0.01 Hz, noise components attributed to 

head movement, white matter, cardiac pulsation, arterial, and large vein related contributions were 

removed using ICA-FIX (Salimi-Khorshidi et al., 2014). Preprocessed time series were mapped to 

the standard grayordinate space, with a cortical ribbon-constrained volume-to-surface mapping 

algorithm. After regressing out time series spikes, a functional connectivity matrix was constructed 

by calculating linear correlations of time series between different Desikan-Killiany parcels (Desikan 

et al., 2006). We applied Fisher’s r-to-z transformation to the individual functional connectivity 
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matrix and averaged across participants to construct a group-average functional connectome.  

 

Atypical inter-hemispheric cortical asymmetry and regional atrophy 

We calculated inter-hemispheric asymmetry of cortical thickness using the following formula: AI = 

(ipsi-contra) / |(ipsi+contra)/2| (Bernasconi et al., 2003; Kong et al., 2018; Sarica et al., 2018), where 

AI is asymmetry index and ipsi and contra are the cortical thickness of ipsilateral and contralateral 

areas, respectively. The asymmetry index was z-normalized relative to site-matched pooled controls 

and sorted into ipsilateral/contralateral to the focus (Liu et al., 2016). It was then harmonized across 

different sites by adjusting for age, sex, and intracranial volume using ComBat, a batch-effect 

correction tool that uses a Bayesian framework to improve the stability of the parameter estimates 

(Johnson et al., 2007; Fortin et al., 2018). We compared the harmonized asymmetry index between 

individuals with TLE and controls using a general linear model implemented in SurfStat (Worsley et 

al., 2009). Multiple comparisons across brain regions were corrected using the FDR procedure 

(Benjamini and Hochberg, 1995). In addition to parcel-wise analysis, we stratified asymmetry 

measures according to seven intrinsic functional communities (visual, somatomotor, dorsal attention, 

ventral attention, limbic, frontoparietal, and default mode) (Yeo et al., 2011) and lobes (frontal, 

parietal, temporal, occipital, cingulate, and insular cortex). In addition to the atypical asymmetry 

index, we assessed cortical atrophy in TLE patients relative to controls. The cortical thickness 

measures were z-normalized, flipped hemispheres of right TLE, and harmonized as for the asymmetry 

index. We compared the harmonized cortical thickness between the groups and the findings were 

multiple comparison corrected using FDR (Benjamini and Hochberg, 1995) as well as stratified 

according to functional communities and lobes. 

 

Association to gradients of cortical microstructure and function 

We assessed topographic underpinnings of TLE-related asymmetry and atrophy through spatial 

correlation analysis with microstructural and functional gradients, the principal eigenvectors 

explaining spatial shifts in microstructural similarity and functional connectivity (Margulies et al., 

2016, Paquola et al., 2019b). Gradients were defined using two alternative datasets, either based on 

both the HCP (i.e., healthy controls) or based on the MICs (i.e., healthy controls and TLE patients), 

using BrainSpace (https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al., 2020). 

Specifically, we calculated a parcel-to-parcel affinity matrix for each feature using a normalized angle 

kernel considering the top 10% entries for each parcel. As in prior work (Margulies et al., 2016; 

Huntenburg et al., 2017; Hong et al., 2019, 2020, Paquola et al., 2019a, Larivière et al., 2020d; Müller 

et al., 2020; Valk et al., 2020; Vos de Wael et al., 2020; Park et al., 2021), we opted for diffusion 

map embedding (Coifman and Lafon, 2006), a non-linear technique that is robust to noise and 

computationally efficient (Tenenbaum et al., 2000; von Luxburg, 2007). It is controlled by two 

parameters α and t, where α controls the influence of the density of sampling points on the manifold 

(α = 0, maximal influence; α = 1, no influence) and t scales eigenvalues of the diffusion operator. The 

parameters were set as α = 0.5 and t = 0 to retain the global relations between data points in the 

embedded space, following prior applications (Margulies et al., 2016; Hong et al., 2019, Paquola et 

al., 2019a, b; Park et al., 2020; Vos de Wael et al., 2020). We examined associations of the estimated 

gradients with cortical asymmetry in a single hemisphere and atrophy patterns in both hemispheres 

via linear correlations, where significance was determined using 1,000 non-parametric spin tests that 

account for spatial autocorrelation (Alexander-Bloch et al., 2018) implemented in the ENIGMA 

