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Abstract 33 

Detection and accurate quantitation of viable Mycobacterium tuberculosis is 34 

fundamental to understanding mycobacterial pathogenicity, tuberculosis (TB) disease 35 

progression and outcomes; TB transmission; drug action, efficacy and drug resistance. 36 

Despite this importance, methods for determining numbers of viable bacilli are 37 

limited in accuracy and precision owing to inherent characteristics of mycobacterial 38 

cell biology – including the tendency to clump, and “differential” culturability – and 39 

technical challenges consequent on handling an infectious pathogen under biosafe 40 

conditions. We developed an absolute counting method for mycobacteria in liquid 41 

cultures using a bench-top flow cytometer, and the low-cost fluorescent dyes Calcein-42 

AM (CA) and SYBR-gold (SG). During exponential growth CA+ cell counts are 43 

highly correlated with CFU counts and can be used as a real-time alternative to 44 

simplify the accurate standardisation of inocula for experiments. In contrast to CFU 45 

counting, this method can detect and enumerate cell aggregates in samples, which we 46 

show are a potential source of variance and bias when using established methods.  We 47 

show that CFUs comprise a sub-population of intact, metabolically active 48 

mycobacterial cells in liquid cultures, with CFU-proportion varying by growth 49 

conditions. A pharmacodynamic application of the flow cytometry method, exploring 50 

kinetics of fluorescent probe defined subpopulations compared to CFU is 51 

demonstrated. Flow cytometry derived Mycobacterium bovis BCG time-kill curves 52 

differ for rifampicin and kanamycin versus isoniazid and ethambutol, as do the 53 

relative dynamics of discrete morphologically-distinct subpopulations of bacilli 54 

revealed by this high-throughput single-cell technique.   55 
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Introduction 56 

For more than 100 years, counting Colony Forming Units (CFU) has been the gold-57 

standard for quantifying viable Mycobacterium tuberculosis (Mtb) bacilli, both in 58 

vitro and ex vivo. However, despite being a methodological foundation underpinning 59 

our scientific knowledge of Mtb, CFU counting has several technical and practical 60 

limitations, including cost and biosafety implications of maintaining multiple 61 

secondary cultures, time interval to results, loss of results from contamination, the 62 

inability to distinguish single cells from cell aggregates (clumps), and high intra- and 63 

inter-laboratory variation.1-3
 64 

More fundamentally, under some conditions sub-populations of viable Mtb cells do 65 

not form colonies and are therefore unobserved by CFU counting.4-6 This is of 66 

particular relevance to tuberculosis (TB) diagnostics and research because of the 67 

prevailing theory that the existence of phenotypically heterogenous sub-populations 68 

of bacilli – with differential metabolic or growth states – underlie profound aspects of 69 

TB disease biology, such as latency and the need for prolonged therapy to effect 70 

sterilising cure.7-10
 71 

Improved methods for absolute counting of mycobacteria and phenotypic 72 

characterisation of subpopulations are therefore desirable. Flow cytometry (FCM)73 

  is a well-established technique for counting and characterising eukaryotic 74 

cells, and its potential to advance single-cell analyses in microbiology has been 75 

discussed in depth.11,12 Several groups have applied FCM to mycobacteria, including 76 

drug sensitivity testing,13-22 investigation of cell biology,23-28 early phase diagnostic 77 

test development,29,30 live/dead discrimination,31,32 and more advanced single-cell 78 

phenotyping.23,33,34 Fluorescent dyes used by prior investigators include: probes of 79 

membrane integrity (the nucleic acid stains SYTOX-green,33 SYTO-9,24,31,32 SYTO-80 

BC,24,32 SYTO-16,16,28 SYBR-green I,30 propidium iodide,16,24,31,32,35 TO-PRO-3 81 

iodide,34 and auramine-O13,35,36); probes of metabolic activity (esterase substrate dyes 82 

fluorescein diacetate,14,17,20,21,37 and Calcein-violet33) and membrane potential 83 

(diethyloxacarbocyanine iodide25,34 & rhodamine-12327). In general, absolute bacillary 84 

counts have not been derived from FCM; instead, batch measures of fluorescence 85 

(e.g. mean fluorescence signal),13-17,20,21,27,29,37 qualitative read-outs (e.g. scatter-86 

plots),18,26,34 or percentages23,25,33 are reported. Growth conditions, processing (e.g. 87 
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washes and fixation), and staining protocols vary widely. In the few cases in which 88 

the same stains have been used by different groups, results are often contradictory: for 89 

example, propidium iodide is reported to stain 0% of heat killed M. tuberculosis by 90 

one study,38 and 100% by another.31 No comparisons of FCM counts with CFU 91 

enumerations have been published. 92 

The aims of the current study were: 93 

1) To develop and validate a method for absolute counting of mycobacteria in vitro 94 

using FCM. 95 

2) To explore the use of fluorescent dyes as probes of cell function to define 96 

subpopulations of bacilli in discrete physiological states. 97 

3) To compare dynamics of FCM-defined subpopulations and CFU in liquid cultures 98 

over time (growth curves), and over time in the presence of antimycobacterial 99 

compounds (time-kill curves). 100 

We report a method developed on a low-cost flow cytometer (BD AccuriTM C6), 101 

using two commercially available fluorescent dyes (SYBR®-Gold and Calcein-AM). 102 

The BD Accuri C6 flow cytometer has fixed alignment and pre-optimised detector 103 

settings, can record volume of sample processed without use of counting beads, and is 104 

small enough to fit on a benchtop or inside a bio-containment hood. SYBR®-Gold 105 

(SG), a proprietary cyanine dye (excitation ~495nm, emission ~573nm) with >1000-106 

fold fluorescence enhancement when bound to nucleic acid, was designed for use in 107 

gel electrophoresis.39 SG has previously been shown to have substantially greater 108 

sensitivity than auramine-O for quantitative fluorescence microscopy of heat-fixed 109 

mycobacteria (99% versus 65-80%),40 but it has not been applied in FCM. Calcein-110 

AM (CA) is a non-polar, lipophilic ester which becomes charged and fluorescent 111 

when hydrolysed by ‘house-keeping’ esterases ubiquitous in the cytoplasm of living 112 

cells.41 Hendon-Dunn and colleagues previously showed that the fluorescence of 113 

mycobacteria stained with Calcein-violet-AM correlated with rate of growth in a 114 

chemostat and declined with antimicrobial killing of bacilli.33  115 

In the present study, we applied SG staining after heat killing bacilli to define a total 116 

intact cell count denominator; SG staining without heat killing to probe cell 117 

membrane integrity as a marker of death or damage; and CA staining without heat 118 

killing to probe metabolic activity as a marker of vitality.  119 
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 120 

