
	 1 

 

Myofibroblast transcriptome indicates SFRP2+ fibroblast progenitors in systemic 

sclerosis skin 

 

Tracy Tabib1, Mengqi Huang1, Nina Morse1, Anna Papazoglou1, Rithika Behera1, 

Minxue Jia2, Melissa Bulik1, Daisy E. Monier1, Panayiotis V. Benos2, Wei Chen3, Robyn 

Domsic1, Robert Lafyatis1 

 

1Division of Rheumatology and Clinical Immunology, Department of Medicine; 

2Depatment of Computational and Systems Biology;  

3Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics; 

School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA  

 

Corresponding Author: Robert Lafyatis, MD,  

Address: BST S720, 200 Lothrop St, Pittsburgh, PA 15260  

Telephone:  412 383-9045 

E-mail: lafyatis@pitt.edu 

 

Disclosures 

Dr. Lafyatis reports grants from Bristol Meyer Squib, Corbus, Formation, Moderna, 

Regeneron, Pfizer, and Kiniksa, outside the submitted work; and served as a consultant 

with Bristol Meyers Squibb, Formation, Sanofi, Boehringer-Ingelheim, Merck, and 

Genentech/Roche.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442148doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442148


	 2 

ABSTRACT 

 

Skin and lung fibrosis in systemic sclerosis (SSc) is driven by myofibroblasts, alpha-

smooth muscle actin  expressing cells that arise from a variety of cell types in murine 

fibrosis models. Utilizing single cell RNA-sequencing to examine the transcriptome 

changes, we show that SSc dermal myofibroblasts arise from an SFRP2/DPP4-expressing 

progenitor fibroblast population that globally upregulates expression of transcriptome 

markers, such as PRSS23 and THBS1. Only a fraction of SSc fibroblasts differentiate into 

myofibroblasts, as shown by expression of additional markers, SFRP4 and FNDC1. The 

myofibroblast transcriptome implicates upstream transcription factors that drive 

myofibroblast differentiation.   
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INTRODUCTION 

Skin fibrosis is a prominent clinical feature in most patients with systemic sclerosis  (SSc, 

otherwise known as scleroderma), and the defining clinical feature for stratifying patients 

into two major disease subsets, limited or diffuse cutaneous disease. Skin tightness and 

thickening lead to considerable morbidity related mainly to contractures of hands as well 

as larger joints. It is also associated with pain, itching and cosmetic anguish1.  Clinically 

skin involvement in SSc is associated with thickening, tethering, tightness and 

inflammation. Pathologically skin thickening is due to increased matrix deposition, most 

prominently type I collagen. Skin tightness may be due to this increase in matrix, but also 

correlates with the presence of myofibroblasts in the skin2. Thus, increased collagen 

production and the appearance of dermal myofibroblasts, typically seen first in the deep 

dermis, are pathogenic processes closely associated with the severity of clinical disease in 

SSc skin3.  

 In many fibrotic diseases myofibroblasts are the main collagen-producing cell 

driving fibrosis (reviewed in4). Perhaps more importantly in SSc skin, they exert tension 

on the tissue and through this mechanism may contribute to skin and joint contractures2, 3, 

5. TGF-b and cell tension are factors most strongly implicated in myofibroblast 

development6, 7. Increasing matrix stiffness induces myofibroblast differentiation8, 9. TGF-

β also induces myofibroblast differentiation and a-smooth muscle actin (SMA), the 

product of the ACTA2 gene and a robust though not specific marker of myofibroblasts in 

many different fibrotic diseases10, 11. Matrix stiffness and myofibroblast contraction also 

activate TGF-β12, 13, setting up a reinforcing amplification signal for tissue fibrosis. Several 

cytokines mediate, synergize with, or are permissive for the effect of TGF-β on 
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myofibroblast formation: CTGF/CCN214, 15, Endothelin-116, and PDGF17, 18, 19. Others, 

such as FGF2, inhibit myofibroblast formation20, 21, while yet others, such as IFNg, activate 

or inhibit myofibroblast formation in different fibrotic models22, 23.   

 Defining the phenotype of myofibroblasts beyond their expression of SMA has 

been challenging due to a rudimentary understanding of fibroblast heterogeneity in general 

and a paucity of specific markers of different fibroblast populations. However, recent 

studies have shed light on fibroblast heterogeneity in both mice and humans. In mice, 

markers are stable or dynamic (typically down regulated in adult mice) for dermal papilla 

(CRABP1), papillary (DPP4/CD26), and reticular (PDPN, SCA1/ATXN1) fibroblasts24, 25. 

Other investigators found that Engrailed/ DPP4-expressing fibroblasts in murine skin are 

profibrotic26. We have recently described two major and five minor fibroblast populations 

in normal skin27. The most common dermal fibroblast is long and slender, and expresses 

SFRP2 and DPP4. This population can be further divided into fibroblast subpopulations 

selectively expressing WIF1 and NKD2, or CD55 and PCOLCE2. A second major 

fibroblast population expresses FMO1 and MYOC. Minor fibroblast populations express 

CRABP1, COL11A1, FMO2, PRG4 or C2orf40. CRABP1-expressing fibroblasts most 

likely represent dermal papilla cells and COL11A1-expressing cells most likely represent 

dermal sheath cells, but FMO2, PRG4, C2orf40 minor fibroblast subsets are 

uncharacterized. Other recent studies have shown markers that distinguish between 

papillary (COL6A5, APCDD1, HSPB3, WIF1 and CD39) and reticular (CD36) dermal 

fibroblasts28.  

 Myofibroblasts are currently best defined by SMA staining, however SMA is 

expressed by a variety of other cell types including smooth muscle cells (SMCs), 
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myoepithelial cells, pericytes and dermal sheath fibroblasts. These other cell types can be 

distinguished by expression of additional markers: Desmin (DES) and Smoothelin (SMTN) 

for SMCs29; Regulator of G Protein signaling 5 (RGS5), Chondroitin sulfate proteoglycan 

4 CSPG4/NG2, Platelet-derived growth factor receptor beta (PDGFRB) for pericytes30; 

Keratin 5 (KRT5) and Keratin 14 (KRT14) for myoepithelial cells. However, there are no 

uniformly accepted specific markers for myofibroblasts. Cadherin 11 (CDH11) expression 

is associated with myofibroblast development and implicated in contractile force across 

myofibroblasts31, but CDH11 is expressed more diffusely by fibroblasts as well as by 

macrophages in SSc skin32. Thus, we lack specific markers for myofibroblasts and have 

limited understanding of the origins of this key pathogenic cell type in SSc skin. 

 The cellular progenitors of myofibroblasts in fibrotic disease models have been the 

source of increasingly sophisticated lineage tracing studies in mice, revealing that a variety 

of cell types can convert into myofibroblasts, including pericytes, epidermal cells, 

endothelial cells, preadipocytes, as well as fibroblasts (reviewed in4). In murine renal 

fibrosis, it appears that myofibroblasts arise from multiple progenitor cell types including 

resident fibroblasts and bone marrow derived cells, or transition from endothelial and 

epithelial cells33. Other lineage tracing studies have emphasized perivascular cells as 

progenitors of myofibroblasts in skin and muscle wound scarring34. In bleomycin-induced 

skin fibrosis adiponectin-expressing cells in adipose tissue can act as myofibroblast 

progenitors. In this model of SSc, transient cells co-expressing perilipin and SMA precede 

the development of myofibroblasts35. Although these studies suggest that multiple cell 

types can serve as progenitors of myofibroblasts in murine models, their origin in human 

disease, including SSc, has remained obscure. A recent study has shown that resident 
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CD34+ fibroblasts in SSc skin undergo a change in phenotype characterized by 

downregulated CD34 expression and upregulated Podoplanin (PDPN) expression36. 

Although this phenotypic change was not strongly associated with the presence of 

myofibroblasts, markers of these cells were retained on myofibroblasts, suggesting that 

resident CD34+ dermal fibroblasts may be the precursors of myofibroblasts in SSc skin.       

 We here study the transcriptome-phenotypic changes of fibroblasts that occur in the 

skin from patients with SSc, focusing on identifying myofibroblasts using single cell RNA-

sequencing (scRNA-seq) on total skin cell digests from SSc and healthy controls subjects.    
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RESULTS 

Single cell transcriptomes from control skin. We have previously described fibroblast 

heterogeneity in normal skin27. We reanalyzed fibroblasts from normal healthy skin using 

an updated clustering algorithm and 4 additional discrete skin samples (Figures S1-S4). 