Toolbox (Larivière et al., 2020b).  
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Consistency mapping across sites and individuals 

We assessed the robustness of our findings within a probabilistic framework at the single site and 

subject level. The consistency across sites was measured by calculating linear correlations between 

epilepsy-related asymmetry and atrophy findings and gradients for each site. For individual-level 

consistency, we counted how many participants are comprised within a specific threshold (i.e., z < -

2). The counts were divided by the number of participants to obtain a probability map. Thus, the 

consistency probability indicates that the top N% patients showed extreme asymmetry or cortical 

atrophy measures in a given region. The consistency probability was correlated with microstructural 

and functional gradients, with 1,000 non-parametric spin tests (Alexander-Bloch et al., 2018, 

Larivière et al., 2020b).  

 

Associations with clinical variables 

We associated clinical variables of duration and onset of epilepsy with atypical asymmetry index and 

cortical atrophy using supervised machine learning. We utilized five-fold nested cross-validation 

(Tenenbaum et al., 2000; Varma and Simon, 2006; Cawley and Talbot, 2010; Parvandeh et al., 2020) 

with least absolute shrinkage and selection operator (LASSO) regression (Tibshirani, 1996). We split 

the dataset into training (4/5) and test (1/5) partitions, and each training partition was further split into 

inner training and testing folds using another five-fold cross-validation. Within the inner fold, LASSO 

finds a set of non-redundant features (i.e., atypical asymmetry index or cortical atrophy of brain 

regions) that could explain the dependent variable (i.e., disease duration or onset age). Using a linear 

regression, we predicted the clinical variables of inner fold test data using the features of the selected 

brain regions. The model with best accuracy (i.e., minimum mean absolute error (MAE)) across the 

inner folds was applied to the test partition of the outer fold, and the clinical variables of outer fold 

test data were predicted. We repeated this procedure 100 times with different training and test 

partitions to avoid subject selection bias. We assessed the prediction accuracy by calculating linear 

correlations between the actual and predicted clinical variables with their 95% confidence interval 

across 100 repetitions, as well as MAE. The significance of the correlation between actual and 

predicted values was assessed using 1,000 permutation tests by randomly shuffling participant indices. 

A null distribution was constructed, and it was deemed significant if the real correlation value did not 

belong to 95% of the distribution (two-tailed p < 0.05). We compared our model with the baseline 

model (i.e., predicted clinical variable = mean(training set clinical variable)), and improved prediction 

performance of our model was assessed using Meng’s z-test (Meng et al., 1992). To assess whether 

the frequency of the selected brain regions derived from LASSO regression across cross-validations 

and repetitions is related to microstructural and functional gradients, we calculated spatial correlations 

between cortex-wide probability distributions and each of the gradients. Significance was assessed 

using 1,000 spin tests (Alexander-Bloch et al., 2018, Larivière et al., 2020b). As a post-hoc analysis, 

we correlated the cortical features of the highly probable regions (selected probability > 0.5) and 

clinical variables, and the significance was calculated based on 1,000 permutation tests by randomly 

shuffling participant indices. 

 

Sensitivity analysis 

a) Left and right TLE. To assess whether left and right TLE show consistent results, we repeated 

assessing atypical cortical asymmetry and atrophy, and correlating the effects with gradients for 

separate left and right TLE subgroups.  

b) Different density of connectivity matrix. In our main analysis, we estimated microstructural and 

functional gradients using connectivity matrices with 10% density. We repeated generating the 

gradients from connectivity matrices with different densities (20, 30, 40, 50%) and correlated with 

atypical cortical asymmetry and atrophy patterns. 
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c) Gradients generated using local dataset. To assess whether the gradients estimated using an 

independent dataset reveal consistent results with those derived from the HCP dataset, we generated 

microstructural and functional gradients using our local dataset, MICs, that included healthy controls, 

as well as individuals with TLE. We then computed the associations between cortical distortions and 

gradients. 

d) Volumetric analysis. We additionally assessed atypical inter-hemispheric asymmetry and regional 

atrophy patterns of six subcortical regions (amygdala, caudate, nucleus accumbens, pallidum, 

putamen, thalamus), as well as the hippocampus, defined using Desikan-Killiany atlas (Desikan et 

al., 2006). We estimated the volume of each region, calculated asymmetry index (Bernasconi et al., 