Results 121 

Setting fluorescence threshold values for FCM events improves validity 122 

of absolute bacilli counts  123 

The BD Accuri C6 flow cytometer has a fixed dynamic range for voltage and gain, 124 

but allows thresholds to be set on two signal values from light scatter and/or 125 

fluorescence channels. Signals below the set threshold are not recorded as events. For 126 

absolute counting of cells, an optimal threshold is one that is not so high as to exclude 127 

true events (signals from cells), yet high enough that it excludes electronic noise and 128 

signal from debris (which can otherwise mask true events owing to the refractory 129 

period of photodetectors). Typically, thresholds are set on forward and/or side scatter 130 

of light (FSC and SSC), as this allows fluorescence-positive and -negative events to 131 

be recorded without biasing measurements from the fluorescence channels.  132 

We investigated different threshold strategies as follows. Mid-log phase M. bovis 133 

BCG cultures were analysed after 2-fold dilution in 0.15% v/v Tween80 PBS 134 

solution. These were compared to an identical preparation of cell-free 7H9 broth as a 135 

negative control. Permutations of threshold settings were screened. In each case a gate 136 

was set around an apparent discrete population of events visible on a log(SSC) by 137 

log(FSC) plot, with the gate set manually to minimise the ratio between negative 138 

control and the paired BCG sample event counts. The optimal ratio (false positive 139 

event count in cell free broth divided by the paired BCG culture count) was defined as 140 

the false discovery rate; therefore, threshold parameters which maximised the 141 

absolute count in the BCG broth gate and minimised the false discovery rate were 142 

sought.  143 

Optimal threshold values based on light scatter (FSC and SSC) were inconsistent 144 

across replicates and were never associated with false discovery rates less than 10%. 145 

By contrast, thresholding on SSC and fluorescence (FL1 533/30 nm) in heat-killed, 146 

SYBR-gold stained mid-log BCG consistently reduced the false discovery rate to 147 

<0.5%, at the same time increasing absolute cell counts by more than one logarithm 148 

compared with thresholding on light scatter alone on the same samples (figure 1). 149 

Further, this strategy reduced the coefficient of variation between technical replicates 150 
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to <5%, and gave near perfect linearity across serial dilutions of the same sample 151 

(R2>0.99) (figure 1). 152 

Clumping in mycobacterial broth cultures can be observed and 153 

quantified using FCM  154 

In all mycobacterial broth cultures tested – M. bovis BCG, M. tuberculosis, and M. 155 

smegmatis, a second population of events with higher FSC and SSC became evident 156 

from early log-phase onwards, developing into the dominant population in mid- or 157 

late log-phase (figure 2A). To investigate the nature of these distinct populations, 158 

events gated on the two light-scatter populations were sorted for downstream 159 

microscopy (figure 2 B&C). This analysis revealed that the higher light-scatter 160 

population was composed of clumped cells, despite the fact that all cultures were 161 

grown in detergent (Tween80, 0.1% to 0.25% v/v) under continuous agitation (150 to 162 

200 rpm), and notwithstanding the use of sonication prior to flow cytometry. 163 

Clumping is a major determinant of CFU count & can be controlled by 164 

needle emulsification, but not vortex, sonication or centrifugation 165 

Having established the ability to quantify mycobacterial clumping in broth cultures 166 

using FCM, we next tested the comparative efficacies of standard microbiological 167 

methods for clump dispersal. Vortex and sonication failed to disrupt the clumped 168 

population observed on FCM; by contrast, needle emulsification of the broth culture 169 

largely eliminated clumping (figure 3A). Disruption of clumps by needle 170 

emulsification increased the single-cell population seen on FCM, and therefore the 171 

CFU count, by more than 0.5 log (figure 3B). Larger clumps not disrupted even by 172 

needle-emulsification emerged in late-stage broth cultures (figure 4).  173 

A standard method for preparation of single-cell suspensions of mycobacteria is 174 

centrifugation, based on the premise that cell clumps are selectively pelleted by 175 

gravity, with single cells remaining in suspension. 42 However, using FCM we found 176 

that the ratio of clumps to single-cells was unaffected by centrifugation (figure 5).  177 

Growth dynamics of FCM-defined bacilli populations compared to CFU 178 

A FCM protocol for absolute counting of bacilli – incorporating SYBR-gold or 179 

Calcein-AM staining, needle-emulsification to disperse clumps, and thresholding on 180 
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fluorescence (summarised in figure 6) – was used to explore dynamics of M. bovis 181 

BCG growth in broth culture. We defined three FCM populations using this protocol: 182 

1. Calcein-AM-positive (CA+) – live sample stained with Calcein-AM, to give 183 

an esterase positive, or ‘metabolically active’, cell count. 184 

2. SYBR-gold-positive (SG+) – live sample stained with SYBR-gold, to count 185 

cells which have membranes permeable to SYBR-gold, implying membrane 186 

damage. 187 

3. Heat-killed ‘total cell count’ (HK) – sample incubated in water-bath at 60oC 188 

for 12 minutes to permeabilise cell-membranes, followed by SYBR-gold 189 

staining. This is proposed to give a total count of intact cells containing 190 

nucleic acid, and therefore provides a denominator for calculating the 191 

proportion of cells which are CA+, or  SG+, or colony-forming. The selected 192 

heat-kill time and temperature were selected as the minimum to reliably 193 

maximise the HK count. 194 

CFU counts after needle emulsification were determined in parallel (figure 6).  195 

In all culture growth phases (lag, log, stationary), the HK cell count was greater than 196 

CA+, SG+, or CFU counts (figure 7A), and was accepted as a total cell count. During 197 

log-phase, most cells were CA+ and colony forming, with SG+ cells constituting a 198 

minority sub-population (figure 7B-D). When entering stationary phase, CA+ and 199 

CFU counts started to fall, with a simultaneous rise in SG+ cells, which subsequently 200 

became the dominant subpopulation (figure 7B-D). 201 

Correlation between CFU and CA+ counts was growth-phase dependent (figure 7E) 202 

with close co-variance in early-to-mid-log phase progressively diminishing in late-log 203 

