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 24 

ABSTRACT 25 

The increased usage of long-read sequencing for metabarcoding has not been matched with 26 

public databases suited for error-prone long-reads. We address this gap and present a proof-27 

of-concept study for classifying fungal species using linked machine learning classifiers. We 28 

demonstrate its capability for accurate classification using labelled and unlabelled fungal 29 

sequencing datasets. We show the advantage of our approach for closely related species over 30 

current alignment and k-mer methods and suggest a confidence threshold of 0.85 to maximise 31 

accurate target species identification from complex samples of unknown composition. We 32 

suggest future use of this approach in medicine, agriculture, and biosecurity. 33 

 34 
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 37 

BACKGROUND 38 

DNA sequencing is increasingly becoming an important part of identifying and classifying 39 

fungal species, particularly through DNA barcoding. To date this process involves the use of 40 

short, variable regions of DNA that differ between species and are surrounded by highly 41 

conserved regions which are suitable targets for ‘universal’ primers enabling PCR 42 

amplification over a large variety of fungal taxa [1, 2]. The internal transcribed spacer (ITS) 43 
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region, is used as the primary DNA barcode region for fungal diversity studies [3]. This 44 

regions contains the two variable components, ITS1 and ITS2, which are on average 550-600 45 

bp long [4]. The ITS1 and ITS2 are separated by the conserved 5.8S rRNA gene and is 46 

flanked by the conserved 18S and 28S rRNA genes. Although these regions offer a targetable 47 

region for identifying fungal species, they have some limitations that affect the ability to 48 

accurately classify fungi especially at lower taxonomic ranks [4, 5]. The length of the 49 

complete ITS1/2 region prevents short-read sequencing platforms to use both in combination 50 

for taxonomic classification. Furthermore, the limited selection of ‘universal’ primers in the 51 

region can subject taxonomic studies to primer biases [6].  52 

With the advent and increasing use of long-read sequencing, such as that enabled by the 53 

nanopore sequencing technology of the MinION from Oxford Nanopore Technologies 54 

(ONT), some of the limitations of short-reads can be bypassed [7]. With long-reads, an 55 

extended ITS region can be sequenced including both ITS1 and ITS2 in addition to the minor 56 

variable regions of the 18S and 28S rRNA subunits using one set of ‘universal’ primers [8-57 

11]. Here, we focus on the region amplified by the NS3 and LR6 primers [12], spanning close 58 

to 2.9 kbp in size. We refer to this amplicon hereafter as the fungal ribosomal DNA region. 59 

Nanopore sequencing introduces a relatively high read error of around 10% at the time of 60 

conducting our study [13]. These make individual reads less suited for species identification 61 

using DNA metabarcodes combined with currently existing sequence alignment and k-mer 62 

based methods because the genetic distance of the variable regions between closely related 63 

species are often lower than the per read error rate [14]. In addition, the entries in most fungal 64 

DNA barcode databases, such as NCBI and Unite, are relatively short with a median 65 

sequence length of 580 bp and 540 bp [15], respectively. This limits the analysis capacity of 66 

long-reads which completely entail both ITS sequences and include minor variable regions in 67 

both 18S and 28S rRNA.  68 
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In our current study we address these shortcomings and assess the applicability of novel 69 

sequence analysis methods for metabarcodes using the fungal kingdom as a test case. The 70 

fungal kingdom is diverse, with an estimated 1.5-5 million species globally, performing 71 

important ecosystem functions [16]. At the same time fungi can have adverse effects on 72 

human and animal health and agriculture. An estimated 300 million people suffer from 73 

fungal-related diseases each year [17], which often have a high mortality rate and limited 74 

treatment options, resulting in the deaths of over 1.5 million people annually [18]. Similarly, 75 

fungi can cause large-scale biodiversity loss [19, 20] as demonstrated by the near extinction 76 

of many amphibian taxa by the globally devastating fungal pathogen Batrachochytrium 77 

dendrobatidis [21] and the local extinction of several myrtaceae tree species by the rust 78 

fungus Austropuccinia psidii [22]. Fungal pathogens also cause an estimated loss of about 79 

$200 billion dollars in global food production annually [23]. The importance of fungi 80 

warrants the development of improved sequence-based detection methods for fungi as 81 

illustrated in our proof-of-concept study.  82 

We explored machine learning classifiers as an alternative method for assigning individual 83 

error-prone sequence long-reads to taxa, because machine learning techniques are ideally 84 

suited to identify deterministic spatial relationships between features for classification [24]. 85 

For example, it might be that specific DNA bases have a unique spatial relationship within 86 

the fungal ribosomal DNA region that is deterministic for a given fungal species. These 87 

relationships are difficult to capture with currently available (local) alignment or k-mer based 88 

methods when combined with error-prone sequence long-reads, especially when these 89 

features (DNA bases) are not located in close proximity in the primary DNA sequence. There 90 

exist many machine learning methods for identifying patterns across a variety of data types 91 

[25-27]. Convolutional neural networks (CNNs) are one type of machine learning methods 92 

that are especially suited for identifying the deterministic spatial relationships in DNA 93 
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sequence, as they are capable of learning from both small-scale and higher order 94 

discretionary features, including important spatial relationships between said features [24, 28, 95 

