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Abstract:  1 

Mossy cells (MCs) of the dentate gyrus (DG) are key components of an excitatory associative 2 

circuit established by reciprocal connections with dentate granule cells (GCs). MCs are implicated 3 

in place field encoding, pattern separation and novelty detection, as well as in brain disorders 4 

such as temporal lobe epilepsy and depression. Despite their functional relevance, little is known 5 

about the determinants that control MC activity. Here, we examined whether MCs express 6 

functional kainate receptors (KARs), a subtype of glutamate receptors involved in neuronal 7 

development, synaptic transmission and epilepsy. Using mouse hippocampal slices, we found 8 

that bath application of submicromolar and micromolar concentrations of the KAR agonist kainic 9 

acid induced inward currents and robust MC firing. These effects were abolished in GluK2 KO 10 

mice, indicating the presence of functional GluK2-containing KARs in MCs. In contrast to CA3 11 

pyramidal cells, which are structurally and functionally similar to MCs, and express synaptic KARs 12 

at mossy fiber (MF) inputs (i.e., GC axons), we found no evidence for KAR-mediated transmission 13 

at MF-MC synapses, indicating that most KARs at MCs are extrasynaptic. Immunofluorescence 14 

and immunoelectron microscopy analyses confirmed the extrasynaptic localization of GluK2-15 

containing KARs in MCs. Finally, blocking glutamate transporters, a manipulation that increases 16 

extracellular levels of endogenous glutamate, was sufficient to induce KAR-mediated inward 17 

currents in MCs, suggesting that MC-KARs can be activated by increases in ambient glutamate. 18 

Our findings provide the first direct evidence of functional extrasynaptic KARs at a critical 19 

excitatory neuron of the hippocampus. 20 

 21 

Significance Statement:   22 

Hilar mossy cells (MCs) are an understudied population of hippocampal neurons that form an 23 

excitatory loop with dentate granule cells. MCs have been implicated in pattern separation, spatial 24 

navigation, and epilepsy. Despite their importance in hippocampal function and disease, little is 25 

known about how MC activity is recruited. Here, we show for the first time that MCs express 26 

extrasynaptic kainate receptors (KARs), a subtype of glutamate receptors critically involved in 27 

neuronal function and epilepsy. While we found no evidence for synaptic KARs in MCs, KAR 28 

activation induced strong action potential firing of MCs, raising the possibility that extracellular 29 

KARs regulate MC excitability in vivo and may also promote dentate gyrus hyperexcitability and 30 

epileptogenesis. 31 

 32 
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Introduction 1 

Hilar mossy cells (MCs) in the hilus of the dentate gyrus (DG) are major excitatory neurons that 2 

widely project onto dentate granule cells (GCs) to control their activity (Buckmaster and 3 

Schwartzkroin, 1994; Hashimotodani et al., 2017; Scharfman, 2018; Botterill et al., 2019). Within 4 

the DG, MCs form an associative network with GCs, in which MCs receive extensive convergent 5 

excitatory inputs from GCs (Patton and McNaughton, 1995; Acsady et al., 1998; Buckmaster and 6 

Jongen-Relo, 1999; Ribak and Shapiro, 2007) and then send excitatory feedback projections to 7 

up to ~30,000 GCs along the dorsoventral axis of the ipsi- and contralateral hippocampus (Ribak 8 

et al., 1985; Frotscher et al., 1991; Buckmaster et al., 1996; Wenzel et al., 1997). Thus, the activity 9 

of a single MC can significantly impact the activity of numerous GCs, and ultimately, DG-CA3 10 

information transfer. MCs contribute to hippocampal-dependent computations and behaviors 11 

such as pattern separation, spatial navigation and other cognitive functions such as novelty 12 

detection (Duffy et al., 2013; Danielson et al., 2017; GoodSmith et al., 2017; Senzai and Buzsaki, 13 

2017; Fredes et al., 2021). In addition, aberrant MC function has been linked to brain disorders 14 

such as temporal lobe epilepsy (TLE), depression, anxiety and schizophrenia (Scharfman, 2016). 15 

Despite the important role that MCs play in brain function and disease, the mechanisms through 16 

which MC activity is recruited are still largely unexplored.  17 

 18 

MCs share many structural and functional properties with CA3 pyramidal cells. Both CA3 19 

pyramidal cells and MCs receive in their proximal dendrites a major excitatory input from GCs via 20 

the mossy fibers axons (MF), which impinge on complex spines called thorny excrescences (TEs) 21 

via giant presynaptic boutons (Amaral and Dent, 1981; Acsady et al., 1998). Functionally, the MF-22 

to-MCs (MF-MC) synapse expresses robust forms of short- and long-term plasticity (Lysetskiy et 23 

al., 2005), similar to those reported at the MF-to-CA3 pyramidal cell (MF-CA3) synapse (Henze 24 

et al., 2002; Nicoll and Schmitz, 2005). In addition, glutamate release at both synapses is inhibited 25 

by activation of presynaptic group 2/3 metabotropic glutamate receptors (mGluR2/3) (Kamiya et 26 

al., 1996; Lysetskiy et al., 2005). While excitatory transmission is mainly mediated by AMPA and 27 

NMDA ionotropic glutamate receptors, a slow component of MF-CA3 synaptic transmission is 28 

mediated by kainate receptors (KARs) (Castillo et al., 1997). A similar, albeit modest KAR-29 

mediated component has recently been reported at the MF-MC synapse (Hedrick et al., 2017). 30 

KARs are ionotropic glutamate receptors expressed in several brain areas, which have been 31 

implicated in neuronal development, neuronal excitability, synaptic transmission and plasticity 32 
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(Lerma and Marques, 2013). In vivo injection of the KAR agonist kainic acid (KA), a widely used 1 

animal model of TLE (Rusina et al., 2021), strongly activates CA3 pyramidal neurons (Westbrook 2 

and Lothman, 1983; Crepel and Mulle, 2015), and also leads to extensive MCs loss (Buckmaster 3 

and Jongen-Relo, 1999; Sloviter et al., 2003), suggesting that MCs are particularly sensitive to 4 

the activation of KARs. Intriguingly, while KAR-mediated responses are much weaker at MF-MC 5 

synapses (Hedrick et al., 2017) than at MF-CA3 synapses (Castillo et al., 1997; Mulle et al., 1998), 6 

transcriptome profiling revealed that MCs and CA3 pyramidal cells display comparable levels of 7 

transcripts for the functional KAR subunit GluK2 (Cembrowski et al., 2016), raising the possibility 8 

that KARs may have additional roles at MCs. 9 

 10 

In this study, we combined in vitro electrophysiology in acute rat and mouse hippocampal slices, 11 

of wild type and GluK2 knockout (KO) mice, with anatomical approaches such as 12 

immunofluorescence and immunoelectron microscopy, to determine the role and subcellular 13 

localization of KARs in MCs. We found that submicromolar and micromolar concentrations KA 14 

induced robust inward currents and strong MC firing, and both effects were absent in GluK2 KO 15 

mice. Surprisingly, unlike in CA3 pyramidal neurons (Castillo et al., 1997), MF activation did not 16 

elicit any measurable KAR-mediated synaptic response in MCs. Consistent with these 17 

observations, immunofluorescence and immunoelectron microscopy revealed GluK2-containing 18 