(when CFU > CA+) and stationary phase (when CA+ > CFU). Total population 204 

growth rate – defined using the instantaneous rate-of-change of the log HK total cell 205 

count (the slope of the tangent to the curve at a given timepoint, i.e. the first-206 

derivative) – correlated with the proportion of bacilli which were CA+, but not the 207 

proportion of bacilli forming colonies (figure 7F). 208 

In vitro pharmacodynamics of M. bovis BCG by CFU and FCM counting 209 
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Having established growth dynamics in the absence of antimicrobials, the FCM count 210 

method was applied to pharmacodynamic (PD) time-kill analysis of M. bovis BCG. 211 

Starter cultures (100 ml in 500ml tissue culture flasks containing 0.15% v/v Tween 80 212 

7H9 medium) were grown to a density of ~2x105 CA+ cells per ml, then split into 213 

20ml samples in 50ml conical flasks. Antimicrobials (rifampicin, isoniazid, 214 

kanamycin, ethambutol) were added at a range of final concentrations in multiples of 215 

their minimum inhibitory concentration (MIC99), and bacilli quantified at 0, 24, 48, 216 

72 and 120 hours using FCM and CFU counting. The experiment was repeated on 217 

three separate occasions to ensure independent biological replicates.  218 

Raw FCM data plots for heat-killed, Calcein-AM, and SYBR-gold stained 219 

preparations from one of three independent replicates are shown for selected 220 

conditions in figure 8A-C. Time-kill curves based on absolute counts, and proportions 221 

(CA+/HK, SG+/HK, CFU/HK counts), are shown in figures 9A & 9B, respectively.  222 

Compared to antimicrobial-free controls, total cell count (HK count) growth was 223 

generally impeded by the presence of antimicrobials, although exponential growth 224 

still occurred with ethambutol and kanamycin at 0.5xMIC concentration of both 225 

antimicrobials. Critically, even at high concentrations of all antimicrobials tested, HK 226 

count did not show dramatic reduction over 120 hours of exposure.  227 

By contrast, CA+ and CFU counts fell substantially over that time period. Notably, 228 

CFU counts declined earlier than CA+ counts for all antimicrobial tested for all 229 

inhibitory concentrations. Rifampicin or kanamycin exposure resulted in an earlier 230 

decline in CA+ counts than was observed for isoniazid or ethambutol, which at high 231 

concentrations showed an initial increase in proportion of cells CA+ at 24 hours, 232 

before a sustained fall to day 5. 233 

Because a fraction of cells were SG+ under any condition, the major driver of 234 

absolute SG+ count was the total cell count, this can be seen in the antimicrobial-free 235 

controls where the highest SG+ counts were seen at late stages of growth. The 236 

proportion SG+ was, however, antimicrobial dependent: SG+ cells were a majority by 237 

day 5 in all supra-MIC concentration conditions, but the rise in the SG+ proportion 238 

occurred earlier and was larger for isoniazid and ethambutol than for rifampicin or 239 

kanamycin.  240 
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To summarise differing effects by antimicrobial and subpopulation, sigmoidal Emax 241 

models were fitted to the time-kill data (figure 10). Based on CFU time-kill curves, 242 

rifampicin, kanamycin, and isoniazid all have similar Emax values, while ethambutol is 243 

substantially lower. CA+ time-kill Emax was higher for rifampicin and kanamycin; and 244 

lower for ethambutol and isoniazid. The pattern was reversed for the effect on SG+ 245 

proportion. Finally, while the effects of antimicrobials on total cell count (HK count) 246 

were modest, they did differ by antimicrobial, with Emax highest for rifampicin and 247 

lowest for ethambutol.  248 

Subpopulations of cells by SYBR-gold staining characteristics 249 

In addition to count data, qualitative differences in fluorescence were seen in live 250 

bacilli stained with SYBR-gold, with two subpopulations of SG+ cells separated by 251 

FL1 intensity (most distinct after 72 hours of isoniazid or ethambutol exposure, figure 252 

8C). We hypothesised that two populations of bacilli with different SG staining 253 

properties were revealed by the membrane permeabilising effects of these 254 

antimicrobials. To investigate this possibility, we developed a protocol for 255 

permeabilising M. bovis BCG membranes without bacillary destruction (detailed in 256 

methods), and characterised these subpopulations under different antimicrobial 257 

conditions by quantifying them and through direct microscopy after cell-sorting.  258 

Dual SG+ subpopulations were discriminated by distribution peaks (figure 11A) and 259 

were seen under all conditions, including growth without antimicrobial exposure 260 

(figure 11B) with one population (labelled P2) returning a mean fluorescence two-261 

fold higher than the other (labelled P1) (figure 11A&C).  Fluorescent microscopy of 262 

cell-sorted samples showed that, compared to P1, P2 bacilli were longer (mean 4.0μm 263 

versus 2.5μm), with double the number of fluorescent foci (mean 6.1 versus 3.2) 264 

(figure 11D). The ratio of P2 to P1 cells in antimicrobial-free cultures was median 265 

1.75, and non-significantly higher when bacilli were exposed to rifampicin or 266 

kanamycin (median 1.83 and 1.86, respectively), but significantly higher after 267 

exposure to ethambutol or isoniazid (median 2.11 and 2.00, respectively; p<0.001 for 268 

both by rank-sum test). The P2:P1 ratio when bacilli were incubated with both 269 

rifampicin and isoniazid matched rifampicin mono-exposure rather than isoniazid 270 

mono-exposure (figure 11E). 271 

 272 
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Discussion 273 

Detection and accurate quantitation of Mycobacterium tuberculosis is fundamental to 274 

understanding TB biology. Growing evidence suggests that culture-based methods 275 

detect only a sub-population of bacilli,4,5 yet these methods remain standard in 276 

mycobacterial sciences. By contrast, in response to the analogous problem of 277 

differential culturability of microbiota in environmental substrates, FCM has been 278 

adopted as an essential method in environmental microbiology research,60,61 and 279 

industry. 62,63 We developed a novel FCM-based method for absolute counting of 280 

mycobacteria in liquid cultures. While several groups have reported characterising 281 

mycobacteria using FCM, our method is the first to give absolute counts, and can be 282 

used to quantify total cell denominator, the presence of cell-clumps, and sub-283 

populations with metabolic activity (using the esterase substrate, Calcein-AM) or 284 

membrane permeability (using the nucleic acid stain, SYBR-gold). Our results 285 

highlight some critical shortcomings of current ‘gold-standard’ methods for 286 

mycobacteria quantification. We also illustrate how the FCM absolute count method 287 

can be used for high-throughput, rapid investigations of phenotypic heterogeneity in 288 

mycobacteria and demonstrate the capacity to extract pharmacodynamic data using 289 