29]. So, we applied a CNN approach to metabarcoding based fungal species identification 96 

using a uniquely labelled sequencing dataset of the 2.9 kbp fungal ribosomal DNA region 97 

from 44 individually sequenced fungal species. We compared our machine learning approach 98 

to three commonly used analysis approaches including alignment and k-mer based methods 99 

on different in house and publicly available databases. Our machine learning approach faired 100 

especially well when identifying closely related species. Furthermore, we show that the 101 

training of a limited set of general and specific machine learning taxa classifiers provides a 102 

reasonable approach to targeted species identification from a complex sample of unknown 103 

composition. 104 

 105 

RESULTS 106 

Design of a decision tree for machine learning classifiers for taxonomic assignment of 107 

fungal species 108 

Here we explored the application of machine learning on individual nanopore reads for 109 

fungal taxonomic classification. We sequenced the fungal ribosomal DNA region of 44 110 

fungal species individually to generate a labelled real-life dataset for which the ground truth 111 

is known for each individual read. This makes our dataset uniquely suited for our supervised 112 

machine learning approach and for benchmarking studies when comparing this to commonly 113 

used classification approaches. Our fungal species dataset included 39 ascomycetes species 114 

spanning 19 families and 27 genera in addition to five basidiomycetes. We performed several 115 

quality-control steps on all reads in each sample. We first filtered reads based on homology 116 

against a custom-curated database of the fungal ribosomal DNA region, to remove any partial 117 
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reads or reads from other areas of the fungal genome with partial primer binding. We then 118 

filtered reads by length, removing short or very long-reads that were not within a 90% 119 

confidence interval around the mean read length for the fungal ribosomal DNA region for 120 

each species (see Supplemental Table T1). The Galactomyces geotrichum sample had too 121 

few reads for further processing, hence we complimented those with simulated reads using 122 

NanoSim [30]. This resulted in an average of 54,832 ± 35,537 reads available across all 123 

species. We took a subsample of these quality-controlled reads and split them into a training 124 

set and a test set, containing 85% and 15% of the subsampled reads respectively, to be used 125 

for training the machine learning classifiers and assessing the performance of the newly 126 

generated machine learning classifiers, respectively. We implemented a decision tree to be 127 

able to classify individual reads at each taxonomic rank from phylum to species (Figure 1). 128 

The taxonomic information for the 44 available individually sequenced species was used to 129 

create the cladogram for this decision tree. We generated one machine learning classifier for 130 

each node in our decision tree (Figure 1).  131 
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 132 

For training each of these classifiers, a balanced dataset was used, such that each possible 133 

outcome of the machine learning classifier had an equal number of reads. These individual 134 

classifiers had a mean recall rate of 97.9 ± 1.1% for correctly classifying reads using the test 135 

read dataset. The lowest recall rate belonged to the species-level classifier that distinguished 136 

between Candida species, with a recall rate of 94.4%.  137 

To fully classify a read, we used the cladogram as a decision tree to link individual machine 138 

learning classifiers at each taxonomic rank. This allowed us to chain classifiers together to 139 

classify a read at each taxonomic rank, moving through the tree from phylum to species 140 

assignments. The outcome of a classifier at one taxonomic rank was used to decide the path 141 

 

Figure 1: Visualisation of the fungal ribosomal DNA region and machine learning decision tree. 

 (A) The fungal ribosomal DNA region between the NS3 and LR6 primers covers around ~2.9 kbp. Shown 
is the alignment of consensus sequences (created with Geneious Prime), with highly conserved regions in 
green and variable regions in red. (B) Taxonomic information for 44 species was used to create a decision 
tree showing the relationship between samples at each taxonomic rank. Where two or more species shared a 
common taxon, a machine learning classifier (node) was created to distinguish between those taxa. These 
classifiers were chained together to create a decision tree, whereby the classification of a read was 
undertaken by a cascade of classifiers. An example path down the decision tree is shown for Candida 
albicans. 
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along the tree, and thus this decision defined which classifier was appropriate for use at the 142 

next lower taxonomic rank (Figure 1). We refer to a classifier by the taxonomic rank that it 143 

outputs. For example, a species-level classifier takes reads from a specific genus and outputs 144 

a species, while a class-level classifier takes reads from a specific phylum and outputs a 145 

decision on the taxonomic class of the read. The recall rate of the individual classifiers at 146 

different taxonomic ranks can affect the final species-level recall rate for each individual read 147 

as it moves through the decision tree. This means that the final species-level recall rate is 148 

equal to or worse than the individual species-level classifier’s recall rate. Another limitation 149 

of our approach was that not every path through the decision tree had a node at each 150 

taxonomic rank, because of the taxonomic composition of our 44 individually sequenced 151 

species. For example, the basidiomycete species Puccinia striiformis f. sp. tritici has only two 152 

classifiers, at the phylum level and the class level. The latter decides the class classification 153 

which collapses with the species classification because Puccinia striiformis f. sp. tritici is the 154 

only species in the class Pucciniomycetes in our sequencing dataset. In total we trained 22 155 

classifiers to distinguish our 44 fungal species.  156 

Comparison of methods for species classification of fungal pathogens 157 

We compared the machine learning decision tree to two other more standard methods for read 158 

classification to determine the effectiveness of this technique. We assessed the ability of the 159 

other methods at classifying reads across multiple taxonomic ranks because the tiered nature 160 

of the decision tree offers the potential to gleam taxonomic information from a read, even 161 

when it cannot be confidently classified at the species level. We used two additional 162 

classification techniques. We first applied mimimap2, a pairwise alignment-based method 163 

designed to be used with long-reads, against a gold-standard custom-curated database 164 

generated from the consensus sequences of all 44 species present in the decision tree (gold 165 

standard alignment). This is the most appropriate comparison for our machine learning 166 
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approach because the gold standard and machine learning approaches are directly derived 167 

from our sequencing dataset. To compare the machine learning approach with methods where 168 

the sequencing data was not used to create the classification database in some way, we 169 

applied minimap2 to a large publicly-available database of fungal ITS sequences from NCBI 170 

[31, 32] (NCBI alignment), and applied Kraken2, a k-mer-based algorithm designed for use 171 

with metagenomic DNA sequences, to the same NCBI database (Kraken2).  172 

To compare these methods, an in silico mock community was generated from our labelled 173 

sequencing data for which we know the ground truth classification for each sequencing read. 174 

This mock community contained 13 species from the original 44 species used to generate the 175 

original machine learning decision tree. Species were selected to focus on species for whom 176 

multiple machine learning classifiers would be required, in particular those species from 177 

populous genera. Although all species from this mock community were present in the gold 178 

standard database, the NCBI database was missing some genera and species. All of these 179 

missing or unclassified taxonomies were recorded as having a recall rate of zero percent, 180 

artificially decreasing the quality at lower taxonomic ranks. 181 

Our machine learning decision tree approach maintained a consistently high recall rate across 182 

all taxonomic ranks, with a mean species level recall rate of 93.0 ± 2.8%. Notably, it 183 

performed very well for closely related taxa, including the cryptic species Candida 184 

metapsilosis and Candida orthopsilosis and another closely related species Candida albicans. 185 