We observed the same cell populations we described previously based on the top 

differentially expressed genes (Table S1), but some additional populations were also 

apparent. SFRP2/DPP4-expressing fibroblasts, long narrow cells representing the most 

common population of fibroblasts, as before divided into two groups of cells: a 

WIF1/NKD2-expressing subgroup (cluster 1), also expressing HSPB3, APCDD1 and 

COL6A5, previously identified as markers of papillary dermis28, and a 

PCOLCE2/CD55/SLPI-expressing subgroup (cluster 0, Figure S1, S2, S3A-C). A second 

major population, expressing APOE, included MYOC/FMO1 fibroblasts described 

previously27, expressing low levels of APOE (APOElo/MYOC, cluster 3), as well as a two 

subpopulations expressing higher levels of APOE, one of which also expressed high levels 

of C7 (APOEhi/C7, cluster 4), the other a APOEhi/C7 subset that also expressed high levels 

of CCL19, appearing mainly around vascular structures (APOEhi/C7/CCL19, cluster 7; 

Figures S3A-C). We identified several other cell populations based on previously described 

murine and human fibroblast markers surrounding hair follicles: CRABP1/COCH-

expressing dermal papilla (cluster 5) and COL11A1/ACTA2-expressing dermal sheath 

cells (cluster 9,  Figures S3A-C)25, 37. Two other cell populations cluster adjacent to dermal 

sheath and dermal papilla fibroblasts. One appears in the papillary dermis based on POSTN 

immunohistochemical staining (ASPN/POSTN, cluster 2, Figure S3C). The other 

expressed high levels of PTGDS (cluster 6), though this was not a specific marker. Finally, 
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two small discrete populations of fibroblasts expressed SFRP4/ANGPTL7 (cluster 8) and 

SFRP4/LINC01133 (subset of cluster 3). We have previously described SFRP4-expressing 

fibroblasts in normal papillary dermis38. In our recent scRNA-seq description of normal 

fibroblast populations, we also described PRG4+ fibroblasts27. Although these cells did not 

form a discrete cluster on this reanalysis PRG4-expressing cells could be seen to group 

within PCOLCE2+ fibroblasts (not shown).  

 

Single cell transcriptomes from SSc and control skin. We then compared scRNA-seq of 

single cell suspensions from mid-forearm skin biopsies of 12 discrete samples from 

patients with SSc with the 10 control mid-forearm biopsy data described above. Control 

and SSc patients were balanced across sex (control=5/10 female; SSc=7/12 female), age 

(control mean age 51.9, median age = 57.5; SSc mean age =54.7, median age =57.5; Table 

1).  Similar numbers of cells were obtained from control (mean = 2821.6 cells/biopsy and 

median = 2623 cells/biopsy) and SSc (mean 3082 cells/biopsy and median = 3267 

cells/biopsy). All patients with SSc had diffuse cutaneous disease with a mean MRSS = 

26.1, median MRSS = 25. Disease duration was variable, between 0.48 and 6.48 years. 

Several of the patients were taking disease-modifying medications, as indicated (Table 1).  

  Cell transcriptomes were clustered by t-SNE, revealing all expected skin cell types, 

identified by examining the top differentially expressed genes in each cluster (Figure 1A, 

Table S2). Cell types in clusters were similar to cell types seen in normal skin (Figure 1A, 

S5A and S627). Cells from each subject (Figure 1B) and chemistry (Figure S5B) were 

distributed in each cluster. The proportion of each cell population was generally preserved 

between healthy and SSc skin, however showing some changes in fibroblast and keratin 
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6A-expressing keratinocyte populations (Figure 1D). Notably, even at this low resolution, 

SSc fibroblasts can be seen to cluster separately from control fibroblasts, whereas for other 

cell types SSc and control cells largely overlie each other (Figure 1C). UMAP clustering 

of cells gave similar results (Figures S7-S9). We compared the average change in gene 

expression by SSc to healthy fibroblasts in each cluster (Table S3)   

 

Dermal fibroblast heterogeneity is preserved in SSc skin. We selected the cell clusters of 

fibroblasts based on expression of COL1A1, COL1A2 and PDGFRA (clusters 3, 8, 10, 12, 

17 and 26 from Figure 1A), as we described previously these genes to be robust fibroblast 

cluster markers27. We reanalyzed just these cells by UMAP, revealing 10 fibroblast cell 

types (Figure 2A), generally paralleling those found in normal skin (see above and27). 

Fibroblast subclusters included cells from each subject (Figure 2B). However, fibroblasts 

from SSc patient skin samples showed prominent shifts between clusters (Figure 2C). Each 

subcluster could be identified by characteristic gene expression of top differentially 

expressed genes (Figures 2D and 3A, S10A and Table S4).      

 Fibroblasts expressing high levels of SFRP2 (SFRP2hi fibroblasts, Figures 2A and 

3A, fibroblast subclusters 1, 3 and 4), represent the major population of dermal fibroblasts, 

which are long slender cells found between collagen bundles27. SFRP2hi fibroblasts 

included three subpopulations: subpopulations expressing WIF1 and NKD2 (WIF1+ 

fibroblasts, subcluster 3) and SLPI, PCOLCE2 and CD55 (PCOLCE2+ fibroblasts, 

subcluster 1) found previously in normal skin (Figures 2A and 3A), and a new subcluster 

of cells found mainly in SSc skin fibroblasts (PRSS23+ fibroblasts, subcluster 4; Figures 

2A and 4A). Top and highly statistically significant GO terms associated with this new 
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cluster were: Extracellular matrix organization and Extracellular structure organization 

(completely overlapping GO terms); Collagen fibril organization; Response to wounding; 

and Skeletal system development (Table S5).   

 Expression of APOE defined cells in two clusters: APOEhi/CCL19/C7-expressing 

fibroblasts (clusters 0), and APOElow/FMO1/MYOC-expressing cells (subcluster 6, 

Figures 2A and 3A). We have previously identified this latter population fibroblast 

population as distributed in interstitial and perivascular regions27. The larger subpopulation 

of cells (subcluster 0) included a subgrouping of cells, highly expressing CCL19 showing 

a strong trend toward more SSc fibroblasts (Figure 3B), the SSc CCL19+ fibroblasts 

clustering separately from the control CCL19+ fibroblasts (Figure 2C), expressing higher 

levels of CCL19 (Figure 3A) and localizing primarily perivascularly (Figure S3C). 

  Three adjacent clusters showed markers of cells associated with hair follicles 

(subclusters 2, 5 and 8). CRABP1-expressing cells likely represent dermal papilla 

fibroblasts (DP, subcluster 5) and ACTA2/SOX2-expressing cells likely represent dermal 

sheath fibroblasts that may include dermal sheath stem cells  (DS, cluster 8,37, 39). Cells in 

cluster 2 appear to represent cells closely related to hair follicles and/or papillary 

fibroblasts, as ASPN and F2R expressed by cells in this cluster stain brightly cells 

surrounding hair follicles (40 and see Human Atlas online), and POSTN stains brightly in 

the papillary matrix (Figure S3C). The close relationship between these cells is consistent 

with the observation that papillary dermal fibroblasts are required to regenerate hair 

follicles24. Other markers of papillary dermal cells28: APCDD1, HSPB3 and COL6A5 were 

expressed by cells in subcluster 3 (marked by a green bar in Figure 3A), part of the SFRP2-

expressing population found also in the reticular dermis.  
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 Our previous studies show SFRP4-staining fibroblasts in the papillary dermis of  

healthy as well as SSc skin38. Thus, ANGPTL7/C2orf40/SFRP4-expressing cells 

(subcluster 7, Figures 2A and 3A) represent a population of papillary fibroblasts, a second 

SFRP4+ population found only in SSc skin, characterized below, representing 

myofibroblasts (Figure 3A).   

Collectively these studies indicate that the papillary dermis includes several 

different fibroblast populations, as they are found in subclusters 2, 3 and 7. 

 

SSc fibroblasts show global alterations in phenotype. Strikingly most of the fibroblasts 

from SSc patients clustered separately from the control subjects on UMAP dimensional 

reduction (Figure 2C). SSc fibroblasts clustered prominently in cluster 4 

(SFRP2+/PRSS23+ fibroblasts) and also in a discrete region within cluster 0 (CCL19+ 

fibroblasts, Figure S10A). These two clusters showed proportionately more cells 

originating from SSc compared to healthy, control biopsies (Figure 3B). Reciprocal 

changes in cell proportions were seen in clusters 1, 3 and 6 with greater proportions of 

control cells in these clusters. In contrast to the marked separation between SSc and normal 

fibroblasts in the clusters above, fibroblasts predicted to reside in the papillary dermis, and 

DP and DS fibroblasts associated with hair follicles (subclusters 2, 5, and 8) were 

distributed in an approximately equal proportion between SSc and normal samples (Figures 

2C and 3B). Together these results indicated a widespread shift in the phenotype of at least 

two different fibroblast populations in SSc reticular dermis, but not in fibroblast 

populations associated with the hair follicle and papillary dermis. 
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 SFRP2hi/WIF1+ fibroblasts (subcluster 3) were largely depleted in SSc skin with 

the appearance of SFRP2 hi /PRSS23+ fibroblasts in the adjacent (subcluster 4). Comparing 

these two clusters directly revealed top differentially expressed genes including COMP and 

THBS1, genes highly associated with the MRSS and previously identified as biomarkers 

of skin disease41, 42 (Table S6). 