2003; Kong et al., 2018; Sarica et al., 2018), z-normalized both asymmetry index and volume of TLE 

patients relative to controls, flipped hemispheres of right TLE, and harmonized across different sites 

by adjusting for age, sex, and intracranial volume using ComBat (Johnson et al., 2007; Fortin et al., 

2018). We compared asymmetry and regional volume between individuals with TLE and controls 

using a general linear model (Worsley et al., 2009). Next, we assessed the robustness of atypical 

asymmetry and atrophy by calculating consistency probability. Lastly, we performed the prediction 

analysis by considering both cortical thickness and subcortical/hippocampal volume measures using 

LASSO regression (Tibshirani, 1996) with five-fold nested cross-validation (Tenenbaum et al., 2000; 

Varma and Simon, 2006; Cawley and Talbot, 2010; Parvandeh et al., 2020). The prediction procedure 

was repeated 100 times with different training and test dataset, and the performance was measured 

using linear correlations between the actual and predicted clinical variables with their 95% confidence 

interval, as well as MAE. We compared our model with baseline model, and assessed improvement 

of the prediction performance using Meng’s z-test (Meng et al., 1992). 

 

RESULTS 

Atypical inter-hemispheric asymmetry patterns differ from regional cortical atrophy in TLE 

We found significant deviations in inter-hemispheric asymmetry in TLE relative to controls, 

especially in lateral and medial temporal cortex, as well as precuneus, with ipsilateral regions being 

atypically smaller than contralateral regions (pFDR < 0.05; Fig. 1A). Stratifying effects according to 

intrinsic functional communities (Yeo et al., 2011), highest deviations in asymmetry were observed 

in the limbic network followed by default mode and somatomotor networks (Fig. 1B). Lobar analysis 

identified most marked degrees of atypical asymmetry in the temporal lobes. Asymmetry patterns of 

TLE were markedly different from regional differences in bilateral cortical thickness. Indeed, 

comparing cortical thickness between TLE and healthy controls showed widespread and bilateral 

cortical thickness reductions in TLE, with strongest effects in precentral, paracentral, and superior 

temporal regions (pFDR < 0.05; Fig. 1A). Findings were distributed across somatomotor, dorsal 

attention, and visual networks (Fig. 1B). Similarly, lobar stratification pointed to multi-lobar effects, 

most marked in frontal, parietal, and occipital lobes in both hemispheres. Notably, spatial correlations 

between atypical asymmetry and atrophy patterns in a single hemisphere were very low and did not 

surpass null models with similar autocorrelation (r = 0.05, p = 0.27) (Alexander-Bloch et al., 2018).  
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Fig. 1 | Topography of atypical cortical asymmetry and atrophy patterns in TLE. (A) Atypical inter-hemispheric 

asymmetry of cortical thickness and regional cortical atrophy between individuals with TLE relative to controls calculated 

using ENIGMA-Epilepsy dataset are shown on brain surfaces. (left) Blue regions indicate ipsilateral lateralization of 

cortical thickness or (right) decreases in cortical thickness in TLE relative to controls. (B) Effects (i.e., asymmetry index 

and cortical thickness) are stratified according to seven intrinsic functional communities (Yeo et al., 2011) and lobes. (C) 

Associations between epilepsy-related findings and microstructural/functional gradients calculated using HCP dataset. 

Cortex-wide microstructural profile similarity matrix and scree plot describing connectome variance after identification 

of principal eigenvectors are shown. The first principal eigenvector (microstructural gradient) is shown on the cortical 

surface. Spatial correlations between the principal microstructural gradient and TLE-related effects (i.e., atypical cortical 

asymmetry and atrophy) are reported with scatter plots. (D) Identical analysis to (C) but based on functional gradients. 

Abbreviations: VN, visual network; LBN, limbic network; SMN, somatomotor network; VAN, ventral attention network; 

DAN, dorsal attention network; FPN, frontoparietal control network; DMN, default mode network; Front, frontal; Par, 

parietal; Temp, temporal; Occ, occipital; Cing, cingulate; Ins, insular.  

 

A diverging topographic landscape of TLE-related atypical asymmetry and atrophy 

Next, we assessed spatial associations of epilepsy-related findings with microstructural and functional 

gradients. The microstructural gradient depicted a continuous differentiation of cortical features 

between sensory and limbic areas, and was negatively correlated with atypical asymmetry index (r = 

-0.13, pFDR = 0.03), reflecting elevated atypical asymmetry in temporo-limbic cortices in TLE (Fig. 