KARs in the soma and dendrites of MCs, but nearly absent from MC TEs. Lastly, blocking 19 

glutamate uptake by excitatory amino-acid transporters (EAATs) elicited KAR-mediated inward 20 

currents in MCs. Altogether, our findings support the notion that MCs express functional 21 

extrasynaptic KARs whose activation by pharmacological agents (e.g., KA) and ambient 22 

glutamate may play an important role in engaging the GC-MC-GC recurrent circuit.  23 

 24 

METHODS 25 

Animals 26 

Experiments were performed on postnatal Sprague-Dawley rats (P18-P28) of both sexes and 27 

C57BL/6 mice of both sexes for electrophysiological recordings. Animals were group-housed in a 28 

standard 12h light/12h dark cycle. WT, GluK2 KO, and GAD67+/GFP mice (Tamamaki et al., 2003); 29 

were obtained from Dr. Yanagawa, Gunma University, Japan. Handling and use of animals 30 

adhered to a protocol approved by the Animal Care and Use Committee at the Albert Einstein 31 
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College of Medicine, at Yale University and at the Faculty of Medicine at Hokkaido University and 1 

in accordance with guidelines provided by the National Institutes of Health.  2 

 3 

Hippocampal Slice Preparation 4 

Animals were deeply anesthetized with isoflurane and then decapitated. The brain was then 5 

rapidly removed from the skull and then hippocampi were dissected. Hippocampi were included 6 

in agar supports and acute transverse hippocampal slices (400 µm thick for Sprague-Dawley rats, 7 

300 µm for C57BL/6 mice) were cut using a VT1200s vibratome (Leica Microsystems Co.) in a 8 

sucrose-based cutting solution containing (in mM): 215 sucrose, 2.5 KCl, 26 NaHCO3, 1.6 9 

NaH2PO4, 1 CaCl2, 4 MgCl2, 4 MgSO4, and 20 D-glucose. After 15 mins in recovery post-10 

sectioning, the solution was replaced by extracellular artificial cerebrospinal fluid (ACSF) 11 

recording solution containing (in mM): 124 NaCl, 2.5 KCl, 26 NaHCO3, 1 NaH2PO4, 2.5 CaCl2, 1.3 12 

MgSO4, and 10 D-glucose. Slices were incubated for a minimum of 30 minutes in the ACSF before 13 

recording. Solutions were equilibrated with 95% O2 and 5% CO2 (pH 7.4). 14 

 15 

Electrophysiology 16 

All experiments were performed in a submersion-type recording chamber perfused at ~2 mL min-17 
1, at 28 ± 1°C, except those in Fig. 6 where temperature was raised to 34°C± 1°C. Whole-cell 18 

patch clamp recordings using a Multiclamp 700A amplifier (Molecular Devices) were performed 19 

from MCs and GCs in voltage-clamp (Vhold -60 mV), or in current-clamp configuration (Vrest ~-65 20 

mV) using borosilicate pipette electrodes (~3-4 MW). Recordings were performed using a K+-21 

based internal solution containing (in mM): 135 KMeSO4, 5 KCl, 1 CaCl2, 5 NaOH, 10 HEPES, 5 22 

MgATP, 0.4 Na3GTP, 5 EGTA, 10 D-glucose, pH 7.2 (280-290 mOsm). In some recordings we 23 

also employed a Cs+-based internal solution containing (in mM): 131 Cs-gluconate, 8 NaCl, 1 24 

CaCl2, 10 EGTA, 10 D-glucose and 10 HEPES, pH 7.2 (285-290 mOsm). Series resistance (~7-25 

25 MW) was monitored throughout all experiments with a -5 mV, 80 ms voltage step, and cells 26 

that exhibited a significant change (>20%) were excluded from analysis. 27 

MCs were identified using previously established criteria (Larimer and Strowbridge, 2008). 28 

Specifically, we measured firing properties and membrane time constant by injection of a step of 29 

depolarizing current while in current-clamp configuration. Cells were confirmed as MCs by 30 

exhibiting elevated spontaneous synaptic activity, little to no afterhyperpolarization and non-burst 31 
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firing patterns upon depolarizing pulses (5s duration, 60-120 pA). Additional confirmation was 1 

performed post-hoc through morphological analysis of biocytin-filled cells where MCs were 2 

identified by the presence of distinctive complex TEs in their proximal dendrites. To isolate KAR-3 

mediated currents and EPSCs, we bath applied a cocktail of antagonists which included: 4 

LY303070 (15 µM) or GYKI 53655 (GYKI – 30 µM) , D-APV (25 µM), picrotoxin (50 µM) and 5 

CGP35348 (3 µM) to block AMPA, NMDA, GABAA and GABAB receptors, respectively. The 6 

cocktail was applied right after the target cell was identified as a MC. For the isolation of KAR-7 

EPSC, we first monitored AMPAR-EPSCs in presence of the above specified cocktail, without 8 

LY303070, which was bath applied after a stable baseline was acquired. 9 

To evoke MF synaptic responses in MCs and CA3 pyramidal cells, a bipolar stimulating theta-10 

glass pipette was filled with ACSF and placed in the subgranular zone of the DG. Only EPSCs 11 

that showed < 2 ms 20-80% rise time and robust paired-pulse facilitation (EPSC2/EPSC1 > 2) 12 

were considered MF-derived and included in the analysis. 13 

To increase the probability of detecting a KAR-mediated EPSC, we delivered two stimuli (5 ms 14 

inter-stimulus interval, 100 µs duration, ~100 µA amplitude), using a stimulus isolator unit (Isoflex, 15 