The two cryptic Candida species (C. metapsilosis and C. orthopsilosis) had a very high 186 

consensus sequence similarity, with a genetic distance of 2.74% (97.26% identity) in our 187 

fungal ribosomal DNA region target region representing the genetically least distinct species 188 

pair. Our machine learning approach did achieve species level recall rates of 90.1% and 189 

89.1% for C. metapsilosis and C. parapsilosis, respectively, even with per read error rates of 190 

about 10%. This highlights the strength of our approach.  191 
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The gold standard alignment approach also performed very well when compared to the 192 

machine learning approach across all taxonomic ranks (Figure 2). The majority of the species 193 

were classified with recall rates in excess of 95%. Yet this approach significantly 194 

underperformed when trying to differentiate taxa with low genetic distance such as those 195 

from the Candida genus. As with the machine learning approach, the three Candida species 196 

were classified with the lowest recall rate at the species level, with C. albicans, C. 197 

metapsilosis and C. parapsilosis being classified with recall rates of 35.8%, 34.0% and 57.5% 198 

respectively. These difficulties are also reflected in the overall mean species level recall rate 199 

of 76.6 ± 25.5%, which is much lower than our machine learning approach.  200 
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 201 

Next, we assessed our dataset with alignment and k-mer based analysis approaches when 202 

using the publicly available NCBI database. Overall, NCBI alignment with minimap2 203 

performed similarly well at higher taxonomic ranks. However, inconsistent or missing 204 

 

Figure 2: Machine learning based species identification performs especially well for closely related species 

Recall rates of the alignment-based minimap2 technique, k-mer-based Kraken2 method and the machine 
learning decision tree across different taxonomic ranks (A-F). The minimap2 technique, as applied to the 
gold standard database, was successful across most taxonomic ranks, but lower recall rates were recorded 
for closely related species at the species level (F). Both the minimap2 and Kraken2 methods were applied to 
the NCBI database, and while the minimap2 NCBI alignment was more accurate across most taxonomic 
ranks, both showed comparable recall at the species level. The machine learning decision tree approach 
provided the greatest classification power for closely related species, despite lower recall rates for some 
distantly-related species than the gold standard alignment method. 
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naming conventions at the family level and missing or alternate species labels, meant that the 205 

overall recall rate was low at the species level, although the vast majority of the samples were 206 

classified with a high recall rate at the genus level. This low species level recall rate is an 207 

artefact created from the choice of database, which is reflected in the similarly poor species 208 

level recall rates of the Kraken2 method. Overall, the k-mer based Kraken2 was less accurate 209 

than all other methods tested across all taxonomic ranks.  210 

Identifying target species from a complex sample of unknown composition using the 211 

machine learning decision tree 212 

A key feature of a species classification tool is its ability to identify a known target species 213 

from a complex sample of unknown composition. This is especially important when 214 

attempting to identify the presence of a target species, such as a specific pathogen, from a 215 

metagenomic sample.   216 

We generated two additional sequencing datasets of truly unknown composition to test the 217 

capability of our machine learning decision tree to identify a given target species. These 218 

datasets were generated with the same PCR and sequencing protocols as for the individual 44 219 

training species focusing on the fungal ribosomal DNA region. The first dataset was derived 220 

from fungi-infected wheat leaves (wheat dataset) [33] and the second was derived from 221 

bronchoalveolar wash in a clinical setting (clinical dataset) [34]. To each of these sequencing 222 

datasets of unknown composition, we spiked in silico a known number of reads with known 223 

labels as test case. We choose Aspergillus flavus, a crop pathogen, and Candida albicans, a 224 

human pathogen. We then tested recall and false positive rate of our machine learning 225 

classifiers using our in silico spiked reads, assuming that the original datasets of unknown 226 

composition did not contain any reads of either species. 227 
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We first plotted the propagated confidence score of the species level classification for all 228 

reads in each in silico spiked dataset to better understand the behaviour of our machine 229 

learning decision tree on samples containing reads of unknown origin (Supplemental Figure 230 

S1). This clearly shows that the propagated confidence scores for reads of unknown origin 231 

are far lower than reads of species the classifiers were trained on. We than assessed the recall 232 

and false positive rate of the in silico spiked datasets at different confidence scores thresholds 233 

(Figure 3). Increasing the thresholds reduced the recall and false positive rate in both cases. 234 

For A. flavus, the recall rate remained above 90% until the confidence threshold reached 0.9, 235 

and the false positive rate was consistently low across both the clinical and wheat datasets 236 

with reads of unknown origin. A confidence threshold of 0.85 resulted in a high recall rate of 237 

0.917, while maintaining a low false positive rate of just one percent. For C. albicans, not 238 

using a confidence threshold at all resulted in a recall rate of 87.7% and false positive rate of 239 

11.7%. However, by using a confidence threshold of 0.85, the recall rate was only decreased 240 

to 72.4% while reducing the false positive rate to only 1.7% in the clinical dataset. We 241 

recommend this confidence score threshold of 0.85 as suitable for retaining a high recall rate 242 

while achieving a low false positive rate, even for a member of a difficult-to-distinguish 243 

genus like Candida.  244 

 245 

 246 
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 248 

 

Figure 3: Varying the confidence score threshold affects the recall rate and false 
positive rate when identifying target species from complex samples of unknown 
composition.  