1C). On the other hand, it was positively and markedly correlated with regional atrophy in TLE (r = 

0.72; pFDR < 0.001 Fig. 1C). The difference between these two correlations was significant (p < 0.001; 

Meng’s z-test) (Meng et al., 1992), indicating a dissociation of atypical asymmetry and atrophy 

patterns with respect to the primary microstructural gradient. The functional gradient differentiated 

primary sensory from transmodal regions, and did not show a significant association with atypical 

inter-hemispheric asymmetry in TLE (r = -0.10, pFDR = 0.12), but a low-to-moderate positive 

association with regional atrophy (r = 0.31, pFDR < 0.001) (Fig. 1D).  
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Consistency across sites and individuals 

We confirmed the above topographic divergence across individual sites (Fig. 2A) by correlating 

microstructural and functional gradients with atypical asymmetry and regional atrophy in TLE for 

each site separately (Fig. 2B). These follow-up analyses confirmed our main findings (see Fig. 1C) 

that showed dissociation between atypical asymmetry and atrophy patterns. Multi-site analyses were 

expanded by assessing consistency at the level of individual patients (Fig. 2C). Prevalent atypical 

asymmetry was confirmed in somatomotor and limbic regions (Fig. 2D), and spatial patterns revealed 

significant associations only with the microstructural gradient (r = 0.13/-0.02, pFDR = 0.04/0.42 for 

microstructural/functional gradients; Fig. 2E). The consistency probability of regional cortical 

atrophy showed higher consistency in sensory, precuneus, and temporal regions, and it showed 

significant negative correlations with both gradients (r = -0.29/-0.30, pFDR <0.001/<0.001), supporting 

patient-level consistency.  

 

Fig. 2 | Consistency of atypical cortical asymmetry and atrophy. (A) World map of data acquisition sites. (B) Spatial 

correlations between topographic gradients and atypical cortical asymmetry/atrophy patterns of all sites. (C) Schema 

describing the computation of patient-wise consistency probability. The number of patients with large deviations of 

cortical features (i.e., atypical inter-hemispheric asymmetry or regional cortical atrophy) was counted. (D) Consistency 

probability of atypical cortical asymmetry and atrophy. (E) Spatial correlations between consistency probability and 

topographic gradients.  

 

Associations with clinical variables 

Utilizing supervised machine learning, we probed associations of both atypical inter-hemispheric 

asymmetry and regional atrophy with disease duration and age at seizure onset. While cortical atrophy 

significantly predicted the clinical variables outperforming the baseline model (disease duration: 

mean ± SD r = 0.26 ± 0.02, MAE = 11.38 ± 0.10, Meng’s z-test p < 0.001; age at seizure onset: r = 

0.17 ± 0.02, MAE = 9.91 ± 0.08, Meng’s z-test p = 0.01), atypical asymmetry did not (disease duration: 

Meng’s z-test p = 0.27; age at seizure onset: Meng’s z-test p = 0.20; Fig. 3A, D). Considering cortical 

atrophy, sensorimotor, medial/lateral temporal, and precuneus were frequently selected across cross-

validations as the most important features used in the prediction for disease duration (Fig. 3A), and 
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sensorimotor and limbic regions for age at seizure onset (Fig. 3C). As in the main analyses, we 

observed significant associations of the selected probability with connectome gradients (disease 

duration: r = -0.27/-0.34 pFDR = 0.002/<0.001 for microstructural/functional gradients; age at seizure 

onset: r = -0.25/0.03 pFDR <0.001/0.35; Fig. 3B, E). Associations in highly probable regions (selected 

probability > 0.5) were negative, i.e., disease duration/age at seizure onset associated with cortical 

thickness reductions (r = -0.30/-0.21, permutation-test p <0.001/<0.001; Fig. 3C, F).  

 

Fig. 3 | Associations between cortical features and clinical variables. (A) Probability of the selected brain regions 

across five-fold nested cross-validation and 100 repetitions for predicting duration of illness using atypical asymmetry 

index (left) and regional atrophy (right). Correlations between actual and predicted values of duration of illness are 

reported with scatter plots. Black lines indicate mean correlation, and gray lines represent the 95% confidence interval 

for 100 iterations with different training/test datasets. (B) Linear correlations between gradients and selected probability. 
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(C) Spatial correlations between duration of illness and atypical asymmetry index (left), as well as cortical atrophy (right) 

in highly probable (selected probability > 0.5) regions. (D-F) Identical analysis to (A-C) but based on age at seizure onset. 