AMPI). Typically, stimulation was adjusted to obtain comparable magnitude synaptic responses 16 

across experiments.  17 

 18 

Data analysis for electrophysiology experiments 19 

Electrophysiological data were acquired at 5 kHz filtered at 2.4 kHz and analyzed using custom-20 

made software for IgorPro (Wavemetrics Inc.). The change in the holding current (DI holding) was 21 

calculated by subtracting the baseline holding current value (average of 50 s before KA 22 

application) from the average holding current post-drug application (average 50 s before 23 

washout). To calculate firing rate in the current clamp configuration, spikes were detected using 24 

a custom-made MatLab script, which detected all voltage increases above a threshold value 25 

established by the experimenter (i.e., 0 mV). When 3 µM KA was used to depolarize MCs, the 26 

peak of the action potentials gradually decreased (likely due to inactivation of voltage-gated 27 

sodium channels) and became undistinguishable from spontaneous activity. This led to an 28 

underestimation of the effect of 3 µM KA on MCs firing. Firing rate was quantified as number of 29 

spikes per second.  30 

 31 
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Reagents 1 

Reagents were bath applied following dilution into ACSF from stock solutions stored at -20°C 2 

prepared in water or DMSO, depending on the manufacturer’s recommendation. The final DMSO 3 

concentration was <0.01% total volume. All chemicals and drugs used for the electrophysiology 4 

experiments were purchased from Sigma-Aldrich (St. Louis, MO, USA) except NBQX, CGP-5 

55845, DCG-IV, and GYKI 53655, which were obtained from Tocris-Cookson (Minneapolis, MN, 6 

USA), and tetrodotoxin, which was obtained from HelloBio (Inc, Princeton, NJ). LY 303070 was 7 

obtained from ABX advanced biochemical compounds (Radeberg, Germany).  8 

 9 

Quantification and statistical analysis.  10 

Statistical analysis was performed using OriginPro software (OriginLab). The normality of 11 

distributions was assessed using the Shapiro-Wilk test. In normal distributions, Student’s unpaired 12 

and paired t Tests were used to assess between-group and within-group differences, respectively. 13 

The non-parametric paired sample Wilcoxon signed rank test and Mann-Whitney’s U test were 14 

used in non-normal distributions. Statistical significance was set to p < 0.05 (*** indicates p < 15 

0.001, ** indications p < 0.01, and * indicates p < 0.05). All values are reported as the mean ± 16 

SEM.  17 

 18 

Fixation and sections 19 

We used glyoxal fixative containing 9% glyoxal and 8% acetic acid (v/v, pH 4.0 adjusted with 5N 20 

NaOH), which is modified from the original glyoxal fixative (Richter et al., 2018). Under deep 21 

pentobarbital anesthesia (100 mg/kg body weight, i.p.), mice were fixed by transcardial perfusion 22 

with ~60 ml of glyoxal solution for 10 min at room temperature. Brains were postfixed in the same 23 

fixative for 3 h and cryoprotected with 30% sucrose in 0.1 M PB (pH 7.2) for 2 d. For 24 

immunofluorescence and immunoelectron microscopy, 50-μm-thick coronal sections through the 25 

ventral hippocampus (3.0–3.7 mm posterior to Bregma) were prepared on a cryostat (CM1900; 26 

Leica Microsystems) and subjected to free-floating incubation.  27 

 28 

Antibodies 29 

We used the following antibodies: mouse anti-calretinin (MAB1568, Millipore; RRID, AB_94259), 30 

goat anti-EGFP (Takasaki et al., 2010)(AB_2571574), rabbit anti-GluK2/3 (Straub et al., 2011), 31 
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guinea pig anti-Neto1(Straub et al., 2011), and guinea pig anti-PSD95 (Fukaya and Watanabe, 1 

2000)(AB_2571612).  2 

 3 

Immunofluorescence 4 

All immunohistochemical procedures for immunofluorescence were performed at room 5 

temperature and PBS containing 0.1% Triton-X100 was used as a dilution and washing buffer. 6 

Sections were incubated with 10% normal donkey serum for 20 min, a mixture of primary 7 

antibodies overnight (1 μg/ml each), and a mixture of Alexa Fluor 405-, 488-, 647-, or Cy3-labeled 8 

species-specific secondary antibodies for 2 h at a dilution of 1:200 (Invitrogen; Jackson 9 

ImmunoResearch). To avoid cross talk between multiple fluorophores, images were taken with a 10 

confocal laser-scanning microscope equipped with 405-, 473-, 559-, and 647-nm diode laser 11 

lines, and UPLSAPO 10× (NA, 0.4), and PLAPON 60×OSC2 (NA, 1.4; oil immersion) objective 12 

lenses (FV1200, Olympus). Image and pinhole size were 800 × 800 pixels and 1 airy unit, 13 

respectively. To compare genotypic and regional difference, images were taken at the same 14 

condition. 15 

 16 

Preembedding immunoelectron microscopy 17 

All incubations were performed at room temperature and PBS containing 0.1% Tween20 was 18 

used as a dilution and washing buffer. Sections were incubated in 10% normal goat serum 19 

(Nichirei, Tokyo, Japan) for 20 min, and with primary antibody against GluK2/3 (1 µg/ml) overnight 20 

and then with secondary antibodies linked to 1.4-nm gold particles (1:100; Nanogold; 21 

Nanoprobes) for 4 h. After extensive washing with PBST and HEPES buffer (200 mM sucrose, 22 

50 mM HEPES, pH 8.0), immunogold was intensified with a silver enhancement kit (R-GENT SE-23 

EM; Aurion) for 45–60 min. Sections were further treated with 1% osmium tetroxide for 15 min, 24 

stained with 2% uranyl acetate for 20 min, dehydrated with graded ethanol series, and embedded 25 

in Epon 812 (TAAB). After polymerization at 60℃ for 48 h, ultrathin sections were prepared with 26 

an ultramicrotome (Ultracut; Leica), mounted on copper-mesh grids and stained with 2% uranyl 27 

acetate for 5 min and Reynold's lead citrate solution for 1 min. Photographs were taken with a 28 

JEM1400 electron microscope (JEOL, Tokyo, Japan). Electron micrographs were randomly taken 29 

within ~5 µm from the surface to avoid false-negative areas. To quantify metal particle labeling, 3 30 

× 3 montage images (∼6 µm × 6 µm) were randomly taken at a magnification of 15,000×.  31 
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For quantitative analysis, plasma membrane-attached immunogold particles, being defined as 1 

those apart <35 nm from the cell membrane, were counted and analyzed using MetaMorph 2 

software (Molecular Devices). The mean number of membrane-attached gold particles per 1 μm 3 

of the plasma membrane was counted for each neuronal compartment (dendritic spine, dendritic 4 

shaft, and soma). Measurements were made from three WT and two GluK2 KO mice and pooled 5 

together, because there was no significant difference in the labeling density in the same genotype. 6 