this approach. 290 

Using our FCM method we found that we could reliably identify a subpopulation of 291 

the batch culture comprising clumped cells. Further investigations revealed that 292 

mycobacterial cultures remain prone to  cell clumping in spite of commonly used 293 

measures to reduce their formation and to disrupt these before experimentation. We 294 

found that sample processing has a major impact on clump-dispersal, such that needle 295 

emulsification could increase CFU count approximately two-fold even in early log-296 

phase growth. This implies the potential for significant noise and bias in CFU 297 

determination, especially for late-log and stationary phase cultures, given that the 298 

method depends on serial dilution of dispersed cultures. Our data suggest published 299 

protocols42 for producing single cell suspensions using centrifugation have no effect 300 

on the ratio of clumps to single cells. Using the needle-emulsification and FCM 301 

counting methods described would be expected to reduce experimental error in 302 

mycobacterial research where bacilli counts are needed to standardise starting 303 

conditions, or where the number of bacilli is the dependent variable of interest. 304 
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Further, under antimicrobial-free early-mid log-phase growth conditions, CA+ 305 

bacillary counts correlate well with CFU counts and can be obtained within 90 306 

minutes using low-cost reagents indicating that the FCM counting method is a 307 

practicable alternative to current culture-based methods of estimating cell numbers. 308 

Our FCM method is distinct from previously described mycobacterial FCM protocols 309 

primarily because a fluorescence threshold is used to determine when FCM events are 310 

recorded. This means that fluorescence-negative events (e.g. a Calcein negative cell) 311 

cannot be directly observed but permits accurate absolute counts to be reported for the 312 

first time in mycobacterial flow cytometry. Because an absolute cell count 313 

denominator can be established with SYBR-gold staining of heat-killed bacilli, the 314 

proportion of bacilli with a given characteristic can be ascertained. Importantly, a total 315 

cell denominator also allows the proportion of bacilli forming colonies to be 316 

measured, which was about 60% in mid-exponential phase of growth in liquid culture.  317 

Our pharmacodynamic results build on previous mycobacterial flow cytometry work 318 

reported by Hendon-Dunn et al.33 We replicate their finding that pharmacodynamic 319 

flow cytometry profiles based on fluorescent probes of cytoplasmic esterase 320 

metabolism and cell wall integrity are different for drugs with different mechanisms 321 

of action. We found that the cell wall acting drugs isoniazid and ethambutol were 322 

associated with a relatively rapid rise in SG+ cells, while the cytoplasmic targeting 323 

rifampicin and kanamycin showed relatively early decline in CA+ bacilli. However, 324 

Hendon-Dunn et al. observed only a moderate, concentration-independent effect of 325 

rifampicin on Calcein-violet positive bacilli over the first 4 days of exposure. By 326 

contrast we found that rifampicin had an early, concentration-dependent effect on 327 

CA+ cells, and this effect was substantially greater than for isoniazid. Hendon-Dunn 328 

et al. measured relative proportions of Calcein positive and negative cells in 329 

cytometry plots, while our method produces absolute cell counts. If antimicrobials 330 

have differential effects on the total cell count (which we observed), relative 331 

proportions could be unreliable readouts of drug effect (owing to a ‘denominator 332 

fallacy’). In addition, the manual gating strategy used by Hendon-Dunn et al. does not 333 

appear to capture the shift in mean Calcein fluorescence seen under early rifampicin 334 

action, whereas the unsupervised classification approach implemented in this method 335 

does.  336 
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Again, based on absolute counts, we were able to directly and quantitatively compare 337 

CFU and FCM sub-population pharmacodynamics. Under all antimicrobial conditions 338 

tested, elimination of colony forming bacilli occurred substantially earlier than the 339 

decline in CA+ bacilli or the rise in SG+ bacilli. This means that, at some time points 340 

a majority of bacilli are structurally intact with evidence of metabolic activity but do 341 

not form colonies.  Further, we show that pharmacodynamic effect estimates based on 342 

FCM-defined subpopulations give different read-outs from those based on CFU 343 

counts: the rifampicin effect on CFU elimination is similar to isoniazid, but rifampicin 344 

elimination of CA+ bacilli is markedly greater; rifampicin also has a larger effect on 345 

total cell count than the other antimicrobials tested. Rather than simply being a rapid 346 

surrogate for CFU counts, the FCM method therefore provides information on 347 

antimycobacterial drug pharmacodynamics not captured by CFU counting, but it is 348 

unknown if this information is clinically meaningful. Terminally injured bacilli may 349 

simply retain metabolic activity with residual enzyme activity in a non-viable cell. 350 

Alternatively, as non-growing metabolically active (NGMA) cells can be capable of 351 

resuscitation,55 this may represent an adaptive response to antimicrobial stress by 352 

reducing the physiological consequences of target inhibition.56 FCM probes of 353 

metabolic and structural integrity would then be more meaningful measures of 354 

viability. The latter would be a simple explanation for the lack of correlation between 355 

culture-based surrogate endpoints (early bactericidal activity measured using CFU 356 

counting, 2-month culture conversion, modelling serial CFU counts or time-to-357 

positivity in liquid culture) and probability of achieving sterilising cure in clinical 358 

tuberculosis pharmacodynamics43 and warrants testing in clinical samples.  359 

If NGMA bacilli are an adaptive response to antimicrobial exposure then the ability to 360 

characterise them using high-throughput methods is critical. By staining live but 361 

membrane-permeabilized bacilli with SYBR-gold, we observed two distinct bacilli 362 

sub-populations, separated by a two-fold difference in mean fluorescence. We found 363 

this phenotype-variation was specifically induced by exposure to isoniazid or 364 

ethambutol, but the isoniazid effect was inhibited by the presence of rifampicin. 365 