The plots show the recall rate (left axis) and false positive rate (right axis) at varying 
propagated confidence score thresholds for Aspergillus flavus (A) and Candida albicans 
(B) when spiked into clinical (orange) or wheat (green) datasets. Both plots are based on 
2000-read in silico spiked samples containing 1000 reads with known labels (A. flavus 
or C. albicans) and 1000 reads of unknown origin. For A. flavus, a confidence threshold 
of 0.85 maintains a recall rate of 91.7%, while reducing the false positive rate to 1% for 
both datasets. For C. albicans, the same confidence threshold of 0.85 has a recall rate of 
72.4% and reduces the false positive rate below 2% for both datasets.  
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DISCUSSION 249 

Nanopore sequencing offers portable, real-time sequencing using long-reads that can cover 250 

extended metabarcodes that are poised to include more sequence information suitable for 251 

species classification than more classic Illumina short-read sequencing [35]. Yet currently, 252 

metabarcode datasets in publicly available databases are limited in barcode length and often 253 

do not cover these extended regions. This can cause difficulties when using error-prone 254 

nanopore long-reads to classify reads at the species level using these databases [36]. Here, we 255 

implement a novel machine learning approach for species level classification. 256 

Our machine learning approach is comparable to – albeit slightly outperformed by - the gold 257 

standard alignment approach across all taxonomic ranks for most of the species tested. 258 

However, the gold standard alignment approach has a very poor performance at the species 259 

level for very closely related species within the same genus. This is indicative of the 260 

problems of alignment-based classification methods for fungi, especially given the relatively 261 

high error rate of the nanopore long-reads [37]. Hence, it is at the species level where the 262 

greatest potential for improvement using machine learning lays. For example, some closely 263 

related species were highly misclassified with a recall rate lower than 50% using the 264 

minimap2 alignment against the gold standard database. The same species were classified 265 

with recall rates equal to or greater than 90% using our machine learning decision tree. This 266 

is remarkable given the per read error rate of 10% for nanopore reads is much larger than the 267 

genetic distance of 2.74% that we observed between some closely related taxa.  268 

These initial comparisons are based on idealised databases directly derived from our 269 

sequencing dataset for which sequencing read length and database entry length are 270 

equivalent. Hence, we expected these analyses to outperform other approaches relying on 271 

public databases with short reference sequences. This was indeed the case as analysing our 272 
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error prone long-reads with alignment (NCBI alignment) and k-mer (Kraken2) based 273 

approaches using the NCBI ITS RefSeq Targeted Loci database performed relatively poorly 274 

especially at lower taxonomic ranks. Clearly, the discrepancy between read and database 275 

sequence lengths (~2900 bp vs ~580 bp) negatively impacted the alignment success. 276 

Interestingly, the Kraken2 approach underperformed compared to the alignment-based 277 

approach in our current study. This is consistent with previous work with long-read MinION 278 

nanopore data, where Kraken2 classification success never exceeded that for BLAST, another 279 

alignment-based classification program, when using the default 35 bp k-mers [38]. It is likely 280 

using a smaller k-mer length would improve classification accuracy for long-read nanopore 281 

sequencing due to the high read error, which impacts perfect matches for 35 bp k-mers. 282 

Another common issue when using public databases for species identification was that many 283 

species were not included in the NCBI database or present with different taxonomic labels, 284 

which resulted in some family and species level recall rates being zero. Changing 285 

nomenclature over time can be an issue when using these online databases when trying to 286 

identify a species or detect the presence of a known, named species, as the nomenclature is 287 

not always updated, leading to outdated or uncorrected taxonomic information persisting in 288 

databases [39, 40].  289 

We also tested if our machine learning approach can accurately identify specific target 290 

species in complex samples of unknown composition without having classifiers for all fungal 291 

species present in the sample. We were able to show that by only training a limited set of 292 

classifiers we can detect target species with relatively low false positive and high recall rates 293 

in in silico spiked datasets with known ground truth of the spiked reads only. By adjusting the 294 

confidence score one can decide how much false positive and false negatives one is willing to 295 

tolerate. We found a threshold of 0.85 on the propagated confidence score at the species level 296 

classification was sufficient to reduce the false positive rate while maintaining high recall 297 
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rates. To ensure a target species is identifiable, the species-level classifier in the machine 298 

learning decision tree must include other species closely related to the target species. If no 299 

closely related species is present, the likelihood of false positive hits increase as closely 300 

related taxa may be identified as false positives with high confidence scores even in the 301 

absence of the target species. As such, the more fungal species within a genus the machine 302 

learning decision tree classifiers are trained on, the higher the resolution of species-level 303 

identification. This is especially important when a genus contains both pathogenic and non-304 

pathogenic species. In this way, our approach might be particularly applicable to targeted 305 

diagnostic tasks in specific settings, such as detecting fungal pathogens in agriculture [41] 306 

and medicine [42], or screening imports for specific invasive pathogen species in aid of 307 

border biosecurity [43, 44]. Here, the species used to train the classifiers are flexible and can 308 

be changed to suit the user’s need. For example, additional species from a specific taxon 309 

could be added for increased resolution within that taxa. Furthermore, the principles behind 310 

the application of machine learning to the fungal ribosomal DNA region can be expanded to 311 

other barcoding regions for other organisms, such as cytochrome c oxidase I [45] or 312 

elongation factor 1 alpha [46, 47]. Recent work on improving barcoding cost-effectiveness 313 

and scalability with the MinION nanopore sequencer offers promise for expanding to more 314 

species using barcoding across multiple regions to improve the species-level resolution and 315 

overall classification accuracy [48].  316 

 317 

CONCLUSIONS 318 

Online databases for metabarcoding often contain only short sequences, and hence are 319 

traditionally useful for identifying taxa using high accuracy short-reads. As such, identifying 320 

species from error prone long-read sequencing data, such as that produced by ONT nanopore 321 
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sequencing, can be inaccurate when using these databases. We provide a tangible solution for 322 

species identification by applying a novel neural network-based machine learning approach 323 

with a proof-of-concept study using extended fungal ribosomal DNA barcodes on fungi. Our 324 

machine learning approach can identify target species with high accuracy from complex 325 

samples of unknown origin making it applicable to pathogen identification in biosecurity, 326 

agriculture, and clinical settings. Our approach performs especially well on closely related 327 

species where it provides an advantage in accuracy over current alignment-based or k-mer-328 

based classification methods.  329 

 330 

MATERIALS AND METHODS 331 

Fungal pathogen sample collection, DNA extraction and ITS amplification 332 

We collected different fungal tissue differently for DNA extractions. The tissue collection 333 

processes for each fungal species are summarized in Supplemental Table T1. 334 

We used three different DNA extraction methods for all the species in the mock 335 

communities. The methods for each species are listed in the Supplemental Table T1. 336 