 

SSc fibroblasts show discrete altered gene expression. To investigate the changes in the 

transcriptome-phenotype of fibroblasts in SSc skin, we compared gene expression between 

SSc and control cells in each cluster (Table S7). Several of the highly upregulated genes in 

cluster 4 were recognizable as genes previously shown to correlate with the severity of SSc 

disease such as THBS141, 42, TNC43, CTGF42, THY136, CDH1132, and CCL244 (Table 2). 

However, particularly striking to us was the marked upregulation of SFRP4, a gene we had 

studied previously in the context of a putative role for Wnts in SSc38. Further, on examining 

these and other genes increased in SSc SFRP2hi/PRSS23+ (Cluster 4) fibroblasts, we 

broadly observed two patterns of expression. Either genes were expressed by most cells in 

this cluster, such as PRSS23, THBS1 and TNC, or they were expressed by a subset of cells 

in this cluster, such as SFRP4, ADAM12, TNFSF18, CTGF, FNDC1, COL10A1, and 

MATN3 (Figures 3A and 4A). We did not see any suggestion of preadipocyte, pericyte or 

myeloid markers in myofibroblasts to suggest a transition from these cell types (Figure 

S10B).   

          

Myofibroblasts co-express SFRP2 and SFRP4. We showed previously that SFRP4 is 

upregulated in SSc skin and stains cells in the deep dermis, and that staining correlates with 
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the MRSS38. However, at the time we did not associate this staining with myofibroblasts. 

Based on our scRNA-seq data showing a discrete cluster of SFRP2hi/SFRP4+ fibroblasts, 

we co-stained SFRP4 with SMA, the best-defined marker of myofibroblasts. We found that 

these two markers co-stain myofibroblasts in the deep dermis (Figures 4B, S10C). We have 

recently shown that SFRP2 stains long, thin cells in normal dermis27. Here, we show that 

SMA staining myofibroblasts co-stain with SFRP2, and that SFRP4-expressing cells also 

co-stain with SFRP2, indicating that SFRP2/SFRP4 co-expressing cells represent SSc 

dermal myofibroblasts.  

 

Myofibroblasts show a discrete transcriptome. We compared gene expression of 

SFRP2hi/PRSS23+/SFRP4- fibroblasts to SFRP2hi/PRSS23+/SFRP4+ myofibroblasts. The 

SFRP2hi/SFRP4+ fibroblasts were composed mostly of SSc cells (84/85 cells). Genes in 

addition to SFRP4 that are regulated (Table 3 and S8) included several other genes 

associated with the WNT pathway: SFRP1 and WNT2, and ACTA2, the gene encoding 

SMA (expressed 4.55-fold more highly in SFRP2hiSFRP4+ fibroblasts, Table S8).  

 

SFRP2hiWIF1+ fibroblasts are progenitors of myofibroblasts. To further investigate the 

relationship between SFRP2+ fibroblasts from healthy control skin, and fibroblasts and 

myofibroblasts in SSc skin, we used Monocle, an algorithm that tracks the relationship 

between single cell transcriptomes known as pseudotime 45. Pseudotime analysis indicated 

that there is a linear progression from SFRP2hiPCLOCE2+ fibroblasts (subcluster 1) to 

SFRP2hiWIF1+ fibroblasts (subcluster 3) to SFRP2hiPRSS23+WIF1- fibroblasts 

(subcluster 4) to SFRP2hiPRSS23+SFRP4+ myofibroblasts (Figure 5A and 5B). Although 
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there is no polarity to the pseudotime analysis, since myofibroblasts are not present in 

normal skin, they most likely represent a later time in differentiation. This analysis 

indicates that SFRP2hiPRSS23+WIF1- fibroblasts are the immediate progenitors of 

myofibroblasts, and SFRP2hiWIF1+ fibroblasts the progenitors of 

SFRP2hiPRSS23+WIF1- fibroblasts.  

 This analysis reinforced the upregulated gene expression, transcriptome markers 

identified by examining the transcriptomes of SFRP2hiSFRP4+ myofibroblasts. These 

included COL10A1, FNDC1, SERPINE1, MATN3 and CTGF (Figure S11).  

To further support the trajectory of SFRP2-expressing fibroblasts, we applied 

Velocyto, analyzing the single-cell RNA seq data based on spliced and unspliced transcript 

reads 46, supporting movement of SFRP2hiWIF1+ to SFRP2hiPRSS23+WIF1- fibroblasts 

to SFRP2hiPRSS23+SFRP4+ fibroblasts (Figure S12). 

 

Increased proliferating SFRP2hiPRSS23+WIF1- fibroblasts in SSc skin. A minor 

population of fibroblasts (subcluster 9), clustered separately from the other fibroblasts 

because they highly differentially expressed genes associated with cell proliferation 

(including PCNA and PCLAF, Figure 6A). We have shown previously that macrophages 

in IPF lungs expressing these markers are indeed proliferating cells47, though in this case 

these are extremely rare (representing only 0.38 % of the fibroblasts and .080 % of the total 

cells) and thus unlikely to be detected by immunohistochemistry. Of the 39 cells, only 2 of 

the cells in this subcluster were from healthy skin. The other 37 cells were from the SSc 

skin samples. The 2 cells from healthy skin showed markers of dermal sheath cells (DPEP1 

and COL11A1, Figure 6B). In contrast, all of the cells from the SSc patients expressed 
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markers of SFRP2hiPRSS23+WIF1- cells (SFRP2, PRSS23, TNC, COL10A1). However, 

these cells did not selectively express markers associated with differentiation of 

SFRP2hiPRSS23+WIF1- cells into myofibroblasts (not shown).  

 

Correlation between bulk microarray and SFRP2+/SFRP4+ cells. Several previous studies 

have examined bulk mRNA expression in SSc skin42, 48, 49, 50. Analyzing microarray data 

from our previous biomarker study and clinical trials conducted by our center using the 

same microarray platform42, 51, 52, 53, we compared genes upregulated in SSc whole biopsy 

gene expression data with our single cell results. Several microarray clusters showing genes 

upregulated in subsets of SSc patients contained genes expressed more highly by SSc 

fibroblasts or myofibroblasts, emphasizing the important role these genes play in these 

signatures (Figure 7A). Probing the single cell dataset with these clusters as gene modules 

showed that, indeed, they detect the global change in SSc fibroblasts (PRSS23 signature), 

or the change associated with myofibroblasts (SFRP4 signature) or (COL10A1 signature, 

Figure 7B). We have shown in previous publications that expression of several of the genes 

in these clusters (THBS1, COMP, ADAM12, and CTGF) correlate highly and statistically 

significantly with the MRSS42, so the observation that these genes cluster together in bulk 

RNA-seq analysis and their co-expression in our single cell RNA-seq dataset in the 

transition of healthy SFPR2+ fibroblasts to SSc SFRP2+ fibroblasts (THBS1)  and 

myofibroblasts (ADAM12 and CTGF) is consistent with the roles of these SSc fibroblast 

populations in driving clinical disease. Expression of PRSS23, a marker for the first step 

in SSc fibroblast differentiation, correlated highly with the MRSS (Figure 7C), confirming 

that the first step in SSc fibroblast differentiation is associated with clinical skin disease. 
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Predicted transcription factor regulation of SSc fibroblast and myofibroblast gene 

expression. A significant challenge to gaining further insight into disease pathogenesis is 

relating gene expression changes to underlying alterations in intracellular signaling. To 

address this question, we analyzed our data using SCENIC, a computational method 

developed for detecting transcription factors (TF) networks54. T-SNE analysis of 

subclusters 1-4 by regulon (rather than by gene) showed a clear separation of the SSc 

fibroblasts from subcluster 4 (Figures 8A and 8B). Clustering the TFs driving regulons 

plots revealed a series of TFs, including TGIF2, FOSL2, RUNX1, STAT1 and IRF7 

(Figure 8C and 8D), these genes expressed more highly also in this cell population (Figure 

8E).  

 To examine TFs associated with myofibroblast differentiation more selectively, we 

divided the SFRP2+WIF1-SFRP4+ (myofibroblast populations) from the 

SFRP2+PRSS23+ (remainder of subcluster 4, composed mainly of SSc fibroblasts) and 

compared the TFs regulating these two subclusters with scRNA-seq subcluster 3, 

SFRP2+WIF1+ fibroblasts, composed of both healthy and SSc cells (Figure S13). 

Clustering of the TFs from this analysis showed several of the same TFs predicted as 

driving subcluster 4 differentiation (FOSL2, FOXP1, RUNX2, RUNX1, IRF7), as well as 

several other TFs (Figure S14). We observed similar TFs if first filtering the inputted genes 

requiring 6 UMI and expression in 1% of cells (Figure S15). In addition, to correct for 

potential overfitting due to the variable number of cells per cluster, we downsampled 

subclusters 3 and 4 40 times and iteratively analyzed predicted TFs by SCENIC. Regulons, 
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regulated in 38 of 40 downsamplings and IRF7, STAT1 and CREB3L1, further validated 

these TFs in myofibroblast differentiation (Figure 8F).  