Importantly, the induction of this phenotype could be seen at antimicrobial-condition-366 

timepoints where >99.9% of CFU were already eliminated (e.g. after 72 hours of 367 

isoniazid exposure at 4x MIC concentration). After cell-sorting, bacilli from the two-368 

fold brighter subpopulation were found to be longer with double the number of 369 
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fluorescence foci. Given that SYBR-gold fluoresces when bound to nucleic acid, this 370 

implies a bacillary phenotype with double the nucleic acid content, and this 371 

phenotypic heterogeneity may therefore represent different numbers of chromosome 372 

copies. In a non-human primate model of tuberculosis, “chromosomal equivalents” 373 

remain abundant in granulomas that have been sterilised (rendered CFU-negative) by 374 

isoniazid therapy.64 Peaks separated by a 2-fold difference in fluorescent intensity 375 

after staining with ethidium bromide or PicoGreen have been used extensively to 376 

define multiple chromosome numbers in E. coli.44-46 Further, several groups have 377 

associated polyploidy in E. coli with elongated “filamentous” persister cells capable 378 

of accelerated antibiotic resistance evolution.46-48 In the Wayne model of non-379 

replicating persistence during hypoxia-induced stress, mycobacteria are found to be 380 

diploid.49 In an in vitro foamy-macrophage model, intracellular Mycobacterium avium 381 

has been shown to enter a reversible dormancy state where the bacilli elongate but do 382 

not divide (implying they would not form colonies);57 it is suspected that these 383 

elongated, metabolically-active but non-replicating mycobacteria may be polyploid.50 384 

We speculate that polyploid, metabolically-active but non-colony forming bacilli 385 

which are preferentially induced by isoniazid but not rifampicin may be of significant 386 

clinical interest. If they represent a drug-tolerant phenotype unobserved by CFU 387 

counting, this could explain the fact that, while isoniazid has the most potent early 388 

bactericidal activity (EBA, measured by CFU counting), only rifampicin-containing 389 

regimens can reliably effect sterilising cure after 6-months (“short-course”) therapy. 390 

That drug resistant mutants emerge from phenotypically drug tolerant cells has 391 

recently been described for clinical isolates of Staphylococcus aureus,58 a similar 392 

mechanism might exist for mycobacteria. The spontaneous drug resistance mutation 393 

rates for M. tuberculosis in vitro range from 10-7 to 10-9 and it is somewhat unclear if 394 

estimated total mycobacteria numbers in vivo allow for development of multidrug 395 

resistance through the simple product of these probabilities59 – particularly if drug 396 

resistance emerges de novo after EBA has eliminated most bacilli observable by 397 

culture. A population of bacilli, unobserved by CFU counting but capable of 398 

elongation and polyploidy, implies ongoing chromosome replication after 399 

antimicrobial exposure and a pool of drug-tolerant cells from which drug resistance 400 

could emerge.  401 
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We used batch cultures in this work which may have limitations. Unexplained 402 

variation in FCM sub-population proportions and growth rates between biological 403 

replicates, even under antimicrobial-free conditions were seen (e.g. figure 7 B&F). 404 

Steady-state cultures – such as the chemostat method used by Hendon-Dunn in their 405 

flow-cytometry study – are known to improve reproducibility compared to batch 406 

cultures in microbial proteomics and transcriptomics analyses,51,52 and are likely to be 407 

a major advantage in pharmacodynamic studies. Indeed, cell populations in batch 408 

cultures can show complex, non-linear growth patterns in cell size and DNA content44 409 

(which are major read-outs from the current implementation of our FCM absolute 410 

count method). However these limitations of batch cultures, match those of currently 411 

implemented culture methods in research laboratories and are expected to add noise 412 

rather than bias to our results.  413 

Overall, our results add to the evidence of limitations in established methods for 414 

enumeration of bacilli and support the utility of FCM as a high-throughput, single-415 

cell, culture-independent quantitative tool for the study of mycobacteria in preclinical 416 

drug development and ultimately in clinical samples. 417 

 418 

Methods 419 

Cytometry 420 

Flow cytometry was performed on a BD Accuri™ C6 with manufacturer standard 421 

fluorescence detector set-up (FL1, 533/30 nm; FL2, 585/40 nm; FL3, > 670 nm; FL4, 422 

675/25 nm) and data acquisition with BD Accuri™ C6 software including recording 423 

processed sample volume. Quality assurance was performed using fluorescent beads 424 

as per manufacturer protocol. Manual and extended cleaning cycles were performed at 425 

the beginning and end of each flow cytometry session with verification of low event 426 

rate in filtered PBS before each run. Cell-sorting experiments were performed on a 427 

Bio Rad S3 cell sorter or FACS Vantage with voltage and gain set to recreate BD 428 

Accuri C6 plots. All microscopy was performed on a Zeiss Axio Observer 7.  429 

Sample processing 430 
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Needle emusfication was performed with 12 passes through a double luer-lock ended, 431 

25 Gauge, 4-inch, micro-emulsifying needle (CAD7974 Sigma Aldrich). Sonication 432 

of cultures prior to FCM to assess effect on clump dispersal was performed by 433 

submerging 1ml centrifuge tubes attached to a flotation device in a benchtop 434 

ultrasonication water-bath three times for 30 second duration (Ultrawave™ U300HD 435 

30 KHZ; Ultrawave, Cardiff, UK).  Heat-kill of mycobacterial samples for “HK 436 

counts” was by immersion of aliquots in a waterbath at 60oC for 12 minutes. Removal 437 

of antimicrobials prior to CFU plating was by pelleting a 1000μL sample (diluted 2-438 

fold from 500μL with PBS) at 18000g for 12 minutes, removing 900μL of 439 

supernatant, resuspending 100μL residual volume in 900μL of 0.22um filtered 0.15% 440 

v/v Tween 80 sterile PBS by pipetting, repeated twice (for 10x10 = 100-fold dilution). 441 

This will have diluted antimicrobial in solution (unbound) 200-fold prior to plating.  442 

Culture conditions 443 

Liquid media was prepared from Middlebrook 7H9 media (211887 BD Diagnostics) 444 

and 0.22um filtered deionized water according to manufacturer instructions. This was 445 

supplemented with 10% v/v Middlebrook OADC (212240 BD Diagnostics), 0.2% v/v 446 

glycerol and 0.15% v/v Tween 80. All broth was autoclaved prior to supplementation, 447 

and 0.22um filtered prior to use. Liquid cultures were at 37oC in the dark with 150-448 

200rpm agitation in 50ml sterile polyethylene conical flasks in an incubator with an 449 

orbital shaking system (model LM-570; MRC Laboratory Instruments Group, 450 

London, UK).  451 

Middlebrook 7H10 (262710 BD Diagnostics) agar was prepared with 0.22um filtered 452 

deionized water according to manufacturer instructions, with v/v 0.5% glycerol added 453 

before autoclave sterilisation. When cooled to 45oC, v/v 10% ADC supplement was 454 

added and tri-segmented plates poured to depth 5mm. For CFU counting, 10-fold 455 

serial dilutions of samples were prepared in 96-well plates using 0.22um filtered 456 