In each neuronal compartment, labeling density was calculated for individual profile. Statistical 7 

analyses were performed using GraphPad Prism 9.0 software (GraphPad Software). All data are 8 

given as mean ± SEM. Data were analyzed using Kruskal-Wallis test followed by Dunn’s post 9 

Test. *p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. 10 

 11 

Results 12 

 13 

Kainate receptors mediate inward currents and action potential firing in hilar mossy cells  14 

To test whether MCs expressed functional KARs, we first performed whole-cell patch clamp 15 

recordings from MCs in acute rat hippocampal slices and bath applied the KAR agonist KA. MCs 16 

were identified based on the high frequency of spontaneous EPSCs, non-burst firing pattern upon 17 

depolarization, and action potentials with almost no afterhyperpolarization (see Methods) (Larimer 18 

and Strowbridge, 2008) (Fig. 1A). To confirm the identity of the recorded cell, we loaded putative 19 

MCs with biocytin and stained with Alexa 594-conjugated streptavidin, and confirmed the 20 

presence of TEs, a hallmark of MCs (Fig. 1A) (Scharfman and Schwartzkroin, 1988). We 21 

examined whether KA bath application induced KAR-mediated inward currents in MCs, as 22 

previously shown in KAR-expressing CA3 pyramidal cells (Castillo et al., 1997; Mulle et al., 1998)  23 

To isolate these currents, recordings were performed in the presence of LY303070 (15 µM), D-24 

APV (25 µM), picrotoxin (50 µM) and CGP35348 (3 µM) to block AMPARs, NMDARs, GABAA and 25 

GABAB receptors, respectively, and MCs were voltage clamped at -60 mV. Under these recording 26 

conditions, KA bath application (0.3 µM and 3 µM) induced large, concentration-dependent inward 27 

currents in MCs (Fig. 1B,C) (ΔI holding MC: 0.3 µM KA: 165.3 ± 28.56 pA; n = 5a/5c; 3 µM KA: 28 

736.24 ± 82.34 pA; n = 4a/4c – one of the cells died after 0.3 µM application). In contrast, the 29 

same concentrations of KA induced modest currents in GCs (ΔI holding GC: 0.3 µM KA: 30.73 ± 30 

1.38 pA; n = 3a/3c; 3 µM KA: 72.21 ± 6.31 pA; n = 3a/3c). By activating KARs in CA3 pyramidal 31 

cells, KA application could recruit CA3 pyramidal cells (Robinson and Deadwyler, 1981; 32 
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Westbrook and Lothman, 1983; Castillo et al., 1997) which make synaptic contacts with MCs 1 

(Scharfman, 1994) and could indirectly activate KARs in MCs. To test this possibility, action 2 

potential generation was prevented by perfusing the voltage-gated sodium channel blocker 3 

tetrodotoxin (TTX, 0.5 µM) in the bath. In the presence of TTX, KA-induced currents were not 4 

significantly different from control conditions (Fig. 1D,E) (ΔI holding MC + TTX, 0.3 µM KA : 117.3 5 

± pA; n = 5a/6c; 3 µM KA: 765.19 ± 79.06 pA; n = 5a/6c; 0.3 µM control vs TTX: n.s. p = 0.12045, 6 

two sample t Test; 3 µM control vs TTX: n.s. p = 0.81287: two sample t Test), indicating that these 7 

currents do not result from indirect activation of CA3 pyramidal neurons. In addition, the 8 

competitive AMPAR/KAR antagonist NBQX (25 µM) abolished KA-mediated inward currents, 9 

strongly suggesting these currents were mediated by KAR activation in MCs (Fig. 1D,E) (ΔI 10 

holding MC 0.3 µM KA control: 182.78 ± 25.7 pA; n = 3a/4c; 3 µM KA + 25 µM NBQX: 12.99 ± 11 

3.31; n = 3a/4c; 0.3 µM KA vs 3 µM KA + NBQX: *** p = 0.000012: two sample t Test). Lastly, KA 12 

bath application induced currents in MCs of mouse hippocampal slices,which were abolished in 13 

GluK2 KO mice (Fig. 1F,G) (ΔI holding MC WT; 0.1 µM KA: 58.33 ± 19.49 pA, 0.3 µM KA: 75.44 14 

± 13.87, 1 µM KA: 233.91 ± 15.67 pA, 3 µM KA: 494.32 ± 85.01 pA; ΔI holding GluK2 KO; 0.1 µM 15 

KA: 19.77 ± 9.27 pA, 0.3 µM KA: 13.35 ± 4.44 pA, 1 µM KA: 24.74 ± 10.55 pA, 3 µM KA:14.39 ± 16 

5.04 pA; WT vs GluK2 KO: F(1,3) = 146.98864, ** p = 0.00121; two-way ANOVA repeated 17 

measures), indicating that these currents are mediated by GluK2-containing KARs.  18 

 19 

We hypothesized that KAR-mediated currents can produce enough depolarization to drive MC 20 

action potential firing. To test this possibility, we recorded MCs in current-clamp mode before and 21 

after KA application. Given that hippocampal interneurons impinging on MCs could express 22 

functional KARs (Frerking et al., 1998), these experiments were performed with intact excitatory 23 

and inhibitory components of synaptic transmission in order to assess the net effect of KAR 24 

activation on MC firing. Under these recording conditions, bath application of 0.3 µM and 3.0 µM 25 

KA induced strong MC firing (Fig. 2A) (WT average firing rate 0.3 µM KA: 0.333 µM ± 0.025 26 

spikes/s; n = 2a/3c; 3 µM KA: 5.54 ± 0.28; n = 2a/3c), and this effect was abolished in GluK2 KO 27 

mice (Fig. 2B). These results indicate that activation of GuK2-containing KARs with low 28 

concentrations of the agonist KA can powerfully drive MCs. 29 

 30 

KARs-mediated EPSCs are undetectable at MF-MC synapse  31 
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We next sought to determine the subcellular localization of KARs on MCs. Because of the strong 1 

structural and functional similarities between CA3 pyramidal cells and MCs, we tested whether 2 