Collectively, we used two commercially available kits: The Qiagen DNeasy Plant Mini Kit 337 

(cat. no. 69106) for most of the plant pathogenic fungi, and the Quick-DNA Fungal/Bacterial 338 

Miniprep Kit (cat. no. D6005, Zymo Research) for some of the human pathogenic fungi 339 

following the manufacturer’s protocol. We used a phenol chloroform-based DNA extraction 340 

method for some other human pathogenic fungi modified from Ferrer et al [49]. Briefly, 100 341 

mg of leaf tissue was homogenized, and cells were lysed using cetyl trimethylammonium 342 

bromide (CTAB, Sigma-Aldrich) buffer (added RNAse T1, Thermo Fisher, 1,000 units per 343 

1750 μl), followed by a phenol/chloroform/isoamyl alcohol (25:24:1, Sigma-Aldrich) 344 

extraction to remove protein and lipids. The DNA was precipitated with 700 μl of 345 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2021. ; https://doi.org/10.1101/2021.05.01.442223doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442223
http://creativecommons.org/licenses/by/4.0/


19 

 

isopropanol, washed with 1 ml of 70% ethanol, dried for 5 min at room temperature, and 346 

resuspended in 50 μl of TE buffer containing 10 mM Tris and 1 mM EDTA at pH 8. For the 347 

human clinical sample and the field infected wheat sample, we directly used the DNA 348 

described in the original article [33, 34] for PCR amplification. Quality and average size of 349 

genomic DNA was visualized by gel electrophoresis with a 1% agarose gel for 1 h at 100 350 

volts. DNA was quantified by NanoDrop and Qubit (Life Technologies) according to the 351 

manufacturer’s protocol. 352 

We used the NS3 (GCAAGTCTGGTGCCAGCAGCC) and LR6 353 

(CGCCAGTTCTGCTTACC) primers [12] to generate the fungal ribosomal DNA fragment 354 

of all samples, and the EF1-983F (GCYCCYGGHCAYCGTGAYTTYAT) and EF1-2218R 355 

(ATGACACCRACRGCRACRGTYTG) primers [12] were used to sequence a secondary 356 

region, the fungal elongation factor 1 alpha region, although this region was not used for 357 

assessing the machine learning method. We used the New England Biolabs Q5 High-Fidelity 358 

DNA polymerase (NEB #M0515) for the PCR reaction following the manufacturer’s 359 

protocol. Around 10 – 30 nanograms of DNA were used in each PCR reaction. After PCR, 360 

DNA was purified with one volume of Agencourt AMPure XP beads (cat. No. A63881, 361 

Beckman Coulter) according to the manufacturer’s protocol and stored at 4°C. 362 

Library preparation and DNA sequencing using the MinION 363 

DNA sequencing libraries were prepared using Ligation Sequencing 1D SQK-LSK108 and 364 

Native Barcoding Expansion (PCR-free) EXP-NBD103 Kits from ONT, as adapted by Hu 365 

and Schwessinger [50] which was adapted from the manufacturer’s instructions with the 366 

omission of DNA fragmentation and DNA repair. DNA was first cleaned up using a 1x 367 

volume of Agencourt AMPure XP beads (cat. No. A63881, Beckman Coulter), incubated at 368 

room temperature with gentle mixing for 5 mins, washed twice with 200 μl fresh 70% 369 
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ethanol, the pellet was allowed to dry for 2 mins and the DNA was eluted in 51 μl nuclease 370 

free water and quantified using NanoDrop® (Thermo Fisher Scientific, USA) and Promega 371 

Quantus™ Fluorometer (cat. No. E6150, Promega, USA) follow the manufacturer’s 372 

instructions. All DNA samples showed a with absorbance ratio A260/A280 > 1.8 and 373 

A260/A230 > 2.0 from the NanoDrop®. DNA was end-repaired using NEBNext Ultra II End-374 

Repair/ dA-tailing Module (cat. No. E7546, New England Biolabs (NEB), USA) by adding 7 375 

μl Ultra II End-Prep buffer, 3 μl Ultra II End-Prep enzyme mix. The mixture was incubated at 376 

20°C for 10 mins and 65°C for 10 mins. A 1x volume (60 μl) Agencourt AMPure XP clean-377 

up was performed, and the DNA was eluted in 31 μl nuclease free water. Barcoding reaction 378 

was performed by adding 2 μl of each native barcode and 20 μl NEB Blunt/TA Master Mix 379 

(cat. No. M0367, New England Biolabs (NEB), USA) into 18 μl DNA, mixing gently and 380 

incubating at room temperature for 10 mins. A 1x volume (40 μl) Agencourt AMPure XP 381 

clean-up was then performed, and the DNA was eluted in 15 μl nuclease free water. Ligation 382 

was then performed by adding 20 μl Barcode Adapter Mix (EXP-NBD103 Native Barcoding 383 

Expansion Kit, ONT, UK), 20 μl NEBNext Quick Ligation Reaction Buffer, and Quick T4 384 

DNA Ligase (cat. No. E6056, New England Biolabs (NEB), USA) to the 50 μl pooled 385 

equimolar barcoded DNA, mixing gently and incubating at room temperature for 10 mins. 386 

The adapter-ligated DNA was cleaned-up by adding a 0.4x volume (40 μl) of Agencourt 387 

AMPure XP beads, incubating for 5 mins at room temperature and resuspending the pellet 388 

twice in 140 μl ABB provided in the SQK-LSK108 kit. The purified-ligated DNA was 389 

resuspended by adding 15 μl ELB provided in the SQK-LSK108 (ONT, UK) kit and 390 

resuspending the beads. The beads were pelleted again, and the supernatant transferred to a 391 

new 0.5 ml DNA LoBind tube (cat. No. 0030122348, Eppendorf, Germany). 392 

In total, four independent sequencing reactions were performed on a MinION flow cell (R9.4, 393 