0.15% v/v Tween 80 sterile PBS. Each segment of a plate was inoculated with 50uL 457 

of serial dilutions and spread using disposable, sterile loop spreaders. CFU counts 458 

were performed with 3-fold technical replicates and counts averaged. Colony counts 459 

between 1 and 100 per segment were accepted and, after adjustment for dilution, 460 

averages across dilutions were made where available. Counts were performed on 3 461 

occasions (14, 21, and 28 days) to allow colonies to be counted before overgrowth. 462 
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Reagents 463 

Primary stock dilutions of antibiotic powders were made in 100% DMSO and frozen 464 

at-20oC protected from light. Fresh working dilutions were prepared in PBS prior to 465 

each experiment, 0.22nm filtered, and stored wrapped in tin foil at 2-5oC refrigeration. 466 

Final concentrations of antimicrobials used in M. bovis BCG time-kill experiments are 467 

reported in multiples of the MIC as indicated. The MIC were: rifampicin, 0.01μg/ml; 468 

isoniazid 0.125μg/ml; kanamycin 1.0μg/ml; ethambutol 1.0 μg/ml.  469 

Calcein-AM 50μg vials (ThermoFisher, C3100MP) were reconstituted in 50μL of 470 

DMSO on the day of each experiment, further diluted to 200μL with PBS for 471 

“working stock”. For cell staining, 5μL of working stock was added per 100μL of 472 

sample, with pipette mixing, then incubated in the dark at room temperature for 45-60 473 

minutes before resuspension of bacilli with pipetting. SYBR-gold propriety stock 474 

(ThermoFisher, S-11494) was diluted 1000-fold in PBS, aliquoted and frozen at -20oC 475 

until use. After thawing aliquot, a further 10-fold dilution (to 10-4) in PBS was 476 

performed, and 5μL of this working stock added per 100μL of sample to be stained, 477 

with pipette mixing, followed by incubation in dark at room temperature for 45-60 478 

minutes before resuspension of bacilli with pipetting. 479 

Permeabilization of live cells 480 

For the investigation of SG stained subpopulations, published methods for 481 

permeabilizing mycobacterial cell walls were reviewed; those with highest reported 482 

success and best description of validation53,54 were taken forward for testing and 483 

adaptation. Permutations of paraformaldehyde / ammonium chloride fixation, ethanol, 484 

hydrochloric acid, detergents, and lysozyme were tested at different concentrations, 485 

incubation times, and temperatures also assessed iteratively. This led to a final method 486 

for reliable permeabilization of BCG bacilli without substantial cell loss, such that 487 

over 80% of bacilli could be SYBR-gold stained (compared to the heat-killed total 488 

cell count denominator gold standard). In the final method, a 500μL sample was 489 

diluted to 1ml with PBS v/v 0.15%Tween 80, without wash step or fixation. After 490 

needle emulsification, lysozyme was added to final conc 0.1mg/ml, and the sample 491 

incubated for 45 minutes at 37oC. 500µl triton-X-100 was then added to final 492 

concentration v/v 0.2%. This was pelleted (16000g, 5 min) and re-suspended in 500µl 493 
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PBS-tween; 40µl working stock SYBR-gold added and incubated at room 494 

temperature for 2-4 hours. 495 

Data analysis 496 

Raw flow-cytometry data was extracted from .fcs files exported from BD Accuri C6 497 

software using flowCore (v 2.0.1) Bioconductor package65 and all analysis performed 498 

in Rstudio v1.1.463. Rather than using manually placed gates to classify events, 499 

unsupervised machine-learning classification algorithms were used. For main flow 500 

cytometry plots (figure 8) k-means clustering was applied to FL1 height, FL1 area, 501 

and Side-Scatter height observations from one replicate using kmeans() function in 502 

stats package66 in R, and the clustering solution applied to all the data. Optimal 503 

number of clusters was determined empirically using NbClust() function from 504 

NBClust package67 in R. To separate P2 and P1 events in permeabilized SG-stained 505 

live cells (figure 11), a Gaussian Mixture Model was fit to all the data with 2 506 

component distributions using normalmixEM() function in mixtools package.68 In all 507 

FCM scatter plots, log transformations to base e (natural logarithms) are presented 508 

unless otherwise indicated (plots with log transformations to base 2 are used in cases 509 

where a doubling of fluorescence is a specific feature of interest).  510 

Time-kill curves were summarised in descriptive plots (figure 9) using non-parametric 511 

loess regression models. To extract summary measures of antimicrobial effect, the 512 

time-kill data was modelled using a linear mixed-effects model, with a fixed effect of 513 

intercept, and random slopes for antibiotic condition and replicate: 514 

������������ ~ �������� � ���������| ���������� � ���������| ��� 

This captures the crossed experimental design where each replicate was assessed 515 

under each antimicrobial condition, and each replicate assessed under each condition. 516 

The antibiotic condition effect, defined as slope gradient for the time-kill curve, was 517 

then extracted, independent of replicate effect, from the model as a summary PD 518 

measure. Because the dependent variable is on a log scale this assumes a mono-519 

exponential decline in cell populations under antimicrobial action. The dependent 520 

variables assessed were CFU count, CA+ count, HK count, and proportion SG+. The 521 

R package lme4 was used for this modelling.69  522 
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Antimicrobial effects extracted from these models were related to drug concentration 523 

for each antimicrobial using a standard sigmoid Emax PK/PD model, of form: 524 

� �
���� · ��

��
��

� � ��
 

Where E is the PD effect (the slope gradient estimates by mixed-effects modelling 525 

above), C is the drug concentration (known from experimental condition), and the 526 

remaining parameters are estimated from the data: Emax (maximum achievable effect 527 

of antimicrobial), EC50 (the drug concentration where half of Emax is obtained), and n 528 

(a scaling parameter). Models were fitted using non-linear least squares (nls() function 529 

in R.  530 

Fluorescence profiles of bacilli (figure 11D) were extracted as .csv files from 531 

microscopy images using Fiji (ImageJ).70 This raw data was processed using a 532 

custom-built function defining local maxima in smoothed profiles to count fluorescent 533 

peaks.  534 

  535 
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Figure 1. Comparison of 3 thresholding strategies in heat killed and SYBR-gold stained mid-log 
phase BCG broth culture. 