 Surprisingly, none of the transcriptomes in the initial analysis including all 

transcriptome genes associated with each subcluster identified SMAD2 or SMAD3 

regulons, the canonical TFs associated with TGF-b activation. However, if we selected 984 

differentially regulated genes between SSc SFRP4+ myofibroblasts, the remaining SSc 

SFRP2hi cells and the control SFRP2hi fibroblasts, SCENIC detected the SMAD3 regulon. 

This analysis showed upregulated regulons in a graded fashion, higher in 

SFRP4hiPRSS23+ subcluster 4 fibroblasts and highest in SFRP4+ myofibroblasts, again 

with some overlapping TFs seen in the previous analyses, including STAT1, FOSL2, 

RUNX1 and FOXP1 (Figure S16). In this analysis, the SMAD3 regulon was shown 

upregulated, but its regulation was only associated with the transition between 

SFRP2hiWIF1+ (subcluster 3) to SFRP2hiWIF- (subcluster 4) fibroblasts and was actually 

decreased in SFRP2hiSFRP4+, myofibroblasts (Figure S16). 

 Since SCENIC networks are constructed from the same scRNA-seq dataset they 

are applied to, we also analyzed predicted TFs based on DoRothEA55, 56, which relies on 

independent TF-targeted gene interactions (regulon activity) curated from various 

resources, such as the literature, ChIP-seq peaks, TF binding motifs and gene expression 

inferred interactions. Based on the level of supporting evidence, DoRothEA computed 

regulons showed several TFs seen on the SCENIC analyses, most consistently SMAD3, 

STAT1, FOSL2 and HIF1A regulons, upregulated in SFRP2hiWIF- (PRSS23+) fibroblasts 

in most interaction confidence levels, including level A, the level associated with the 

highest confidence interactions (Figure S17). 
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As previous studies have strongly implicated TGF-b in SSc pathogenesis5, 51, we 

further validated the role of SMAD3, its downstream TF, on SCENIC predicted target 

genes in the transcriptome of SSc fibroblasts. To this end, we compared the genes included 

in the SCENIC, SFRP2hiWIF- (PRSS23+), SMAD3 regulon with genes consistently 

upregulated by TGF-b1-, TGF-b2- or TGF-b3-treated dermal fibroblasts (Table S9). TGF-

b induced expression of CHAC1, a SCENIC-predicted downstream target of SMAD3 was 

inhibited by SIS3, a specific inhibitor of Smad3 phosphorylation57 in dermal fibroblasts 

from both control and SSc subjects (Figure S18).  

Because SMAD3 was expressed at low levels (in only a fraction of the cells), 

regulation of other SMAD3 targets predicted by SCENIC were difficult to assay, even by 

RT-PCR. Thus, to gain further insight into the role of SMAD3, we developed a SMAD3 

activity index based on DoRothEA target A genes. Cells in cluster 4 (SSc SFRP2+ 

fibroblasts) and some cells also in cluster 3, 0 and 8 (dermal sheath) were found to express 

higher SMAD3 activity scores (Figure S19).   

To further examine SMAD3 activity, we created SMAD3 activity indices from 

experimentally determined RNA expression after SMAD3 knockdown in myofibroblasts. 

SMAD3 siRNA depressed SMAD3 expression to 6.7% of non-targeting siRNA treatment 

(see Table S10). These activity indices showed increased SMAD3 regulon activity in a 

more restrictive pattern, the highest activity was in cluster 4 (SSc SFRP2+ fibroblasts) and 

enhanced in the region of the SFPR2+, SFRP4+ myofibroblasts, as well as in cluster 8 

(dermal sheath cells, Figure S20).             
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DISCUSSION 

 We show here through bioinformatics and co-staining methods that myofibroblasts 

in SSc skin are a subpopulation of SFRP2hi-expressing fibroblasts. We have shown 

previously that these cells represent the most common fibroblast population in the skin, 

with a long narrow morphology that is similar to the morphology seen on staining SSc 

myofibroblasts with SMA3. Bioinformatics analyses show that SFRP2hi and 

myofibroblasts share closely related transcriptomes and pseudotime analysis indicates that 

SSc myofibroblasts derive from SFRP2hiPRSS23+WIF1- fibroblasts, an SFRP2hi 

fibroblast subpopulation. Our human SSc data is consistent with murine data, showing that 

DPP4-expressing fibroblasts in mice are profibrotic in wound healing26. However, DPP4, 

along with SFRP2, mark the largest population of fibroblasts in human dermis27, and our 

scRNA-seq data provide more specific markers for this and related fibroblast 

subpopulations. The Rinkevich et al cell lineage tracing study strongly supports the 

pseudotime analysis of our data, showing that the SFRP2/DPP4 fibroblast subpopulation 

in healthy skin is the progenitor of fibrogenic fibroblasts in SSc skin, including both 

SFRP2hiPRSS23+WIF1- fibroblasts and myofibroblasts26.   

 Our data show a global shift in fibroblast phenotypes in SSc skin. This includes 

increased expression of PRSS23 and other genes by SFRP2hi fibroblasts, but also a shift 

within the population of APOEhi/CCL19/C7 fibroblasts, which show strikingly upregulated 

expression of a distinct series of genes like CCL19 not upregulated in SSc SFRP2hi 

fibroblasts. These observations indicate that SSc is not a disease affecting only 

myofibroblasts. On the other hand, many genes, such as TNC, are regulated across different 
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fibroblast subpopulations in SSc skin, suggesting that these different fibroblasts are being 

exposed to a common stimulus, such as Wnt or TGF-β. 

 Fibroblasts in SSc skin differentiate into myofibroblasts in two steps. The first step, 

a global shift of SFRPhiWIF1+ fibroblasts to SFRP2hiPRSS23+WIF1- fibroblasts, is likely 

parallel to that described in Nazari et al, which was mimicked in vitro by inflammatory 

stimuli (TNFa and LTb), but not TGF-β36. However, some of the key genes upregulated 

in this first step, such as TNC and THBS1, are known TGF-β responsive genes, and both 

SCENIC and DoRothEA predicted SMAD3 as regulating the transcriptome of cell in this 

step. Other data more strongly support TGF-β as driving the second step, transition of 

SFRP2hiPRSS23+WIF1- fibroblasts to myofibroblasts, as many of the genes upregulated 

in myofibroblasts are known TGF-β targets and are in a cluster of genes downregulated in 

the skin of SSc patients after treatment with anti-TGF-β/fresolimumab treatment of SSc 

patients, such as THBS1, COMP, SERPINE1, COL10A1, CTGF, MATN351. Data 

mapping genes from SMAD3 knockdown experiments supported the role of SMAD3 in 

both of these steps.       

 In contrast to work showing DPP4 fibroblasts as profibrotic26, other murine studies 

have shown that adipocytes35, pericytes34, and myeloid cells58, 59 or combinations of these 

in addition to resident fibroblasts33 can act as myofibroblast progenitors. Lineage tracing 

experiments have elegantly shown that adipocytes at the interface with the dermis 

contribute to myofibroblasts found upon bleomycin-induced skin fibrosis35. Based on 

observations in patients with less severe myofibroblast infiltration, myofibroblasts appear 

first at the interface between subcutaneous fat and reticular dermis3. Notably, in vitro, TGF-

b induces SFRP2, TNC and CTGF expression by adipocytes differentiated in vitro from 
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human adipose-derived progenitors, suggesting that adipocytes might differentiate into 

SFRP2hiPRSS23+WIF1- fibroblast, myofibroblast progenitors. Despite the proximity of 

SSc myofibroblasts to fat, we did not see any transcriptome relationship or overlap in 

specific markers between preadipocytes and myofibroblasts. Another study has shown that 

PDGFRA/PDPN, ADAM12-expressing perivascular cells are progenitors of 

myofibroblasts in murine skin and neural injury34. We found ADAM12 expression highly 

induced in SSc myofibroblasts, these cells also expressing PDGFRA and PDPN. This 

contrasts to ADAM12-expressing perivascular progenitors, which downregulate ADAM12 

during myofibroblast differentiation. In addition, we did not see co-expression of pericyte 

markers to suggest myofibroblast differentiation from a pericyte progenitor, and pericyte 

populations did not significantly express ADAM12 (see Table S3). Although we cannot 

exclude the possibility that SSc myofibroblasts differentiate from a non-pericyte 

perivascular progenitor, our pseudotime analysis as well as SSc myofibroblast morphology 

and topological location indicates that they differentiate from SFRP2hi fibroblasts, cells 

that are distributed throughout normal dermis. Another recent scRNA-seq study identified 

myeloid cell markers CD45 and LYZ2 in a subcluster of wound myofibroblasts60. However, 

we did not observe expression of any myeloid marker genes in SSc 

SFRP2hiPRSS23+WIF1- or SSc myofibroblasts (Table S7, and data not shown). In contrast 

to these cell types in which we could find little transcriptome evidence for a progenitor 

relationship, we found multiple genes shared between dermal sheath cells and 

myofibroblasts, including high ACTA2 expression, the gene encoding SMA37. Dermal 

sheath cells express other markers common to myofibroblasts including COL11A1, and 

cluster proximal to myofibroblasts in UMAP plots. Despite these similarities, dermal 
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sheath cells do not appear to be the direct progenitors of myofibroblasts in SSc skin, as 

each cell type expresses distinct sets of genes, and SSc fibroblasts are transcriptionally and 

topologically much more closely related to SFRP2hiPRSS23+WIF1- fibroblasts. 