ONT) connected to a MK1B device (ONT) operated by the MinKNOW software (version 394 
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2.0.2): 11 species for each flowcell. Each flow cell was primed with 1 ml of priming buffer 395 

comprising 480 μl Running Buffer Fuel Mix (RBF, ONT) and 520 μl nuclease free water. 12 396 

μl of amplicon library was added to a loading mix including 35 μl RBF, 25.5 μl Library 397 

Loading beads (ONT library loading bead kit EXP-LLB001, batch number EB01.10.0012) 398 

and 2.5 μl water with a final volume of 75 μl and then added to the flow cell via the SpotON 399 

sample port. The “NC_48Hr_sequencing_FLOMIN106_SQK-LSK108” protocol was 400 

executed through MinKNOW after loading the library and run for 48 h. Raw fast5 files were 401 

processed using Albacore 2.3.1 software (ONT) for basecalling, barcode de-multiplexing and 402 

quality filtering (Phred quality (Q) score of > 7) as per the manufacturer's recommendations.  403 

Raw unfiltered fastq files were uploaded into NCBI Short Reads Archive under BioProject 404 

PRJNA725648.  405 

Processing and manipulation of fungal pathogen reads 406 

All reads from one species were held in a fastq file with reads of varying quality, that 407 

included sequences from both the fungal ribosomal DNA and the elongation factor 1 alpha 408 

regions of the fungal genome. Data was thus required to be processed so downstream use 409 

dealt only with fungal ribosomal DNA reads of the expected size range. A two-step data 410 

filtration method was applied for this purpose.  411 

To select reads of a similar general structure to the ITS region, reads were first mapped to an 412 

in-house database of fungal ribosomal DNA regions. This homology-based filter assumes the 413 

structure of the fungal ribosomal DNA region will be similar between species due to shared 414 

ancestry, which has been repeatedly shown to be true [51]. The in-house database used here 415 

was curated from 28 ITS sequences from the NCBI Nucleotide database, from a range of 416 

genera across the fungal kingdom. This process mapped reads using minimap2 (version 2.17), 417 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2021. ; https://doi.org/10.1101/2021.05.01.442223doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442223
http://creativecommons.org/licenses/by/4.0/


22 

 

using the map-ont flag. Reads that failed to map to any of the sequences in the in-house 418 

database were discarded. 419 

Reads that successfully mapped were then filtered for read length. The expected read length 420 

for the fungal ribosomal DNA region varied by species, from 2600-3200 bp on average. As 421 

the mean length and spread of successfully filtered reads differed between samples, a 90% 422 

confidence interval cut-off around the mean read length was applied. This interval was 423 

sufficient to exclude those remaining short or very long reads, that may have resulted from 424 

incomplete or partial homology filtering, or errors in the sequencing or basecalling processes.  425 

Augmenting read datasets 426 

To ensure all samples had at least 15,000 reads for use in the design of the machine learning 427 

classifiers downstream, some reads were simulated based on the consensus sequence and 428 

error profile of the existing reads where the total number of filtered reads did not exceed the 429 

required number of reads. NanoSim (v2.0.0) [30] was used for one species, Galactomyces 430 

geotrichum, to generate an additional 8,782 simulated cDNA reads. These reads were 431 

generated using an identical error profile and length spread to the pre-existing non-simulated 432 

fungal pathogen reads.  433 

Generating consensus sequences for each species 434 

The consensus sequence, an aggregate sequence formed from the comparison of multiple 435 

sequences that represents the ‘true’ sequence, was generated using 200 randomly subsampled 436 

filtered reads for each sample. Primer sequences were removed using Mothur v1.44.11 [52], 437 

an alignment file was generated using muscle v3.8.1551 [53] and the consensus sequence was 438 

generated from this file using EMBOSS cons v6.6.0.0 [54].  439 

Determining the relationships between samples 440 
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Prior to using the processed read data to train machine learning classifiers, the taxonomic 441 

relationships between the samples were needed to inform the samples present in each 442 

machine learning classifier at each taxonomic rank. Using the taxonomic information 443 

available for each sample in MycoBank and the results of a BLAST search with the generated 444 

consensus sequences, a cladogram was designed to show the relationships between samples 445 

at each of the major taxonomic ranks. A machine learning classifier would be required at 446 

each point where two or more samples split on the cladogram (a node) to distinguish between 447 

samples for each read.  448 

Creation of asset of neural network classifiers to distinguish between samples 449 

A convolutional neural network (CNN) was chosen as the most appropriate type of machine 450 

learning classifier due to its ability to use the spatial relationships between data features in the 451 

reads, such as the distance between ITS and other variable groups, as a factor in assigning a 452 

label to a read. CNNs are capable of learning from both minor variation and higher-order 453 

features, which is of particular importance given the high read error of nanopore reads.  454 

CNNs work best when there is a balanced number of items in each classification class. As 455 

such, for each multiclass node on the cladogram, an equal number of reads were subsampled 456 

from each group of samples that would be represented in the node. So, for machine learning 457 

classifiers distinguishing between species, each species present contributes an equal number 458 

of reads, while at the kingdom level, each phylum contributes an equal number of reads, with 459 

said reads being distributed equally amongst all species belonging to that phylum. The 460 

number of reads subsampled was based on the largest number of reads available for each 461 

sample, with a maximum of 35,000 reads due to computational processing limitations. For 462 

each read subsampled, the nucleotide sequence was converted to a numeric sequence, where 463 

A, C, G, and T became 0, 1, 2, and 3, respectively. As not all sequences were of equal length, 464 
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but an equal length was required to avoid sequence length being a distinguishing factor in the 465 

classifier, all sequences were padded out to a length of 5,000 bp. The padding used a value of 466 

4 to avoid the padding data from affecting the identification of key features for classification.  467 