MF activation elicits KAR-EPSCs in MCs as previously shown at MF inputs onto CA3 pyramidal 3 

cells (Castillo et al., 1997). To this end, we evoked AMPAR-EPSCs by stimulating MF axons with 4 

two stimuli to boost glutamate release from MFs (5 ms inter-stimulus interval) in the presence of 5 

a cocktail of NMDARs, GABAA and GABAB receptor antagonists (see Methods). We then 6 

attempted to isolate the KAR-mediated component of the MF-EPSC by applying the selective, 7 

non-competitive AMPAR antagonist GYKI 53655 (30 µM). GYKI application abolished the 8 

AMPAR-EPSCs but surprisingly, it failed to uncover a KAR-mediated EPSC (Fig. 3A) (EPSC 9 

amplitude post GYKI application: 2.35 ± 0.52 % of baseline; n = 4a/5s). In addition, increasing the 10 

number of stimuli (from 2 to 5), a manipulation expected to increase the likelihood of detecting 11 

KAR-EPSCs at the MF-CA3 synapse (Castillo et al., 1997), did not generate any detectable 12 

current either (data not shown; 5 pulses: 2.108 ± 0.415 % of baseline; n = 4a/5s). To verify that 13 

the EPSCs were MF-mediated, in a separate set of experiments, we applied the mGluR2/3 14 

agonist DCG-IV (1 µM) which selectively blocks glutamate release at MF-MC synapses (Fig. 3B) 15 

(Lysetskiy et al., 2005; Hedrick et al., 2017). DCG-IV reduced synaptic responses by ~70 %, 16 

indicating our stimulation mainly recruited MF inputs onto MCs (EPSC amplitude post DCG IV: 17 

29.35 ± 7.07 % of baseline; n = 3a/4s). As a positive control, and as previously reported (Castillo 18 

et al., 1997), MF stimulation elicited GYKI-resistant, NBQX-sensitive KAR-EPSCs in CA3 19 

pyramidal neurons (Fig. 3C) (EPSC amplitude post GYKI application: 15.85 ± 6.59 % of baseline; 20 

n = 2a/4s; KAR-EPSC amplitude post NBQX application: 0.47 ± 0.25 % of baseline; n = 2a/4s).  21 

These results indicate that in contrast to MF-CA3 synapses, KARs do not mediate synaptic 22 

transmission at MF-MC synapses. Given the robust activation of MCs by low concentrations of 23 

KA (Figs. 1,2), our findings thus far suggest KARs in MCs are extrasynaptic. 24 

  25 

Distinct subcellular localization of KARs in CA3 pyramidal cells and mossy cells 26 

To determine the anatomical localization of KARs in MCs, we applied immunostaining to tissue 27 

sections fixed with a glyoxal-based fixative (see Methods), which is effective for detection of both 28 

non-synaptic and synaptic molecules. First, we confirmed the specificity of the antibody against 29 

GluK2/3 by blank labeling in GluK2 KO hippocampus (Fig. 4A,B). In WT mice, the antibody 30 

yielded a contrasting pattern of labeling across hippocampal subregions: intense and coarse 31 

punctate labeling in the CA3 stratum lucidum, and moderate and diffuse labeling in the hilus (Fig 32 

4A). Further quadplex immunofluorescence using GAD67+/GFP mice (Tamamaki et al., 2003) 33 
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allowed us to distinguish excitatory MCs from inhibitory calretinin-positive interneurons, and to 1 

examine if MCs express GluK2/3 (Fig. 4C,D) together with or without the excitatory postsynaptic 2 

marker PSD95 (Fig. 4C), or the KAR auxiliary subunit Neto1 (Fig. 4D). In CA3 stratum lucidum, 3 

GluK2/3-positive puncta were intense and aggregated into large clusters and were almost 4 

perfectly overlapped with PSD95 (Fig. 4E,F), suggesting exclusive localization in MF-CA3 5 

pyramidal cell synapse. Compared with CA3, GluK2/3 labeling was smaller and less frequent in 6 

the hilus of the DG (Fig. 4G,H). MC soma and dendrites, which can be unequivocally identified 7 

as calretinin-positive and GFP-negative structures (Fig. 4G), were associated with GluK2/3 8 

puncta that did not colocalize with PSD95 (Fig. 4H). Similarly, while Neto1 staining was 9 

overlapped with GluK2/3-positive puncta in stratum lucidum (Fig. 4I,J), it was not found around 10 

MC soma and dendrites (Fig. 4K,L). Together, these findings suggest that GluK2/3-containing 11 

KARs in MCs are expressed at extrasynaptic sites.  12 

For a more accurate assessment of the subcellular localization of KARs in MCs, we performed 13 

pre-embedding immunoelectron microscopy for GluK2/3. In WT mice, metal particles for GluK2/3 14 

were observed on the postsynaptic membrane of TEs (Fig. 5A,G, blue) of CA3 pyramidal cells 15 

facing large MF boutons (12.1 ± 0.95 particles/mm). In GluK2 KO mice, immunolabeling was 16 

essentially absent on the postsynaptic membrane of CA3 spines (Fig. 5B,G blue), confirming the 17 

specificity of the immunolabeling (0.07 ± 0.07 particles/mm; Dunn’s multiple comparison test; p < 18 

0.0001, compared to WT). In the DG hilus, MCs can be identified as having spiny dendrites 19 

contacted with large MF terminals (Acsady et al., 1998). In contrast to MF-CA3 synapses, MF-20 

MC synapses were not labeled for GluK2/3 (Fig. 5C,G) (0.06 ± 0.04 particles/μm in WT, vs 0.01 21 

± 0.01 particles/μm in GluK2 KO; p > 0.99). Instead, occasional weak labeling was observed on 22 

the non-synaptic membrane of dendritic shaft and spines of MCs (Fig. 5E,F green). The density 23 

of non-synaptic particles was much lower than that at MF-CA3 synapses (p = 0.0137), but 24 

significantly higher than their counterparts in GluK2 KO (Fig. 5D,G; 4.1 ± 0.8 particles/μm in WT 25 

vs 0.02 ± 0.01 particles/μm in GluK2 KO; p = 0.008). These results not only demonstrate the 26 

presence of KARs in MCs but also show that, in contrast to CA3 pyramidal neurons, GluK2-27 

containing KARs are exclusively expressed at non-synaptic sites in proximity of MF-MC synapses. 28 

 29 

Activation of KARs in mossy cells by increase in ambient glutamate. 30 

Given the extracellular location of KARs in MCs we hypothesized that these receptors are 31 

activated by ambient glutamate. To test this possibility, we blocked excitatory amino acid 32 
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transporters (EAATs), a manipulation that can raise extracellular glutamate and activate 1 

extrasynaptic NMDARs (Le Meur et al., 2007). We first examined the effect of the non-selective 2 