 We also show increased proliferation of SFRP2hiPRSS23+WIF1- fibroblasts in SSc 

skin. Although, this low rate of proliferation is unlikely to account for the appearance of 

this cell type in SSc skin, it does suggest that a fibroblast growth factor contributes to the 

altered phenotype of these cells.        

 Several genes regulated in SSc myofibroblasts are reciprocally regulated compared 

to SM22-promoter tdTomato sorted wound myofibroblasts as the wound heals and the 

fibroblasts lose SMA expression (61, Table S6): TNC, SERPINE2, IGFBP3 (increased in 

SSc and early SMA+ wound myofibroblasts), WIF1 (decreased in SSc and late SMA+ 

wound myofibroblasts). Despite these parallels most gene expression changes seen in SSc 

myofibroblasts are distinct from those seen in wound myofibroblasts. This may have to do 

with the limitation of selecting myofibroblasts based on the SM22 promoter, as TAGLN 

(the target of the SM22 promoter) is also expressed by smooth muscle cells62 and we see 

TAGLN (the target of the SM22 promoter) also highly expressed by pericytes and dermal 

sheath cells (not shown). Alternatively, wound and SSc myofibroblasts may represent 

different cell types and originate from different progenitors.  

 We originally described altered Wnt pathway gene expression in skin fibrosis, 

showing that Wnt2 and SFRP4 mRNAs are strongly upregulated in the Tsk murine model 

of skin fibrosis, as well as in SSc skin biopsies38. Subsequently in a more comprehensive 

analysis of Wnt-related genes, we confirmed upregulated and correlated expression of 

WNT2 and SFRP4 gene expression in SSc skin63. We show here that the correlated 
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upregulation of WNT2 and SFRP4 expression in SSc skin is most likely due to their co-

regulation in SSc myofibroblasts. We also showed previously that SSc skin shows 

markedly decreased expression of WIF1 (-7.88-fold), a soluble Wnt inhibitor63. 

Subsequent work by others confirmed down-regulation of WIF1 and increased Wnt activity 

64. Our data here show that downregulated WIF1 is a marker for a global shift in the 

phenotype of SFRP2hi-expressing fibroblasts as they transition from SFRP2hiWIF1+ to 

SFRP2hiPRSS23+WIF1- fibroblasts. As we have previously shown that WIF1 expression 

in whole skin biopsies correlates strongly inversely with the MRSS42, this supports the 

importance of this global shift in fibroblast phenotype that appears to precede the 

differentiation of these cells into myofibroblasts. 

 Several studies have implicated Wnts in fibrosis65. Wnt pathway activation 

increases both fibrillin matrix63 and collagen expression. Wnt10b or b-catenin 

overexpression in mice leads to dermal fibrosis with increased expression of COL1A1, 

COL1A2, CTGF and ACTA2 mRNA in the skin66, 67. Wnt3a blocks preadipocyte 

differentiation into adipocytes and stimulates their differentiation into myofibroblasts 64. 

Other studies indicate that TGF-b mediates fibrosis by inhibiting DKK1, an endogenous 

Wnt inhibitor, leading to unrestrained profibrotic Wnt activity68. Although Wnt10b and 

DKK1 up- and down-regulation, respectively, have been identified by IHC66, 68, our 

microarray of whole skin shows Wnt10b expression decreased and DKK1 DKK2 and 

DKK3 all increased in SSc compared to control skin (combined microarray data; R. 

Lafyatis). Thus, if indeed these Wnts are playing key roles in SSc pathogenesis, then there 

is a disconnect between mRNA and protein expression of these genes. This is not an 

unusual occurrence and indeed a significant limitation to gene expression analyses. 
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However, we propose that altered expression of WIF1, SFRP4 and WNT2, all of whose 

expression correlates highly with the MRSS, are more likely the key deregulated Wnts in 

SSc skin. 

 Regulon analysis implicated several unexpected TFs in regulating the 

transcriptome of SSc fibroblast differentiation, particularly STAT1, FOSL2, RUNX1, 

IRF7, HIF1A, CREB3L1 and FOXP1, as well as SMAD3. IRF7 is upstream69 and STAT1 

downstream70, 71interferon signaling, previously implicated in SSc skin41. Polymorphisms  

in the IRF7 and HIF1A genes are associated with SSc72, 73; IRF7 can bind SMAD3, and 

regulate fibrosis and profibrotic gene expression74, while HIF1A has been implicated in 

mediating hypoxia induced skin fibrosis75. Transgenic FOSL2 overexpression leads to 

murine skin fibrosis, reproducing several features of SSc76. FOSL2 is induced by TGF-b 

and regulates collagen production. Thus, several of the TFs predicted to regulate SSc 

fibroblast differentiation have been implicated in SSc skin fibrosis.  

 In conclusion, we identify the transcriptome of SSc myofibroblasts and show that 

SFRP4 is an immunohistochemical marker for these cells. Further, our bioinformatics 

analyses indicate that myofibroblasts differentiate in a two-step process from 

SFRP4/DPP4-expressing normal fibroblast progenitors. These data also provide direct 

insights into previous studies of altered gene expression in SSc skin. We anticipate that 

applying scRNA-seq in clinical trial settings will enable far greater insights into the effects 

of therapeutics on the complex alterations of various cell types in SSc skin. We also expect 

that these observations will provide insights into myofibroblast origin and differentiation 

in other fibrotic diseases.      
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METHODS 

Study Approval. The University of Pittsburgh Medical Center Institutional Review Board 

(Pittsburgh, PA, USA) reviewed and approved the conduct of this study. Written informed 

consent was received from all participants prior to inclusion in the study.  

 

Single cell RNA-sequencing. 3 mm skin biopsies were obtained from study subjects, 

digested enzymatically (Miltenyi Biotec Whole Skin Dissociation Kit, human) for 2 hours 

and further dispersed using the Miltenyi gentleMACS Octo Dissociator. The resulting cell 

suspensions were filtered through 70 micron cell strainers twice and re-suspended in PBS 

containing 0.04% BSA. Resulting cell suspensions were loaded into 10X Genomics 

Chromium instrument (Pleasanton, CA) for library preparation as described previously 27. 

V1 and V2 single cell chemistries were used per manufacturer’s protocol. Libraries were 

sequenced (~200 million reads/sample), using the Illumina NextSeq-500 platform. The 

sequencing reads were examined by quality metrics, transcripts mapped to reference 

human genome (GRCh38) and assigned to individual cells according to cell barcodes, 

using Cell Ranger (10X Genomics).  

Data analysis was performed using R (version 3.5). Seurat 3.0 was used for data 

analysis, normalization of gene expression, and identification and visualization of cell 

populations 77, 78, largely as described previously 27. Cell populations were identified based 

on gene markers and visualized by t-distributed stochastic neighbor embedding (t-SNE) 79 

or UMAP 80 plots. We used AddModuleScore to calculate the average expression levels of 

each program (cluster) on a single cell level, subtracted by the aggregated expression of 
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control feature sets. Pathway analysis was performed with Gene Ontology Enrichment 

Analysis. Data presented were  normalized between samples using SCTransform which 

models technical noise using a regularized negative binomial regression model 81.   

 

Immunohistochemistry and Imaging. Tyramide SuperBoost kit (Invitrogen, USA) was 

used to amplify signals in co-stained tissues as per manufacturers protocol.  Briefly, IF of 

formalin-fixed, paraffin-embedded human forearm skin biopsies were first, deparaffinized 

and rehydrated for antibody staining. Slides were placed in citrate buffer pH 6, steamed for 

20 minutes and cooled 20 minutes at room temperature for heat induced antigen retrieval 

before washing in phosphate buffered saline. All primary antibodies were incubated 

overnight at 4o Celsius. All poly-HRP secondary antibodies were used as per manufacturers 

protocol along with tyramide stock solution. Tyramides were incubated for 5 minutes each 

before neutralized with  stop solution. Monoclonal mouse anti-SMA (1:1000; M0851; 

Clone14A; Dako, Denmark AS, Denmark) was labeled with Alexa Fluor 647 tyramide 

solution. In order to multiplex staining of slides with antibodies from the same species, 

slides were placed in citrate buffer pH 6, steamed for 20 minutes and cooled 20 minutes at 

room temperature for unbound antibody stripping before washing in phosphate buffered 

saline and proceeding with next antibody. Next, monoclonal mouse SFRP2 (1:250; 

MAB539; Millipore, USA) labeled with Alexa Fluor 488 tyramide solution was applied 

and washed, and then polyclonal rabbit SFRP4 (1:500;153287-1-AP; Proteintech, USA) 

was labeled with Alexa Fluor 568.  