Each read was assigned a label representing the output class it would belong to in the one-hot 468 

format. Labelled reads were then separated into a training set and a test set. The training set 469 

contained 85% of the reads, and was used to train the machine learning classifiers, while the 470 

test set contained the remaining 15% of labelled reads and was used to test the efficacy of 471 

said classifiers on similar data that the classifier had not previously encountered. The neural 472 

network was created using the Sequential classifier of the Keras framework for neural 473 

networks [55], containing five layers of neurons.  474 

Specific details for the design of the machine learning classifiers and the required software 475 

packages for machine learning and other analyses can be found at 476 

https://github.com/teenjes/fungal_ML. 477 

Evaluation of the machine learning classifiers 478 

The test set was used to assess the accuracy of the various machine learning classifiers. As 479 

the test set data was labelled, the expected outcome for each read was known, and could be 480 

compared to the output of the machine learning classifier. The accuracy, or classification rate, 481 

of these classifiers was the proportion of reads in the test set for whom the prediction of the 482 

machine learning classifier, as determined by the highest confidence score, matched the 483 

expected outcome. This is equivalent to the recall rate [1], where matches to the expected 484 

outcome were true positives and matches outside this outcome were false negatives. 485 
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Chaining machine learning classifiers into a decision tree 487 
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When seeking to identify members of a specific taxon in a community, where the members 488 

are not immediately obvious from the species name, it is useful to have samples classified at 489 

each taxonomic rank. A singular classifier would require excessive computational power to 490 

do this. As such, we chained the machine learning classifiers together into a decision tree 491 

based on the cladogram of the species present in our sample. The most confident outcome of 492 

the machine learning classifier at one taxonomic rank would be used to decide the path along 493 

the decision tree. This path could either lead into another machine learning classifier, if the 494 

path diverged again, or lead all the way down to the species level with the same confidence.  495 

Alternative methods for fungal pathogen read classification 496 

For comparison to the machine learning classifier, two different commonly used methods for 497 

fungal pathogen metabarcode classification: an alignment-based method in minimap2; and a 498 

k-mer-based method in Kraken2. To compare these methods, we generated an in silico mock 499 

community from our labelled sequencing data for which we know the ground truth 500 

classification for each sequencing read. This mock community contained 13 species from the 501 

original 44 species used to generate the original machine learning decision tree, randomly 502 

subsampling 1000 reads from those not previously used for training the machine learning 503 

classifiers. Species were selected to focus on species for whom multiple machine learning 504 

classifiers would be required, in particular species with populous genera.  505 

For this minimap2-based alignment method, two separate databases were used for 506 

identification. Firstly, a gold standard database was created in-house to represent the best-507 

case scenario for identification, when all the species present in a sample are also present in 508 

the database. This contained the labelled consensus sequences of all 44 species present in the 509 

machine learning decision tree, using the consensus sequences already generated from 200 510 

randomly selected filtered reads. The second was a publicly available database of fungal ITS 511 
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sequences from NCBI 512 

(ftp://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/Fungi/fungi.ITS.fna.gz, downloaded Feb 513 

2021). Minimap2 was applied to each of these databases using the map-ont flag. As the 514 

alignment tool can return multiple hits if alignment is good enough, only the best hit was 515 

taken for each read. 516 

We used Kraken2 (v2.0.8) to assign the NCBI taxonomic ID for the same 1000 reads of each 517 

species as used in the machine learning decision tree. We generated a Kraken2 NCBI ITS 518 

database with the same fasta file downloaded from above. We used the Kraken2-build 519 

command with the --add-to-library and --build flag. We used the Python pandas module to 520 

modify the Kraken2 output file and the numpy module to calculate the accuracy. 521 

Identifying a key species from a complex sample using machine learning 522 

To assess the suitability of machine learning for this problem, we utilised the two complex 523 

datasets sampled from fungi-infected sources of unknown compositions: the field infected 524 

wheat dataset [33] and the human clinical dataset [34], to create in silico mock communities. 525 

To create these initial mock communities, we used 950 reads randomly subsampled from 526 

these datasets, and spiked in 50 reads from one of two target species with known ground 527 

truth: Aspergillus flavus, a crop pathogen; and Candida albicans, an opportunistic human 528 

pathogen and common member of the human microbiome. This created a total of four 1000-529 

read synthetic communities, two of which paired a target species and dataset from the same 530 

source (A. flavus with the wheat dataset and C. albicans with the clinical dataset) and two 531 

communities where the target species would not be expected to be present in the complex 532 

dataset unless it had been spiked in. We used the propagated confidence scores for assessing 533 

the recall rate for these spiked datasets, where the confidence score at each taxonomic rank 534 

was multiplied to give a final overall confidence at the species level. 535 
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We then created an additional four in silico mock communities to assess the change in recall 536 

rate and false positive rate [2] as a confidence threshold was applied.  537 
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Each mock community was created by randomly subsampling 1000 reads from one of A. 539 

flavus or C. albicans samples with known ground truth and adding an additional 1000 540 

randomly subsampled reads from one of the wheat or clinical datasets containing reads of 541 

unknown origin. In total, this resulted in four 2000-read in silico mock communities. We 542 

assumed the datasets with reads of unknown origin did not contain any reads for the target 543 

species tested, placing an upper bound on the false positive rate and a lower bound on the true 544 

positive rate. Any positive identifications of the target species A. flavus or C. albicans with a 545 

propagated confidence score below the confidence threshold were instead classified as 546 

negative identifications.  547 
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Supplementary Figure S1: The propagated confidence score is markedly different between spiked reads with know
labels and reads of unknown origin. 