Abbreviation: MAE, mean absolute error. 

 

Sensitivity analyses 

Several analyses supported robustness of our main findings. 

a) Left and right TLE. We repeated the above analyses in left and right TLE separately. While the 

degree of asymmetry was stronger in left than right TLE, findings were overall consistent (Fig. S1).  

b) Different density of connectivity matrix. We repeated our analyses by varying the thresholds of 

microstructural and functional connectivity matrices across different densities (20, 30, 40, 50%). 

Gradients and their associations with inter-hemispheric asymmetry, as well as regional atrophy, 

remained consistent (Fig. S2). 

c) Gradients generated using local dataset. We also repeated the analysis after building gradients 

using a different dataset comprising both healthy individuals and patients with TLE. Microstructural 

and functional gradients were highly similar to those from the HCP dataset, and topographic 

associations were virtually identical and similarly robust as in the main findings (Fig. S3). 

d) Volumetry of subcortical regions and the hippocampus. We also studied the volume of subcortical 

structures as well as the hippocampus. While atypical asymmetry and atrophy patterns both supported 

marked ipsilateral hippocampal effects (pFDR < 0.05; Fig. S4A), spatial correlations between atypical 

inter-hemispheric asymmetry and regional atrophy were moderate and not significant (r = 0.51, p = 

0.06). As for the cortical thickness-based results, these findings were consistent across individual 

subjects (Fig. S4B). When we considered both cortical thickness and subcortical/hippocampal 

volume, we were able to confirm our initial results in that atrophy but not atypical asymmetry related 

to age at seizure onset, while disease duration was significantly associated with both measures, 

outperforming the baseline model (atypical asymmetry: p = 0.004 for disease duration, p = 0.14 for 

age at seizure onset; atrophy: p < 0.001 for both disease duration and age at seizure onset; Meng’s z-

test; Fig. S4C). 

 

DISCUSSION 

Together with the multi-site ENIGMA-Epilepsy initiative (Whelan et al., 2018, Larivière et al., 2020c; 

Sisodiya et al., 2020; Thompson et al., 2020), we investigated patterns of atypical inter-hemispheric 

asymmetry of cortical thickness and cross-sectional regional atrophy in a large sample of TLE 

patients and healthy controls. In particular, we studied whether (i) the spatial distribution of atypical 

inter-hemispheric asymmetry differed from patterns of regional atrophy in TLE relative to controls, 

(ii) these patterns follow different topographic principles of cortical organization, particularly with 

respect to microstructural and functional gradients, (iii) these effects showed a differential association 

to effects of epilepsy duration and age of onset. We found that atypical inter-hemispheric asymmetry 

analysis and regional atrophy mapping provide complementary insights into the pathology of TLE in 

vivo, with atypical asymmetry showing an ipsilateral limbic signature, while cross-sectional cortical 

thickness mapping indicated widespread and bilateral atrophy in TLE. Atypical asymmetry and 

atrophy patterns of the cortex were also differentially associated with microstructural and functional 

gradients representing core axes of cortical organization (Mesulam, 1998; Margulies et al., 2016; 

Burt et al., 2018; Huntenburg et al., 2018, Paquola et al., 2019b), supporting a topographic divergence 

of these two characterizations of TLE-related pathology. Findings were consistent across different 

sites and participants, corroborating generalizability. While cortical atrophy was correlated with 
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disease duration and age at seizure onset, atypical asymmetry did not show an association to these 

variables. Collectively, our study underscores complementarity of atypical asymmetry and atrophy 

mapping for in vivo pathology mapping, which will be relevant for future imaging biomarker 

discovery and validation efforts.  

In managing TLE patients, preoperative lateralization of temporal lobe pathology is key to define 

surgical target and often relies on the qualitative visual assessment of inter-hemispheric asymmetry. 