For single staining polyclonal rabbit anti-CCL19 (1:500, ab221704, Abcam, USA) 

was labeled with Alexa Fluor 568 tyramide solution; monoclonal mouse anti-CRABP1 
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(1:500, MA3-813, C-1, ThermoFisher, USA) was labeled with Alexa Fluor 488 tyramide 

solution; polyclonal rabbit anti-POSTN (1:250, ab14041, Abcam, USA) was labeled with 

Alexa Fluor 568 tyramide solution; and monoclonal mouse anti-SLPI (1:50, [31] ab17157, 

Abcam, USA) was labeled with Alexa Fluor 568 tyramide solution.  

All slides were counterstained with nuclear stain Hoechst 33342 (Invitrogen, USA) 

and cover slipped with Pro-Long™ Diamond Antifade Mountant (P36961: Life 

Technologies, USA). Images were acquired using an Olympus Fluoview 1000 Confocal 

Scanning microscope.   

 

Transcription factor inference- 

SCENIC. In order to better understand the TFs activating gene expression in SSc 

fibroblasts and myofibroblasts, we utilized SCENIC 54, a computational method for 

detecting gene regulatory networks. Embedded in this method is the identification of 

regulons, groups of genes identified by their co-expression with transcription factors (TFs, 

GENIE3 82), further selected by showing that genes in the regulon are enriched for TF cis-

regulatory motifs. SCENIC then scores each cell for the level of gene expression by genes 

in each regulon, reported as AUC. 

For the SCENIC analyses, we used only cells from V2 chemistries, 4 control and 9 

SSc samples. To begin clusters 1, 2, 3, and 4 were subsetted from the fibroblast dataset and 

all genes showing expression in at least one cell were analyzed. A second analysis was then 

carried out subsetting clusters 3 and 4, with cluster 4 further subsetted to delineate the 

SFRP4+ myofibroblast group. Again, all genes showing expression in at least one cell were 

included in the analysis. Alternatively, we filtered cells based on the workflow provided 
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by Aerts lab54, keeping genes that 1) with at least 6 UMI across all cells, and 2) detected in 

at least 1% of cells. 

Finally, to focus on changes associated with SSc, a more restrictive gene list (984 

genes) was compiled of: 1) genes increased in SFRP2+ SSc cells (in clusters 3 and 4) 

compared to control SFRP2+ cells (in clusters 3 and 4, Bonferroni corrected Wilcoxon 

p<0.05); and 2) genes increased in SFRP2+SFRP4+ myofibroblasts compared to SSc 

SFRP2+SFRP4- cells (in cluster 3 and 4, Bonferroni corrected Wilcoxon p<0.05).   

Using SCENIC we then analyzed the single-cell RNA-seq expression matrices by 

GENIE3 to infer the co-expression network. GENIE3’s output, a link list, included the 

potential regulators for each gene along with their weights, these weights representing the 

relevance the TF has in the prediction of the gene target.  

 

DoRothEA and VIPER. We used VIPER in combination with DoRothEA to 

estimate transcription factor (TF) activities from gene expression data55. DoRothEA 

contains 470,711 interactions, covering 1396 TFs targeting 20,238 genes, which rely on 

the independent TF-targeted gene interactions (regulon activity) curated from various 

resources such as literature, ChIP-seq peaks, TF binding motifs and gene expression 

inferred interactions. Based on the number of supporting evidences that accompany each 

interaction, an interaction confidence level is assigned, ranging from A to E, with A being 

the highest confidence interactions and E the lowest. VIPER is a statistical method that 

used in combination with DoRothEA to estimate TF activities from scRNA-seq expression 

data83. 
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We used TF target genes from DoRothEA, level A and from genes downregulated 

by siRNA to SMAD3 to create SMAD3 activity scores. Activity scores were also derived 

from SMAD3 siRNA treated myofibroblasts, filtered for absolute gene expression of non-

targeting control siRNA >50 TPM, showing expression of SMAD3 siRNA treated cells of 

less than 0.8 of non-targeting control siRNA, and excluding genes showing expression less 

than 0.7 in HRPT1 siRNA treated cells compared to non-targeting control siRNA (415 

genes); or for absolute gene expression in non-targeting control treated siRNA cells of 

>100 TPM, showing expression of SMAD3 siRNA treated cells of less than 0.7 of non-

targeting control siRNA, and excluding genes showing expression less than 0.7 in HRPT1 

siRNA treated cells compared to non-targeting control siRNA (74 genes ).Using the Seurat 

AddModuleScore, we plotted these activity scores on scRNA-seq UMAP feature plots. 

 

Downsampling. In order to test if the difference in cell numbers among clusters of 

3 (WIF1+), 4 (PRSS23+), and 4 (SFRP4+) (673, 743, 73 respectively) would affect the 

SCENIC regulatory analysis, we used R function ‘sample’ to randomly select 73 cells from 

cluster 3_WIF1+ and 4_PRSS23+ and then performing SCENIC analysis. We 

downsampled and performed SCENIC analyses 40 times with the resulting, different pools 

of cells.   

  

Pseudotime analysis. Expression values were normalized in Monocle 3 (accounting for 

technical variation in RNA recovery as well as sequencing depth) by estimating size factors 

for each cell and the dispersion function for genes 45, 84.  Nonlinear dimensionality 

reduction was performed using UMAP.  Cells were organized into trajectories by Monocle 
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using reversed graph embedding (a machine learning strategy) to learn tree-like 

trajectories.  Once a principal graph had been learned, each cell was projected onto it, using 

SimplePPT, the default method in Monocle 3; it assumes that each trajectory is a tree that 

may have multiple roots.  

 

RNA velocity analysis 

Velocyto, a package for the analysis of expression dynamics in single-cell RNA seq data 

based on spliced and unspliced transcript reads, was used to estimate the time derivative of 

the gene expression state 46. RNA velocities of cells in clusters 1,3 and 4 were estimated 

using gene-relative model with k-nearest neighbor cell pooling (k=50) based on top 100 

differentially expressed genes from myofibroblast, cluster 3, and cluster 4. Velocity fields 

were projected into a UMAP-based embedding through SeuratWrappers in Seurat. 

 

Microarray Analyses. We combined and clustered microarray data from our previous 

biomarker study and clinical trials conducted by our center using the same Affymetrix 

U133A2.0 microarray chips 42, 51, 52, 53. Data were normalized using the MAS 5.0 algorithm, 

gene expression values were clustered using Cluster 3.0 85. After filtering for genes 

showing differences of greater than 100 across all samples, genes were mean centered, 

normalized, hierarchically clustered by complete linkage, and visualized using Java 

Treeview 86. Hierarchical clusters (groups of genes referred to as signatures), 

corresponding to genes associated with the transition of healthy SFRP2+ fibroblasts into 

SSc SFRP2+ fibroblasts (PRSS23, TNC, THBS1) and into myofibroblasts (CTGF, 

ADAM12, COL10A1 and MATN3) were analyzed, using the Seurat AddModuleScore 
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function. The Seurat AddModuleScore function calculates the difference between the 

average expression levels of each gene set compared to random control genes at a single 

cell level. These values were then plotted on t-SNE feature plots.  

 

Cell culture, and TGF-b, phospho-SMAD3 and siRNA analyses. 

Early passage human dermal fibroblasts from SSc or healthy control skin were cultured in 

DMEM supplemented with 10% FBS after collagenase digestion. Fibroblasts were 

passaged at ~80% confluence, the following day placed in 0.1% serum and treated with 

TGF-b1, TGF-b2 or TGF-b3 (R&D Systems) or left untreated (control), or pretreated one 

hour with the Smad3 phosphorylation inhibitor SIS3 (CAS 1009104-85-1, Sigma Aldrich). 

After 16 hours, RNA was prepared and analyzed by microarray Affymetrix U133A2.0 

microarray chips as above, or cDNA prepared and analyzed by RT-PCR using primers to 

CHAC1 Taqman FAM-MGB dye (Thermo fisher #4331182) or SMAD3 Taqman FAM-

MGB dye (Thermo fisher #4453320). Ct values for each treatment were normalized to 18S. 

Delta Ct for sample was then normalized to the control treatment and Fold change- 

calculated. 