 

 

 

A. Example FCM plots for three thresholding strategies (rows 1-3) applied to M. bovis BCG broth culture (column
1) and cell-free broth (cell-free negative control, column 2). Counts are extracted for the gated population (events
within dashed red line), which is placed to maximise the count in BCG broth and minimise the count in the cell-free
control. Recorded events in the low light scatter value thresholding (first row) are dominated by debris/noise, seen as
a dense population with low SSC and FSC values in lower left quadrant; this is equally apparent in the cell-free
control. Higher light scatter thresholding (second row) excludes these events, but still records a substantial portion
of higher SSC/FSC noise (seen in cell-free control), and the threshold level appears to bisect the ‘real’ cell
population; i.e., losing cells from analysis. By contrast, the thresholding based on fluorescence (third row) is
qualitatively better, with very few false positive events in the cell-free control, and detection of a discrete cell
population in BCG broth which is not artificially bisected. 

B. Greater internal consistency in the FL1/SSC thresholding strategy, with less error across serial dilutions of a M. 
bovis BCG culture. Quantitative evidence of improved absolute count validity includes a lower false discovery rate 
(FDR, defined as false positive cell count in cell-free control divided by paired cell count from broth); lower 
coefficient of variation (CV, calculated by standard deviation/mean from 5 technical replicates, averaged for 3 
biological replicates); and higher R2 from linear fit across serial dilution series (one biological replicate as shown in 
figure; p<0.001 for F test comparing FL1/SCC to either FSC/SSC strategy; 95% confidence intervals for linear fit 
shown with grey shaded areas).  
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Figure 2. Identifying mycobacterial clumping with FCM. 

 

 

A. 2D-density plots of FSC v SSC on log scale for a culture of M. bovis BCG grown with 0.15% v/v Tween80 at
180 rpm. Plots are from samples taken at 48, 96, 144, and 240 hours after bacilli were sub-cultured from a log-phase
starter culture into pre-warmed broth (early, early-mid, late-mid and late log-phase, respectively). Samples were
diluted 10-fold or 100-fold (later samples) in 0.25% v/v Tween80 PBS and sonicated for 60 seconds prior to flow
cytometry. The tail of higher SSC and FSC events at 48-hours is seen to develop into a discrete second
subpopulation by 96-hours, which continues to expand into a higher SSC and FSC region and become the
predominant subpopulation by the end of log-phase. All plots are constructed from 5000 events. 

B. M. tuberculosis and M. smegmatis processed as above (both mid-late log phase) also develop dual populations
separating on FSC and SSC, replicating the M. bovis BCG findings. 

C. M. smegmatis sample was run on a BioRad S3 cell sorter with P1 and P2 sorted for downstream fluorescence 
microscopy (representative images shown). M. smegmatis was used for cell sorting owing to concerns about 
aerosolising M. tuberculosis or M. bovis BCG. P1 comprised majority single cells or doublets, while P2 comprised 
majority clumps (manually quantified from fluorescence microscopy images).  
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Figure 3. Needle-emulsification, but not vortex or sonication, disrupt clumps and increases cell 
counts 

 

Mid-log phase culture of M. smegmatis grown in 0.15% v/v Tween80 7H9 with 150 rpm agitation and diluted 10-
fold in 0.15% v/v Tween80 PBS and stained with Calcein-AM prior to FCM on a BD Accuri C6. Data acquisition
with thresholds SSC>1000 and FL1>2000. Samples were processed by 60 second vortex, or by 60 second vortex
followed by 5 minutes sonication in water bath, or by both these methods followed by needle emulsification (12
passes through a double Luer lock-ended, 25 Gauge, 4-inch, micro-emulsifying needle with a reinforcing bar
(Cadence Inc.). 
A. Two populations are seen which are differentiated by light-scatter: single cells (P1) and clumps (P2).
Qualitatively, vortex and sonication processing did not disrupt P2 population (clumps), but needle emulsification
(far right plot) shifted events from predominantly P2 (clumps) to predominantly P1 (single cells). 
B. Counts of CFUs or FCM events with three-replicates from 3 independent cultures (purple, green, yellow dots). 
Emulsification resulted in a greater number of CFU and decreased the P2 count while increasing the P1 count 
substantially. The apparent total cell counts were increased by emulsification by an order of magnitude: both CFU 
count and total flow cytometry CA positive count increased by half to one unit on log scale. This can be interpreted 
as resulting from clumps (P2 population) being disaggregated into single cells (P1). The p-values were determined 
from repeated-measures ANOVA by cell-disruption method.   
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Figure 4. Clumps which are resistant to disruption by emulsification eventually emerge in late log-
phase cultures. 

 

 

A. M. bovis BCG culture in 0.15% v/v Tween80 7H9 with 150 rpm agitation and diluted 10-fold in 0.15% v/v
Tween80 PBS before bacilli were heat-killed and stained with SYBR-gold. Samples were needle-emulsified (12
passes through a double Luer lock-ended, 25 Gauge, 4-inch, micro-emulsifying needle) prior to FCM on BD Accuri
C6; data acquisition with thresholds SSC>1000 and FL1>1000. Timepoints are days post inoculation into pre-
warmed broth from log phase starter culture. A long tail of clumps, extending into the upper-right quadrant of higher
SSC and FSC, emerges from around day 9, at OD600 ~ 0.3. Clumps were defined as events with SSC and FSC values
greater than 10-log and 11-log (events in upper right quadrant of plots). 
B. Clumps and single cells quantified by flow cytometry (four independent replicates of data represented by A; 
replicates are shown with different colours). Emulsification appears able to disrupt clumps until late log phase (~day 
8), when both the ratio of clumps to single cells and size (approximated by mean FSC) of clumps rise rapidly. Line 
of best fit with 95% confidence interval band is a LOESS regression line ignoring dependence by replicate. 
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Figure 5. Ratio of clumped to single-cell M. smegmatis is not altered by low-g centrifugation.  

 

 

 

 

Three mid-log phase M. smegmatis cultures grown in 0.05% Tween80 7H9 with continuous agitation at 150 rpm
biological replicates shown in blue, green and red), processed three ways. Control sample: 10-1 dilution in 0.
Tween80 PBS, no physical disruption. Centrifuge sample: 10ml + 5ml 0.1% Tween80 PBS; spun in 15ml centrif
tubes at 120 x g for 8 minutes with no brake. Emulsified sample: 10-1 dilution in 0.1% Tween80 PBS, 12x nee
emulsified. Supernatant used for counts, as per ref 42 main manuscript. All samples heat-killed and stained with SYB
gold prior to flow cytometry on BD Accuri-C6, with thresholding on SSC and FL1. Data are for three techn
replicates of each culture. 

A. Qualitatively, the FSC by SSC flow plots were similar for centrifuge method and control, compared to the need
emulsified sample where the cell-clump population (P2) was not evident.  