EAAT blocker DL-TBOA (100 μM) on MC holding current in presence of antagonists of AMPARs, 3 

NMDAR, GABAA and GABAB receptors (see Methods). Bath application of TBOA mediated a 4 

significant NBQX-sensitive inward current in MCs, suggesting that KARs could be activated by 5 

endogenous glutamate (Fig 6A-C) (ΔI holding MC + TBOA: 61.24 ± 18.61 pA; * p = 0.02173 one 6 

sample t Test). We next used the more selective blocker dihydrokainic acid (DHK), which 7 

selectively blocks EAAT2 (GLT-1), a glutamate transporter that accounts for ~90% of glutamate 8 

uptake (Rose et al., 2017) and is enriched in the telencephalon including the hippocampus 9 

(Chaudhry et al., 1995). Bath application of 100 μM DHK also induced NBQX-sensitive inward 10 

currents in MCs (Fig. 6A-C), strongly suggesting that DHK-induced currents are mediated by 11 

activation of KARs (ΔI holding MC + DHK: 28.06 ± 7.4 pA; n = 3a/6c; n = 4a/6c). To determine 12 

that DHK-induced currents was due to activation of KARs, we repeated the experiment in GluK2 13 

KO mice, and found that in these mice DHK failed to induce inward currents in MCs (Fig. 6A,C) 14 

(ΔI holding MC + DHK GluK2 KO: -8.5 ± 7.47; n = 3a/4c; DHK vs DHK GluK2 KO mice: * p = 15 

0.0105 two sample t Test). These finding suggest that increases in ambient glutamate can 16 

activate extrasynaptic MC-KARs. 17 

 18 

DISCUSSION  19 

 20 

In this study, we provide functional and anatomical evidence that MCs express extrasynaptic 21 

KARs whose activation in the rodent hippocampus can drive MCs. Specifically, we show that low 22 

concentrations of KA induced inward currents and action potential firing of MCs. In contrast, KA-23 

induced currents were nearly absent in GCs, indicating that KARs have a unique pattern of 24 

expression among excitatory cells in the DG. Unexpectedly, MF activation failed to evoke a KAR-25 

EPSCs in MCs, indicating that MF-MC synapses, unlike MF-CA3 synapses, do not normally 26 

express synaptic KARs. Our immunofluorescence and immunoelectron microscopy data 27 

confirmed that KARs in MCs are sparsely distributed at extrasynaptic sites and mainly excluded 28 

from postsynaptic compartments. Finally, blockade of the astrocytic glutamate transporter EAAT2 29 

revealed that MC-KARs can be activated by increasing ambient glutamate.  30 

 31 
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The presence of extrasynaptic KARs has previously been suggested in hippocampal CA1 1 

pyramidal neurons (Bureau et al., 1999), striatal medium spiny neurons (Chergui et al., 2000) and 2 

cortical layer V pyramidal neurons (Eder et al., 2003). These functional studies inferred the 3 

presence of extrasynaptic KARs given the robust effects to bath applied KAR agonist (e.g., 4 

membrane depolarization, inward current, action potential firing) with little evidence for KAR-5 

mediated EPSCs. Of note, none of these studies provided ultrastructural evidence in support of 6 

extrasynaptic KARs. To the best of our knowledge, our immunoelectron microscopy data together 7 

with our electrophysiological characterization is the first direct evidence of a selective 8 

extrasynaptic localization of functional KARs in the mammalian brain. 9 

 10 

Given the similarities between MF-CA3 and MF-MC synapses, the absence of KARs at MF-MC 11 

synapses is intriguing. Based on the presence of a GYKI-resistant component following MF 12 

stimulation, a previous study reported the presence of postsynaptic KARs in MCs (Hedrick et al., 13 

2017). However, these currents were not validated in GluK2 KO mice and showed relatively fast 14 

kinetics, which is unusual for KAR-EPSCs. Our study does not discard the possibility that KARs 15 

could be expressed at MF-MC synapses early during development (Lauri and Taira, 2011; Lerma 16 

and Marques, 2013). The molecular mechanisms that target KARs to the synapse remain unclear, 17 

but several KAR interacting proteins such as Neto 1 and 2 (Straub et al., 2011; Tomita and 18 

Castillo, 2012; Wyeth et al., 2014), N-cadherins (Coussen et al., 2002; Fievre et al., 2016) and 19 

presynaptic C1ql family proteins (Matsuda et al., 2016; Straub et al., 2016) may contribute. 20 

Consistent with data derived from a population-level transcriptomics study in the hippocampus 21 

(Cembrowski et al., 2016), we found that Neto1 signal was absent from MCs (Fig. 4), suggesting 22 

that lack of Neto1 could contribute to the low expression of KARs at the synapse (Wyeth et al., 23 

2014). However, lack of GluK2-containing KARs also leads to reduced levels of Neto1 (Straub et 24 

al., 2011). The C-terminal domain of KARs themselves is important for the synaptic stabilization 25 

of KARs in the cerebellum (Straub et al., 2016). Additionally, phosphorylation of specific residues 26 

in the C-terminal and other intracellular regions of KARs has been implicated in the modulation of 27 

KARs function and trafficking (Wang et al., 1993; Kornreich et al., 2007; Carta et al., 2013; Zhu 28 

et al., 2014). Further studies are required to clarify the molecular mechanisms that determine the 29 

exclusion of KARs from MF-MC synapses. 30 

 31 
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Like other extrasynaptic receptors, KARs in MCs could be engaged by a rise in ambient 1 

glutamate, which can occur as a result of glutamate spillover during sustained synaptic activity 2 

(Le Meur et al., 2007; Rose et al., 2017). Glutamate could also arise from MC dendrites, as 3 

previously reported in neocortical and cerebellar neurons (Zilberter, 2000; Shin et al., 2008), and 4 

activate extrasynaptic KARs. We found that blockade of EAAT2 induces KAR-mediated inward 5 

currents likely due to the increase in extracellular glutamate. In the CA1 area of the hippocampus, 6 

activation of extrasynaptic receptors by synaptically released glutamate is limited by efficient 7 

astrocytic EAAT2 activity (Diamond and Jahr, 2000), consistent with a neuroprotective role of this 8 

transporter (Kong et al., 2012; Pajarillo et al., 2019). However, EAAT2 may saturate in other brain 9 

areas (Armbruster et al., 2016; Pinky et al., 2018). EAAT2 saturation during neuronal hyperactivity 10 

could enable the activation of extrasynaptic KARs at MCs. Alternatively, extrasynaptic KARs could 11 

be activated by glutamate released from astrocytes (Araque et al., 2014; Pal, 2015), as previously 12 

reported in CA1 GABAergic interneurons (Liu et al., 2004). There is evidence that glutamate 13 

released from astrocytes can also activate extrasynaptic NMDARs in CA1 pyramidal neurons 14 