The plots show the confidence score of spiked labelled reads (yellow) and reads of unknown origin (purple) at the 
species level when analysed with our machine learning approach. Labelled reads of species for which we trained 
classifiers had a markedly better confidence score at the species level, especially when classified into the correct 
species. Reads of unknown origin had relatively low confidence scores independent of their species level 
classification. Our 1000-read in silico spike in samples are comprised of 950 reads from a complex sample with 
reads of unknown origin and 50 in silico spiked reads in samples with known labels from Aspergillus flavus (A and
C) or Candida albicans (B and D). The complex samples of unknown composition are derived from infected whea
leaves (wheat dataset, A and B) or from a bronchoalveolar wash taken in a clinical setting (clinical dataset, C and D
The number of spiked or unspiked reads classified as either the spiked species or any other species is shown. 
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Supplementary Table T1 

Genus label Species label Strain/Isolate Sample Collection 
DNA Extraction 

Method 

# Raw 

Reads 

# Homology 

Filtered 

# Length 

Filtered 

Aspergillus flavus WM03.230 Tissue from SDA plate 
a 

Phenol chloroform 125014 54061 51340 

Aspergillus niger WM06.98 Tissue from SDA plate
 a

 Zymo kit 171615 65065 59406 

Aspergillus sp. CCL015 Tissue from PDA plate Qiagen kit 249468 42899 39988 

Blastobotrys proliferans WM07.12 Tissue from SDA plate
 a

 Phenol chloroform 133835 39631 37315 

Candida albicans WM229 Tissue from SDA plate
 a

 Zymo kit 91031 26114 25597 

Candida metapsilosis WM01.56 Tissue from SDA plate
 a

 Zymo kit 127633 40257 37426 

Candida orthopsilosis WM03.414 Tissue from SDA plate
 a

 Zymo kit 104214 32490 29765 

Candida parapsilosis WM02.200 Tissue from SDA plate
 a

 Zymo kit 135720 45958 42338 

Candida sp. WM28 Tissue from SDA plate
 a

 Zymo kit 109905 38085 35120 

Cladophialophora sp. CLM599 Tissue from PDA plate 
b 

Qiagen kit 115477 28063 25917 

Clavispora lusitaniae WM18 Tissue from SDA plate
 a

 Zymo kit 352768 141856 131936 

Cortinarius globuliformis CM4 Fruiting tissue Qiagen kit 347423 128993 117090 

Cryptococcus zero CCL040 Tissue from PDA plate 
b
 Qiagen kit 167818 42373 39235 

Debaryomyces sp. WM03.458 Tissue from SDA plate
 a

 Phenol chloroform 174974 35837 33499 

Diaporthe foeniculina CCL060 Tissue from PDA plate 
b
 Qiagen kit 206161 42329 39836 

Diaporthe sp.   Tissue from PDA plate 
b
 Qiagen kit 198500 29833 27941 

Discula quercina CCL067 Tissue from PDA plate 
b
 Qiagen kit 172601 32847 30504 

Discula quercina CCL068 Tissue from PDA plate 
b
 Qiagen kit 188353 33438 31996 

Dothiorella vidmadera   Tissue from PDA plate 
b
 Qiagen kit 204777 47318 44257 

Entoleuca sp. CCL052 Tissue from PDA plate 
b
 Qiagen kit 155158 33941 31356 

Fusarium oxysporum Race3 Tissue from PDA plate 
b
 Qiagen kit 382450 131411 123742 

Galactomyces geotrichum WM17.23 Tissue from SDA plate
 a

 Phenol chloroform 152933 8485 7805 

Kluyveromyces marxianus WM13 Tissue from SDA plate
 a

 Zymo kit 115282 31150 28382 

Kluyveromyces sp. WM04.172 Tissue from SDA plate
 a

 Zymo kit 370154 165113 152736 

Kodamaea ohmeri WM10.200 Tissue from SDA plate
 a

 Phenol chloroform 111257 38931 36478 

Meyerozyma guilliermondii WM02.361 Tissue from SDA plate
 a

 Phenol chloroform 211853 20333 18944 

Penicillium chrysogenum WM06.341 Tissue from SDA plate
 a

 Zymo kit 192173 78105 72307 

Pichia kudriavzevii WM03.103 Tissue from SDA plate
 a

 Zymo kit 122601 35604 33244 

Pichia membranifaciens WM324 Tissue from SDA plate
 a

 Zymo kit 104844 29540 26937 

Puccinia striiformis-tritici 104E Fungal spores Phenol chloroform 272465 122080 113337 

Pyrenophora tritici-repentis Ptr8814 Tissue from PDA plate 
b
 Qiagen kit 260896 97584 90015 

Quambalaria cyanescens CCL055 Tissue from PDA plate 
b
 Qiagen kit 205404 49780 46171 

Rhodotorula mucilaginosa WM09.204 Tissue from SDA plate
 a

 Zymo kit 318405 127801 117801 

Saccharomyces cerevisiae YH2Gold Tissue from YPD media 
c 

Qiagen kit 96837 33025 30260 

Scedosporium boydii WM09.122 Tissue from SDA plate
 a

 Zymo kit 331947 102481 93723 

Tapesia yallundae CCL029 Tissue from PDB Qiagen kit 223186 59651 55589 

Tapesia yallundae CCL031 Tissue from PDB Qiagen kit 213143 52944 49481 

Tuber brumale   Fruiting tissue Qiagen kit 275035 80614 74232 

Wickerhamomyces anomalus WM03.505 Tissue from SDA plate
 a

 Phenol chloroform 193187 45720 42589 

Yamadazyma mexicana WM805 Tissue from SDA plate
 a

 Phenol chloroform 179240 45093 42369 

Yamadazyma scolyti WM06.835 Tissue from SDA plate
 a

 Phenol chloroform 136650 37159 34841 

Yarrowia lipolytica WM599 Tissue from SDA plate
 a

 Phenol chloroform 141238 35950 33873 

Zygoascus hellenicus WM02.460 Tissue from SDA plate
 a

 Phenol chloroform 229073 36666 34002 

Zymoseptoria tritici WA332 Tissue from PDA plate 
b
 Qiagen kit 413127 143363 133089 

Sample labels, collection methods, DNA extraction methods and read counts before and after two-step data filtering. a)  
Sabourand dextrose agar (SDA); b) Potato dextrose agar (PDA); c) Yeast extract peptone dextrose (YPD) 
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