 For siRNA experiments, pulmonary myofibroblasts (passage 6) isolated from lung 

explants were used in knockdown experiments. Cells were passaged at 60%  confluence, 

washed and then siRNAs targeting SMAD3, HRPT1 (control) or non-targeting control 

transfected 8 hours using Lullaby Transfection Buffer (OZ Biosciences; LL71000) in 

200µL OptiMEM with 5µL 10µM reconstituted dsiRNAs (TriFECTa DsiRNA kit, cat#: 

hs.Ri.SMAD3.13, Integrated DNA Technology). After 48 hours RNA was isolated from 

the cells with the RNeasy kit (Qiagen), quantified and quality checked in TapeStation High 
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Sensitivity RNA Screen Tape. cDNA libraries were synthesized and 25 million single-end 

reads sequenced per sample using an Illumina High-Throughput Sequencer. FastQC 

reports were used to ensure quality data was entered into analysis. Alignment and Gene 

Counts were carried out using CLC Genomics version 20.0.3. Transcripts Per Kilobase 

Million (TPM) were exported for samples and log fold changes were calculated with 

respect to the non-targeting controls. 

  

Statistics 

For Tables examining differential gene expression between cells or groups of cells within 

clusters, cells were filtered out that were expressed in less than 10% of the cells showing 

upregulated expression. Comparisons of average numbers of cells in each fibroblast 

subpopulation were compared using Wilcoxon Rank-Sum test. Differential gene 

expression between healthy controls and SSc was assessed using Seurat’s implementation 

of the non-parametric Wilcoxon rank sum test. A Bonferroni correction was applied to the 

results. Differences between the average proportions of cells in all control and SSc clusters 

were compared using the chi square test. Individual differences between proportions of 

cells in each patient comparing SSc with controls cluster were calculated using Mann-

Whitney. All statistical tests were two-sided. 

 

Data Availability.  

All scRNA-seq data including Gene cell UMI matrix and a BAM file containing aligned 

reads are available at the Gene Expression Omnibus: GSE138669. 

 
Code Availability. Code for data analyses are available and referenced in the text.  
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Genes

cluster 4 average 
expression by 

CONTROL 
fibroblasts

cluster 4average 
expression by 
SSC fibroblasts

FOLD change 
(SSC/CONTROL)

PRSS23 0.10 8.00 77.36
SFRP4 0.01 0.66 75.99
PTX3 0.01 0.55 63.47
COL8A1 0.02 0.67 38.84
PLA2G2A 0.03 0.88 33.97
ASPN 0.05 1.41 27.24
DIO2 0.17 3.06 17.73
IL32 0.09 1.03 11.93
TAGLN 0.11 1.17 10.43
GPX3 0.10 0.97 9.37
THBS1 0.38 3.40 8.87
TNC 0.28 2.26 8.18
CADM3 0.12 0.83 6.86
LUM 7.13 47.61 6.68
IGFBP3 0.31 2.01 6.58
MMP11 0.19 1.18 6.22
SERPINE2 0.62 3.82 6.20
COL12A1 0.45 2.67 5.96
TMEM176A 0.15 0.88 5.84
CDH11 0.17 0.96 5.59
SLC5A3 0.16 0.91 5.55
MRPS6 0.64 3.52 5.49
RARRES2 0.32 1.74 5.46
EFEMP1 0.51 2.77 5.45
TNFRSF12A 0.17 0.94 5.43
SAA1 0.95 5.02 5.29
THY1 1.41 7.13 5.06
CTSC 0.29 1.44 4.91
MDK 0.33 1.59 4.80
LMCD1 0.14 0.61 4.46
TMEM176B 0.40 1.70 4.28
GJA1 0.36 1.46 4.09
STMN2 0.60 2.37 3.93
NNMT 1.47 5.60 3.80
CPXM1 0.24 0.88 3.64
POSTN 2.49 8.71 3.50
MARCKS 0.32 1.11 3.49
COL6A3 1.38 4.83 3.49
C3 0.17 0.59 3.49
MT2A 2.44 8.48 3.48
COL5A2 0.58 2.01 3.45
CCL2 0.54 1.86 3.43
CARHSP1 0.23 0.79 3.38
CTSB 1.49 5.01 3.37
APOE 0.91 2.83 3.12
CTGF 2.00 6.22 3.11
CTHRC1 4.60 14.13 3.07
PCOLCE 2.29 6.75 2.95
*Genes expressed by less than 0.5 by control fibrblasts were filtered out.

Table 2. Upregulated gene expression by SSc fibroblasts in subcluster 4*
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Gene

Average log fold 
change 
(SFRP4+/SFRP4-) 

p-val 
wilcoxon

p-val adj 
wilcoxon 
bonferroni

Percent 
SFRP2hi/PRSS
23+/SFRP4+ 
cells 
expressing 
gene

Percent 
SFRP2hi/PRSS
23+/SFRP4+ 
cells 
expressing 
gene

SFRP4 8.885056423 2.45E-245 4.63E-241 1 0
CYP26A1 4.518000417 1.70E-31 3.22E-27 0.173 0.004
IGFBP3 3.478419925 6.49E-32 1.23E-27 0.58 0.127
MATN3 3.262104229 6.70E-33 1.27E-28 0.296 0.022
ENC1 2.985163768 2.20E-20 4.17E-16 0.16 0.01
SULF1 2.97387235 2.94E-37 5.56E-33 0.296 0.017
SKAP2 2.557104227 1.27E-14 2.40E-10 0.123 0.009
WNT2 2.482667089 1.71E-15 3.23E-11 0.123 0.008
SFRP1 2.434003311 2.76E-07 0.00521745 0.148 0.033
COL11A1 2.324491799 9.74E-42 1.84E-37 0.519 0.064
SCT 2.316945779 1.28E-10 2.42E-06 0.123 0.014
TAGLN 2.276294141 2.29E-20 4.33E-16 0.593 0.203
LINC01013 2.23822201 5.84E-16 1.10E-11 0.173 0.017
EDIL3 2.149511307 2.20E-15 4.15E-11 0.247 0.04
LAMP5 2.076811507 2.92E-23 5.52E-19 0.407 0.074
SPHK1 2.071564961 4.12E-20 7.79E-16 0.321 0.052
AC062004.1 2.012125295 4.73E-10 8.94E-06 0.123 0.015
AZIN2 1.96241774 1.01E-11 1.91E-07 0.173 0.026
FHL2 1.923117541 7.09E-21 1.34E-16 0.358 0.061
COL10A1 1.906336301 4.16E-20 7.87E-16 0.42 0.09
SDC1 1.904140873 2.46E-17 4.66E-13 0.346 0.072
PLOD2 1.904134228 1.07E-11 2.02E-07 0.16 0.022
FNDC1 1.901603471 1.56E-20 2.95E-16 0.444 0.103
LUZP2 1.866360203 5.16E-11 9.75E-07 0.123 0.013
SERPINE1 1.865180953 2.73E-15 5.15E-11 0.457 0.136
UNC5B 1.862965378 4.08E-15 7.70E-11 0.247 0.04
NRG1 1.82960566 3.64E-08 0.00068861 0.136 0.024
PLAT 1.769174373 6.32E-11 1.19E-06 0.173 0.028
CTGF 1.76380336 1.91E-15 3.61E-11 0.802 0.557
EPDR1 1.744516467 9.41E-16 1.78E-11 0.321 0.066
NINJ2 1.73118422 3.55E-12 6.72E-08 0.321 0.086
TM4SF1 1.68546562 3.16E-08 0.000598 0.235 0.067
LIMK2 1.684379672 1.04E-07 0.00196351 0.123 0.021
LTBP2 1.630091522 2.22E-16 4.19E-12 0.481 0.147
DEPTOR 1.602311211 1.31E-07 0.00248537 0.16 0.036
TIMP3 1.564592883 9.50E-12 1.80E-07 0.728 0.452
CHPF 1.552306439 1.66E-16 3.14E-12 0.543 0.188
KIAA1217 1.528278255 8.32E-08 0.00157356 0.16 0.035
CACNB4 1.515720346 1.26E-07 0.002381 0.185 0.046
COL8A1 1.505696604 1.32E-12 2.50E-08 0.556 0.249
KRT7 1.50255773 2.38E-08 0.00045057 0.235 0.065
DNAJB5 1.495431753 2.29E-06 0.04336169 0.123 0.026
OAF 1.476647856 1.26E-10 2.39E-06 0.309 0.088
PI16 1.464567194 3.42E-07 0.00646798 0.556 0.329
TNFSF18 1.461680375 1.86E-14 3.51E-10 0.383 0.097
INHBA 1.435609728 1.25E-14 2.36E-10 0.432 0.123
MFAP5 1.41240192 6.94E-25 1.31E-20 0.889 0.418
ADAM12 1.397496362 4.17E-08 0.00078762 0.235 0.066
LAYN 1.384948249 5.00E-08 0.00094579 0.222 0.061
NET1 1.379094495 1.89E-06 0.03582183 0.173 0.047
PHLDA2 1.377676732 4.75E-11 8.99E-07 0.272 0.065
C1QTNF3 1.307554147 9.72E-12 1.84E-07 0.667 0.38
GALNT1 1.305056615 4.42E-07 0.00834986 0.333 0.139
FN1 1.274548997 6.67E-10 1.26E-05 0.877 0.716
PDLIM7 1.272880381 4.96E-09 9.38E-05 0.346 0.122
COL8A2 1.263744074 2.39E-10 4.53E-06 0.346 0.108
TMEM234 1.253100205 2.91E-07 0.005504 0.222 0.065
CILP2 1.237087636 2.68E-10 5.07E-06 0.321 0.092
BHLHE40 1.235637336 1.24E-06 0.02339046 0.296 0.115
LOXL1 1.229096672 3.20E-15 6.05E-11 0.753 0.46
TNFSF4 1.228870962 2.32E-08 0.0004393 0.235 0.063
NRP2 1.226945596 1.07E-08 0.00020262 0.284 0.086
ASPN 1.223729155 3.18E-15 6.00E-11 0.63 0.239
NTM 1.199115478 1.99E-09 3.77E-05 0.309 0.092
ITGA11 1.147228607 6.23E-10 1.18E-05 0.395 0.141
PDLIM5 1.138189305 1.47E-08 0.00027796 0.272 0.08
MYH9 1.133793343 1.96E-07 0.00371054 0.358 0.144
COL4A4 1.132166862 7.70E-11 1.46E-06 0.346 0.101
LMO7 1.054863703 2.30E-08 0.0004345 0.444 0.192
MGP 1.024982039 9.28E-09 0.00017551 0.802 0.516
CBFB 1.015713038 6.98E-07 0.01319485 0.296 0.11
PRELP 1.006554173 6.42E-09 0.0001213 0.741 0.57