(Fellin et al., 2004), and depolarize both hilar GABAergic interneurons and MCs (Pabst et al., 15 

2016). These depolarizations were blocked by non-selective antagonism of all ionotropic 16 

glutamate receptors, raising the possibility that extrasynaptic KARs could be implicated. Future 17 

work is required to determine whether astrocytic processes (Gavrilov et al., 2018) could release 18 

glutamate in proximity to extrasynaptic KARs, thereby avoiding glutamate uptake by EAAT2.  19 

 20 

Although the precise role for extrasynaptic KARs in MCs is unclear, they might detect changes in 21 

the levels of ambient glutamate and mediate tonic depolarization. In vivo, MCs display high level 22 

of activity compared to neighboring GCs (Danielson et al., 2017; GoodSmith et al., 2017; Senzai 23 

and Buzsaki, 2017). In standard home cage rats, MCs stain positive for the activity-dependent 24 

immediately early gene cFos (Duffy et al., 2013), suggesting that even at the basal level, MCs are 25 

remarkably active. It is possible that in behaving animals, where spontaneous activity is most 26 

likely higher than in vitro, glutamate might escape reuptake by EAATs and activate extrasynaptic 27 

KARs. During periods of particularly high activity and potential EAAT2 saturation, KARs might act 28 

as nonlinear integrators of synaptic inputs, and enhance MC output. KARs can also work in a 29 

metabotropic fashion and could potentially affect MCs excitability by suppressing the slow 30 

afterhyperpolarization (Melyan et al., 2002; Ruiz et al., 2005).Ultimately, MC-KARs could 31 

contribute to the promiscuous activity of MCs in multiple locations and environments (Danielson 32 

et al., 2017; GoodSmith et al., 2017; Senzai and Buzsaki, 2017).  33 
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 1 

Both MCs and KARs have been linked to several neurological and psychiatric disorders (Ratzliff 2 

et al., 2002; Lerma and Marques, 2013; Scharfman, 2016). Of particular relevance is the strong 3 

link between KARs and MCs with TLE. KARs have been strongly implicated in epilepsy (Crepel 4 

and Mulle, 2015; Falcon-Moya et al., 2018), and KA-induced TLE is one of the most widely used 5 

models of TLE (Levesque and Avoli, 2013; Rusina et al., 2021). The importance of KARs in KA-6 

induced TLE is highlighted by the fact that loss of GluK2-containing KARs, strongly reduces the 7 

susceptibility to KA-induced seizures (Mulle et al., 1998). Similarly, MCs have been proposed to 8 

have a proepileptogenic role in the early phases of TLE (Ratzliff et al., 2002; Botterill et al., 2019) 9 

and to undergo prominent cell-death in both animal models of epilepsy (Blumcke et al., 2000) and 10 

in human patients (Margerison and Corsellis, 1966; Seress et al., 2009). However, the precise 11 

mechanism through which KARs and MCs are involved in TLE is still unclear. Expression of KARs 12 

in MCs strongly suggests that MCs could be a direct target of KA in KA-induced TLE. KA-induced 13 

MCs firing could contribute to hyperexcitability of the associative GC-MC-GC network and to the 14 

generation of seizures. Moreover, sustained KAR-mediated MCs firing could be a critical trigger 15 

for long-lasting forms of plasticity in the DG associative network (Hashimotodani et al., 2017), 16 

which could contribute to the prolongation of epileptic activity. A major limitation for the study of 17 

MC function in behavior is the lack of molecular tools that target MCs specifically.  Thus far, 18 

manipulation of MCs activity in vivo relied on viral delivery of constructs under the control of 19 

promoters that are not highly specific for MCs (Jinde et al., 2012; Puighermanal et al., 2015). 20 

Establishing the precise role of MC-KARs on hippocampal function and TLE will require novel 21 

strategies such as intersectional genetics approaches (Dymecki et al., 2010; Graybuck et al., 22 

2021) that will allow more selective targeting of MCs while sparing neighboring KAR-expressing 23 

cells such as CA3 pyramidal neurons and hilar interneurons. 24 

 25 

 26 

  27 
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Figure 1. Activation of KARs mediates inward currents in hilar mossy cells. (A) Identification 1 

of hilar mossy cells (MCs) in acute hippocampal slices. Left, schematic of MC recordings in the 2 

hilus of the dentate gyrus (DG). Middle, patched neurons were depolarized to analyze their firing 3 

properties. Right, post-hoc staining of a MC using Alexa 594-conjugated streptavidin. The yellow 4 

boxed area is magnified on the right-hand side. Patched cells were confirmed to be MCs if evoked 5 

spikes displayed no evident afterhyperpolarization and by the presence of thorny excrescences 6 

(TEs) (white arrowheads). (B) Representative experiment showing that bath application of 0.3 7 

and 3 µM kainic acid (KA) in the same cell induced concentration-dependent inward currents in 8 

MCs (top), but only a negligible inward current in dentate gyrus granule cells (GC) (bottom). (C) 9 

Summary plot of the amplitude of the inward currents (ΔI holding) induced by KA application. (D) 10 

Representative experiments showing that KA-induced inward current was not affected by co-11 

application of TTX (0.5 µM) (top) but it was abolished by the AMPAR/KARs antagonist NBQX (25 12 

µM) (bottom). A low concentration of KA (0.3 µM) was previously tested to verify the presence of 13 

a normal, fully reversible KA-induced current in the same cell. (E) Summary plot. (F) KA-induced 14 

currents in MCs were robust in WT (top) but abolished in GluK2 KO mice (bottom). (G) 15 

Concentration-response curve in WT and GluK2 KO mice.  Data are presented as mean ± S.E.M.  16 

Figure 2. GluK2-containing KARs mediate KA-induced robust action potential firing of 17 

MCs. (A) Top, Effect of of KA bath application (0.3 and 3 µM) on MCs membrane potential in 18 

current-clamp configuration. 3 µM KA application induced firing with faster onset and higher 19 

frequency than 0.3 µM KA. Firing in 3 µM KA eventually disappeared likely due to excessive 20 

depolarization and action potential refractoriness. Bottom, average firing rate histogram 21 