B. The ratio of clumps to single cells (p2:p1) was the same in the control and centrifuge preparations, but was m
lower (and with less variation across replicates) with emulsification. Apparent cell counts were lower w
centrifugation (owing to loss of cells in pellet) and higher with emulsification (owing to disruption of clumps). Th
independent culture replicates (read, blue, and green; each processed 3 times in each condition for technical replicat
p-values from repeated measures ANOVA (technical replicates nested within culture replicates).  
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Figure 6. Schematic for final FCM count SOP used in M. bovis BCG culture growth & time-kill dynamics 
experiments 

 

 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442251
http://creativecommons.org/licenses/by/4.0/


Figure 7. Bacillary population dynamics during standard growth in culture 

 

Four independent M. bovis BCG cultures (replicates i to iv), grown in 50ml 0.15% v/v Tween80 7H9, 500ml tissueculture 
flasks at 150 rpm agitation, were serially quantified by CFU and FCM counts (method outlined in figure 6) between 2 and 15 
days after inoculation into pre-warmed broth from a log phase starter culture. (A) Using the heat-killed SYBR-gold stained 
(HK) cell count as total cell denominator, the proportion of bacilli which were Calcein-AM positive (CA+), colony-forming 
(CFU), and permeable to SYBR-gold without heat-killing (SG+) are shown over time post inoculation (B-D); each replicate 
is plotted using a different colour; LOESS line-of-best-fit and 95% CI shown for the observations aggregated across 
replicates. Linear correlation between log CA+ and log CFU counts was strong (E), but with a dependency on phase of 
growth (time in days from inoculation shown by colour;  non-constant variance (NCV) test for heteroscedasticity, p=0.03, 
dashed lines are +/- 1 SD of residual variation). Rate of population growth is defined as instantaneous rate of change in total 
cell count (slope of the tangent to the curve at a given timepoint; i.e., first derivative of the growth curve). Rate of total 
population growth was regressed on proportion of bacilli able to form colonies, or on proportion CA+ (F), at any given 
timepoint, with each replicate (i to iv, again shown by colour) allowed to differ by intercept but not slope.
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Figure 8. Raw FMC plots of HK, CA+, and SG+ events for selected antimicrobial conditions and timepoints. 
 

Raw FMC data from one of three independent replicates. SYBR-gold stained heat-killed (HK) samples (A, left), Calcein-AM stained live samples (B, middle), an
gold stained live samples (C, right), by antimicrobial condition (rows) and time-point (hours) post introduction of antimicrobials (columns). Antimicrobial indica
prefix (E, ethambutol; H, isoniazid; K, kanamycin; R, rifampicin) and concentration in multiples of MIC99 by suffix letter (e.g., R4 = rifampicin at 4x MIC). FCM
each plot are coloured by K-means clustering on all light-scatter and fluorescence dimensions – an unsupervised classification (machine learning) algorithm used
subpopulations without subjective manual placement of gates. 
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Figure 9. Time-kill curves generated through FCM defined cell populations and CFU counts 

 

Data from three replicates. Counts (left panel) and proportions (right panel) by cell population [CA+ = Calcein-AM-stained in live samples; CFU = colony forming units; 
SG+ = SYBR-gold-stained in live samples; HK = SYBR-gold-stained in heat-killed samples] over time by antimicrobial condition. Antimicrobial indicated by letter in rows 
(E, ethambutol; H, isoniazid; K, kanamycin; R, rifampicin; CTRL, antimicrobial-free [“Nil Abx”] broth) and concentration in multiples of MIC in columns. Non-parametric 
Loess regression line and shaded 95% confidence intervals shown. Proportions are derived using HK count as a total cell count denominator (i.e. CA+/HK, SG+/HK, 
CFU/HK).
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Figure 10. Emax models applied to time-kill data from FCM defined cell population and CFU counts 

 

 

The time-kill data in figure 9 were modelled using a linear mixed-effects model to extract an estimate of mono-
exponential elimination rate for each antimicrobial condition as a summary pharmacodynamic (PD) measure for 
each FCM defined cell population and CFU counts. Antimicrobial effects extracted from these models were related 
to drug concentration for each antimicrobial using a standard sigmoid Emax PK/PD model, shown here for each 
antimicrobial (columns) and each cell population (rows). 

* A sigmoidal Emax model could not be fit for rifampicin %SG+ growth rate data due to non-convergence; the fit 
shown is from a model excluding the outlier data point at concentration 0.005 mg/ml (-5.3 on log scale). When this 
data point (indicated in grey) was excluded, the model converged.  

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442251
http://creativecommons.org/licenses/by/4.0/


 

Figure 11. Distinct pharmacodynamics of SYBR-gold-positive sub-populations  

A. FCM plot for ethambutol-treated (4x MIC, 48 hours), SYBR-gold stained live bacilli. Two discrete sub-populations ar
visible, separated by approximately two-fold difference in fluorescence. These sub-populations were visible in most 
ethambutol- or isoniazid-treated cultures, but not readily visible in rifampicin or kanamycin FCM plots (figure 8). B. Aft
membrane permeabilization at room temperature, these distinct sub-populations are visible under all conditions including
antimicrobial-free control. C. Clustering algorithm (Gaussian mixture model) used to label bacilli as P1 (lower SG 
fluorescence) or P2 (higher SG fluorescence). D. P1 and P2 bacilli sorted for downstream microscopy show different 
morphologies. A random selection of bacilli images from sorted P1 and P2 sub-populations were measured along their 
longitudinal axis using ImageJ to assess length and fluorescence profile (two examples shown). P2 bacilli were longer th
bacilli (mean 4.0µm versus 2.5µm) and contained approximately double the number of fluorescent 'peaks' (mean 6.1 vers
peaks defined by local maxima in a LOESS smoothing function applied to the fluorescence profile plots). E. The ratio of
bacillary counts was dependent on antimicrobial: isoniazid and ethambutol exposure caused a relative rise in P2 bacilli 
compared to control, but the same effect was not seen for rifampicin or kanamycin. For the rifampicin plus isoniazid (Rif
combination treatment, the P2:P1 ratio matched the ratio obtained for rifampicin monotherapy, rather than isoniazid. All 
values were determined from a linear regression of P2:P1 ratio on antimicrobial category, with the antimicrobial-free con
reference category. F. Non-parametric Loess regression fitting P2:P1 ratio to log2 concentration (black line with shaded 
confidence interval) for each antimicrobial condition suggests the pharmacodynamic effect may be non-linearly depende
concentration. 
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