Table 3. Gene expression by SSFRP2hi/PRSS23+/SFRP4+ myofibrobalsts compared to 
SFRP2hi/PRSS23+/SFRP4- fibroblasts*

*showing only genes with adjusted p-value<0.05, percent expression in SFPR4+ 
fibroblasts>0.1, and  Log fold change >1.0
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Figure	1.	T-SNE	plot	of	scRNA-seq	data	from	control	and	SSc	skin	biopsies.	Transcriptomes	
of	all	cells	obtained	after	enzymatic	digestion	of	dorsal	mid-forearm	skin	biopsies	from	10	
healthy	control	and	12	SSc	subjects,	showing	each	SLM	cluster	by	color	(panel	A)	or	by	source	
from	each	patient	(panel	B)	or	by	source	form	SSC	(blue)	or	control	(red)	biopsies	(panel	C).	
Source	data	are	provided	as	a	Source	Data	file.		
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B                                               C 
Figure	2.	UMAP	plot	of	scRNA-seq	reclustering	of	fibroblasts	and	heatmap	of	subclusters.	
UMAP	analysis	of	transcriptomes	of	fibroblasts	(clusters	3,	8,	10,	12,	17	and	26	from	Figure	1)	from	
10	healthy	control	and	12	SSc	subjects,	showing	each	SLM	cluster	by	color	(panel	A)	or	by	source	
from	each	patient	(panel	B)	or	by	source	form	SSC	(blue)	or	control	(red)	biopsies	(panel	C).	
Clustering	of	showing	most	differentially	expressed	genes	associated	with	UMAP	clusters.	Yellow	
indicates	increased	expression,	purple	lower	expression.	Key	marker	genes	are	enlarged	to	the	left	
(panel	D).			
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Figure	3.	Key	marker	genes	and	proportions	of	fibroblast		subclusters	from	control	healthy	
(n=10)	and	SSc	(n=12)	skin.	Dot	plats	of	gene	expression	markers	of	fibroblasts	populations	in	
healthy	and	SSc	skin	(panel	A).	Subpopulations	of	fibroblasts	including	dermal	sheath,	dermal	
papilla,	papillary	(green	bar),	reticular	and	SSc	fibroblasts	(blue	bar)	and	myofibroblasts	(red	
bar)	are	indicated.	Proportions	of	fibroblast	subclusters	as	from	control	(blue)		numbered	and	SSc	
biopsies	(orange;	clusters	are	numbered	as	in	Figure	2	(panel	B).	Cell	populations	are	
differentially	expressed	between	the	groups	(p<0.001,	chi	square	test).	Stars	(*)	indicate	different	
proportions	between	SSc	and	Control	subjects		(p<0.05,	error	bars=	SEM).	Source	data	are	
provided	as	a	Source	Data	file.	
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Figure	4.	Feature	plots	and	immunofluorescent	staining	of	genes	overexpressed	by	SFRP2+	SSc	
fibroblasts.	PRSS23,	THBS1,	ADAM12,	SERPINE1,	FNDC1,	CTGF	show	upregulated	expression	in	cells	
associated	more	diffusely	with	fibroblast	subcluster	4	(panel	A).	SFRP4,	COL10A1,	MATN3	show	
upregulated	gene	expression	in	a	pattern	more	discrete	within	the	cluster	(arrows).	
Immunofluorescent	staining	of	myofibroblasts	in	SSc	skin	(panel	B).	Deep	dermis	from	a	patient	with	
diffuse	cutaneous	SSc	co-stained	with	SFRP2	(green)	and	SFRP4	(red),	SMA	(white)	show	strong	
overlap	between	staining	of	myofibroblasts	with	SFRP2	and	SFRP4.	Nuclei	(purple)	are	stained	with	
Hoechst.	Scale	bar	=	50	µM.				
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Figure	5.	Pseudotime	modeling	of	SFRP2+	fibroblast	differentiation	in	SSc	skin.	Fibroblast	
subclusters	defined	in	Figure	2	were	analyzed	using	Monocle	with	the	trajectory	as	indicated	by	
the	black	line,	with	cells	colored	by	subcluster	of	origin:	subclsuter	1	(red),	subcluster	3	(green)	
and	subcluster	4	(blue;	panel	A)	or	by	subject	status:	healthy	control	(red)	and	SSc	(blue;	panel	B).	
SFRP2	was	expressed	by	all	of	the	cells	(panel	C,	right	lower	panel).		PRSS23	was	expressed	more	
highly	by	cells	clustered	later	in	pseudotime,	corresponding	to	fibroblast	subcluster	4	(panel	C).	
SFRP4	was	expressed	more	highly	expressed	even	later	in	pseudotime,	corresponding	to	
myofibroblasts	identified	in	t-SNE	plots	(Figures	3A	and	4A).						
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Figure	6.	Proliferating	fibroblasts	in	healthy	control	and	SSc	skin.	Feature	plots	indicating	that	
expression	of	proliferation	markers,	PCNA	and	PCLAF,	are	limited	to	cells	in	subcluster	9	(panel	A).		
Violin	plots	indicate	gene	expression	by	proliferating	cells	(subcluster	9),	showing	markers	of	dermal	
sheath	cells	(DPEP1	and	COL11A1)	by	healthy	control	cells	(2	cells)	and	markers	of	
SFRP2hiPRSS23+WIF1-	cells	(SFRP2,	PRSS23,	TNC,	COMP	and	TNFSF18)	by	SSc	fibroblasts	(37	cells).	
Only	one	SSc	fibroblast	expressed	markers	of	myofibroblasts	(SFRP4	and	COL10A1).				
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Figure	7.	Bulk	RNA	expression	data	clusters	reflect	gene	
expression	by	SSc	fibroblasts	and	myofibroblasts.	Bulk	
gene	expression	from	microarrays	of	patients	with	SSc	
(n=66)	and	healthy	control	skin	(n=9)	as	indicated	
clustered	hierarchically	(panel	A;	yellow=high,	blue=	low	
expression).	Feature	plots	corresponding	to	gene	signature	
in	of	each	cluster	are	shown	(panel	B,	Seurat	
AddModuleScore	function).	PRSS23	expression	on	
microarray	correlates	highly	with	the	MRSS	(R2=0.58272,	
panel	C).				
	

	
C 
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A                                         B 

Figure	8.	Regulons	associated	with	TFs.	Clustering	of	fibroblast	subclusters	1-4	by	regulon	
expression,	colored	according	to	gene	expression	subclusters	as	in	Figure	2	and	indicated	in	the	
legend	(panel	A)	and	according	to	SSc/healthy	disease	status	(panel	B).	Clustering	of	regulons	
identified	comparing	fibroblast	subclusters	1-4	(panel	C),	expanded	section	showing	regulons	
upregulated	in	cluster	4	(panel	D).	Gene	expression	indicated	on	T-SNE	plots	of	select	TFs	(panel	E,	
brown=increased	expression).	Heatmap	showing	iterative	downsamplings	and	SCENIC	analysis	of	
regulon	activities	comparing	SFRP2+WIF1+	cluster	3	(WIF1+)	with	subcluster	4	divided	into	
myofibroblasts	(SFRP4+)	and	SFRP2+PRSS23+WIF1-	non-myofibroblasts	(PRSS23+,	Panel	F).	
Regulons	associated	with	38	non-redundant	out	of	40	SCENIC	analyses	are	shown.	For	clustering	
panels,	red=high,	blue=low	expression.		
.		
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