(expressed as spikes per second) for the experiments in top panel. Black and grey traces 22 

represent mean and S.E.M. of MCs firing rate. (B) Representative traces showing no effect of KA 23 

application on MCs firing in GluK2 KO mice.  24 

Figure 3. KAR-mediated transmission at MF-CA3 but not MF-MC synapses. (A). Left, Bath 25 

application of the selective AMPAR antagonist GYKI 53655 (30 µM) abolished synaptic 26 

transmission at MF-MC synapses. Right, representative average traces (30 consecutive 27 

responses). (B) Bath application of the mGluR2/3 agonist DCG-IV (1 µM) significantly reduced 28 

MF-MC EPSCs (~70%). (C) Left, GYKI 53655 application (30 µM) blocked AMPAR-mediated 29 

transmission at the MF-CA3 synapse, thus revealing a KAR-mediated component that was 30 

blocked by 25 µM NBQX. Middle, representative average traces (30 consecutive responses) 31 

before and after GYKI application, and after subsequent application of NBQX. Right, normalized 32 

AMPAR and KAR components highlighting the slow kinetics of the KAR-EPSC. In all traces 33 
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included in this figure, stimulus artifacts were deleted for clarity. Data are presented as mean ± 1 

S.E.M. 2 

 3 

Figure 4. Contrasting localization of GluK2/3 and its molecular partners in CA3 stratum 4 

lucidum and DG hilus. (A,B) In WT mice, GluK2/3 labeling is intense in CA3 stratum lucidum, 5 

while it is moderate and diffuse in the dentate gyrus (A). Note the lack of GluK2/3 staining in 6 

GluK2 KO mice, indicating the specificity of the GluK2/3 antibody and exclusive expression of 7 

GluK2 in these hippocampal regions (B). (C) Quadplex immunofluorescence for GFP (C1, white), 8 

calretinin (C2, blue), GluK2/3 (C4, red), and PSD95 (C5, green) in GAD67+/GFP mice. (D) Double 9 

immunofluorescence for GluK2/3 (D1, red) and Neto1 (D2, green). Note that intense signal for 10 

Neto 1 is almost limited to CA3 stratum lucidum. (E-H) Distinct GluK2/3 and PSD95 localization 11 

between CA3 pyramidal cells and hilar MCs. (E,F)  GluK2/3 and PSD95 labeling are intense in 12 

the CA3 stratum lucidum (E). A high-magnification image confirms their extensive overlap (F). 13 

(G,H) A MC, which is identified as a calretinin-positive (G1, blue) and GFP-negative (G2, white) cell 14 

in GAD67+/GFP mice, shows weak labeling for GluK2/3 on its dendrites (red, arrows in H). Note 15 

that such GluK2/3 puncta are neither overlapped nor associated with PSD95 signal (H2, green). 16 

(I-L) Distinct GluK2/3 and Neto1 localization between CA3 pyramidal cells and hilar MCs. (I,J)  17 

Intense GluK2/3 and Neto1 labeling in the CA3 stratum lucidum (l). A high-magnification image 18 

shows Neto1 labeling is only observed on GluK2/3-positive puncta (J). (K,L) A MC shows weak 19 

labeling for GluK2/3 on its dendrites (red, arrows in L) but lacks Neto1 labeling (L2, green). DG, 20 

dentate gyrus; GrDG, granule cell layer of the DG; MoDG, molecular layer of the DG; SL, stratum 21 

lucidum; SP, stratum pyramidale; SR, stratum radiatum. Scale bars, (A,D) 100 µm; (E,F,I,J,G,K) 22 

10 µm; (H,L) 2 µm. 23 

 24 

Figure 5. GluK2/3 in hilar MCs are enriched at non-synaptic sites. (A,B)  A large MF terminal 25 

characteristically forms multiple asymmetric synapses (arrowheads) with TEs (blue) of CA3 26 

pyramidal cells. In wild-type (WT) mice, metal particles for GluK2/3 (arrows) are prevalent on PSD 27 

(A). Postsynaptic labeling is absent in GluK2 KO mouse (B). (C-F) MCs (green) contact with large 28 

MF terminals in the hilus of the DG. In WT mice, MF synapses on MC spines are rarely labeled 29 

for GluK2/3; occasionally, non-synaptic membrane on dendritic shaft has low but significant 30 

labeling (C). Neither synaptic nor extrasynaptic labeling is observed in GluK2 KO mice (D). MCs 31 

occasionally have thin dendrites originating from soma (E) and contact with large MF terminal via 32 
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multiple spines (F). Note that metal particle for GluK2/3 (arrows) leave postsynaptic membrane 1 

unlabeled. (G)  Average and individual data points for the density of metal particles for GluK2/3 2 

on CA3 pyramidal cells (blue symbols, left axis) and hilar MCs (green symbols, right axis). Note 3 

low but significant non-synaptic labeling on MCs. Edges of PSD are indicated by pairs of 4 

arrowheads. Number of measured profiles (#) and membrane length (mm) are indicated in 5 

parentheses. Dunn’s post Test. *p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Scale bars, (A-D,F) 200 nm; 6 

(E) 1 µm. 7 

 8 

Fig 6. MC-KARs can be activated by endogenous glutamate. (A) Representative experiments 9 

showing the effect of TBOA (100 µM - left), dihydrokainic acid (DHK 100 µM – middle) mice and 10 

DHK in GluK2 KO mice on MCs holding current. Recordings conditions were as in Fig.1. Activation 11 

of KARs was confirmed by application of the AMPAR/KAR antagonist NBQX (25 µM) at the end 12 

of the recording. NBQX was not applied in GluK2 KO as no inward current was detected. (B) 13 

Quantification of the effect of TBOA (left) and DHK (right) on MCs holding current. Dots represent 14 

the average current of 2 minutes of recording taken 2 minutes before DHK/TBOA application 15 

(baseline), 2 minutes before NBQX application (+DHK/TBOA), and 2 minutes at the end of NBQX 16 

application (+NBQX). Connected dots represent the same cell. (C) Summary plot of the 17 

experiments shown in (B) and in the DHK GluK2 KO dataset. (TBOA: 61.24 ± 18.61 pA; * p = 18 

0.02173 one sample t Test; DHK: 28.06 ± 7.4 pA; n = 3a/6c; n = 4a/6c; DHK GluK2 KO: -8.5 ± 19 

7.47; n = 3a/4c; DHK vs DHK GluK2 KO mice: * p = 0.0105 two sample t Test). Data are presented 20 

as mean ± S.E.M. 21 

 22 
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