Quantitative imaging analyses in clinical and research settings can be geared towards the 

identification of asymmetry, and several prior studies have systematically investigated between-

hemisphere differences in grey matter morphological measures in TLE. Most of these studies have 

focused on the asymmetry of the hippocampus and adjacent mesiotemporal structures, suggesting 

marked limbic structural asymmetry in TLE (Bernasconi et al., 2003; Bonilha et al., 2003, 2007; Shah 

et al., 2019). Asymmetry analysis has several benefits, including the ability to use a given patient as 

their own baseline while controlling for corresponding measures in controls. However, the field lacks 

systematic analyses of asymmetry, particularly outside the mesiotemporal region. There have been 

no quantitative comparisons of atypical inter-hemispheric asymmetry with maps of cross-sectional 

regional atrophy mapping, in which measures in patients with TLE are compared to groups of healthy 

controls. When carried out in structures of the limbic system, atrophy mapping also reveals structural 

compromise in TLE compared to healthy controls, with variable degrees of asymmetry ranging from 

relatively ipsilateral to rather bilateral depending on the TLE subgroups (Cendes et al., 1993; 

Bernasconi et al., 2003; Bernhardt et al., 2015). The advent of automated morphometric analysis has 

resulted in a predominance of studies focusing on cross-sectional regional thickness comparisons, 

and relatively few large-scale analyses have assessed the topography of atypical cortical thickness 

asymmetry patterns in TLE (McDonald et al., 2008, Bernhardt et al., 2009a; Alhusaini et al., 2012; 

Whelan et al., 2018; Galovic et al., 2019; Weng et al., 2020). Notably, although atypical asymmetry 

and atrophy are sometimes used interchangeably in the neuroimaging literature of TLE as in vivo 

indices of pathology, our findings pointed to differences in the patterns of atypical cortical asymmetry 

and regional patterns of cross-sectional atrophy in TLE. Spatial correlation analysis of their respective 

patterns confirmed this, failing to identify an association after accounting for spatial autocorrelations. 

Atypical asymmetry patterns in TLE followed a more specific paralimbic signature with maximal 

effects in the mesiotemporal lobe, in line with the classical conceptualizations of TLE as a limbic 

network disorder (Falconer et al., 1964; Margerison and Corsellis, 1966; Blanc et al., 2011; Tavakol 

et al., 2019). On the other hand, in line with prior single site analyses (Lin et al., 2007; Bernhardt et 

al., 2008, 2010; McDonald et al., 2008) and recent ENIGMA-Epilepsy studies (Whelan et al., 2018, 

Larivière et al., 2020c; Sisodiya et al., 2020), regional cortical atrophy mapping confirmed ipsilateral 

mesiotemporal atrophy in TLE, as well as widespread and bilateral effects outside paralimbic cortical 

areas. Findings were consistent in both left and right TLE patients. Thus, and despite both left and 

right TLE groups potentially showing different structural compromise (Bonilha et al., 2007; Coan et 

al., 2009; Santana et al., 2010; Kemmotsu et al., 2011; Dabbs et al., 2012; Liu et al., 2016; Whelan 

et al., 2018), findings overall suggest a similar divergence of atrophy and asymmetry patterns 

irrespective of seizure focus lateralization.  

Our findings were further contextualized by quantifying the alignment of asymmetry and atrophy 

patterns along microstructural and functional gradients (Margulies et al., 2016; Huntenburg et al., 

2018, Paquola et al., 2019b). Cortical microstructural gradients place sensorimotor cortices with 

strong laminar differentiation and high myelin content at one end and paralimbic regions with subtle 

myelination, low laminar differentiation, and increased synaptic densities at the other end 
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(Huntenburg et al., 2017, Paquola et al., 2019b). Microstructural gradients, preserved across species 

(Huntenburg et al., 2017; Fulcher et al., 2019, Paquola et al., 2019b), follow canonical models of 

sensory-fugal cortical hierarchies (Mesulam, 1998), and capture inter-regional variations in 

heritability and plasticity (Vainik et al., 2020). While also starting at sensorimotor systems, the 

principal functional gradient radiates towards transmodal networks, such as the default mode and 

frontoparietal systems, and not the paralimbic cortices (Margulies et al., 2016). This divergence 

between microstructural and functional gradients may relate to less tethering of phylogenetically 

more recent association networks, such as the default mode network, from underlying signaling 

molecules (Buckner and Krienen, 2013) and may more closely reflect macroscale functional 

organization (Yeo et al., 2011). Spatial correlation analyses supported the dissociation of atypical 

cortical asymmetry and atrophy patterns with respect to microstructural gradients, where we observed 

increasing degrees of asymmetry towards the temporo-limbic anchor of the microstructural gradient, 

while atrophy patterns increased towards primary sensorimotor and unimodal association areas. 

While confirming stronger effects towards sensorimotor anchors in the case of atrophy patterns, 

functional gradient associations were less conclusive about atypical asymmetry, indirectly 

underscoring the paralimbic pattern of the latter. Furthermore, these findings may indicate that 

cortical morphological changes are better captured by microstructural than by functional hierarchies, 

a finding echoing prior associations between intracortical cellular-synaptic factors and measures of 

cortical thickness (Barbas and Pandya, 1989; Herculano-Houzel et al., 2013; Tomassy et al., 2014; 

Suminaite et al., 2019).  

Big data initiatives such as ENIGMA-Epilepsy offer increased sensitivity to identify disease-related 

patterns of structural compromise and to assess consistency of findings at the single site and 

individual patient levels. We observed that the dissociation between atypical cortical asymmetry and 

atrophy remained consistent when we considered individual sites separately, and to some degree also 

at the level of individual participants. Using machine learning, we associated cortex-wide 

morphological data with clinical variables and showed inter-individual differences in cortical atrophy 

associated with disease duration and age at seizure onset. Associations were primarily driven by 

primary regions in sensorimotor cortex, together with temporal and precuneus regions. Unlike cortical 

thickness, atypical asymmetry patterns were not significantly associated with these clinical variables. 

These divergent clinical associations suggest that atypical inter-hemispheric asymmetry and regional 

cortical atrophy potentially reflect different TLE pathological processes, with asymmetry being more 

specifically related to an initial insult of the limbic circuitry. Alternatively, patterns of TLE-related 

atrophy in widespread and bilateral cortical territories had apparent progressive effects. The latter 

finding is consistent with prior cross-sectional, longitudinal, and meta-analytic findings assessing 

disease progression effects in TLE (Bonilha et al., 2006, Bernhardt et al., 2009b, 2010, 2013b; Coan 

et al., 2009; Caciagli et al., 2017; Galovic et al., 2019). This effect may relate to ongoing seizures, as 

supported by prior data showing associations to seizure frequency (Bonilha et al., 2006; Coan et al., 

2009; Caciagli et al., 2017), as well as from anti-epileptic drug treatment (Pardoe et al., 2013; Caciagli 

et al., 2018). Moreover, drug-resistant patients are at increased risk for mood disorders and 

psychosocial challenges (Lin et al., 2012), which may furthermore adversely impact brain health.  

We found that measures of atypical asymmetry and atrophy provide complementary windows into 

structural compromise in TLE, a finding also supported by the differential relationships to cortical 

topographic gradients and diverging associations to clinical parameters. Our findings advance our 

understanding of large-scale pathology in TLE and may direct future discovery and validation of 

clinically useful neuroimaging biomarkers.   
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Supporting Information 

  

Fig. S1 | Results of left and right TLE. (A) Atypical cortical asymmetry in left and right TLE and 

(B) stratification of effects according to functional communities and lobes. (C) Associations of the 

effects with topographic gradients. (D-F) Results for cortical atrophy. For details, see Fig. 1.  
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Fig. S2 | Results from different connectome densities. Microstructural and functional gradients 

derived from (A) 20, (B) 30, (C) 40, and (D) 50% density of connectivity matrices. Scatter plots show 

spatial correlations between microstructural/functional gradients and atypical cortical asymmetry 

(left) and atrophy (right). 
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Fig. S3 | Gradients obtained from locally acquired microstructural and functional MRI data in 

healthy controls and patients with TLE. (A) Microstructural (left) and functional (right) gradients 

in healthy controls are shown on the brain surface. Associations between atypical cortical asymmetry 

and atrophy and these gradients are shown in the scatter plots. (B) Gradients and associations 

presented for patients with TLE. 
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Fig. S4 | Analyses for subcortical and hippocampal volume. (A) Atypical asymmetry of 

subcortical/hippocampal volume differences and atrophy between individuals with TLE and controls. 

(B) Consistency probability of atypical asymmetry and atrophy in subcortical/hippocampal volume 

across individuals. (C) Prediction results for (top) duration of illness and (bottom) age at seizure onset 

using cortical and subcortical features. For details, see Fig. 1, 2, and 3.  
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