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Abstract 
Biophysical properties of the cellular microenvironment, including stiffness and geometry, influence cell fate. 

Recent findings have implicated geometric confinement as an important regulator of cell fate determination. Our 

understanding of how mechanical signals direct cell fate is based primarily on two-dimensional (2D) studies. To 

investigate the role of confinement on stem cell fate in three-dimensional (3D) culture, we fabricated a single cell 

microwell culture platform and used it to investigate how niche volume and stiffness affect human mesenchymal 

stem cell (hMSC) fate. The viability and proliferation of hMSCs in confined 3D microniches were compared with 

the fate of unconfined cells in 2D culture. Physical confinement biased hMSC fate, and this influence was 

modulated by the niche volume and stiffness. The rate of cell death increased, and proliferation markedly decreased 

upon 3D confinement. We correlated the observed differences in hMSC fate to YES-associated protein (YAP) 

localization. In 3D microniches, hMSCs displayed primarily cytoplasmic YAP localization, indicating reduced 

mechanical activation upon confinement. These results demonstrate that 3D geometric confinement can be an 

important regulator of cell fate, and that confinement sensing is linked to canonical mechanotransduction 

pathways. 

 

Keywords:  

Human Mesenchymal Stem Cells; 3D Niche; Single Cell Culture; Confinement; Proliferation 

Abbreviations:  

2D – two-dimensional; 3D – three-dimensional; DAPI – 4′, 6-diamidino-2-phenylindole; E – Young’s modulus; 

EdU – 5-ethynyl-2′-deoxyuridine; ECM – extracellular matrix; EthD-1 – ethidium homodimer; DTT – 

dithiothreitol; G′ – shear storage modulus; G′′ – shear loss modulus; hMSCs – human mesenchymal stem cells; 

PDMS – polydimethylsiloxane; PEG – poly(ethylene glycol); YAP – YES-associated protein. 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.05.02.442094doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442094
http://creativecommons.org/licenses/by-nc/4.0/


 2 

Introduction 

Cell fate is orchestrated both by the internal machinery of the cell and through reciprocal interactions with the 

surrounding extracellular matrix (ECM).1,2 Extracellular regulators of cell function include biochemical cues, such 

as growth factors and cytokines, and biophysical cues, such as niche elasticity, geometry, and topography.3–5 The 

mechanisms by which biophysical signals influence cell function have been elucidated primarily using 2D culture, 

including standard tissue culture polystyrene and micropatterned substrates. Seminal findings in 2D revealed 

several mechanisms by which biophysical cues direct cell fate.6–11 For example, matrix elasticity induced both 

short-term and latent effects on stem cell function and differentiation.5,12–14 Substrate topography controlled cell 

morphology, orientation, and proliferation.15,16 Geometric confinement in 2D directed cell fate; decreased cell 

spread area led to decreased proliferation and increased cell death.17,18 In total, these observations indicate a robust 

relationship between the physical properties of the microenvironment, cell morphology, and cell function. 

While 2D culture has been particularly useful for studying biological processes, it fails to recapitulate critical 

characteristics of the native 3D cell niche and limits our ability to understand how biophysical properties, such as 

geometric confinement and stiffness, regulate cell fate. Hydrogels have been engineered specifically as ECM 

mimics to investigate the influence of matrix properties on cell function in 3D.19–21 Despite the broad utility of 3D 

platforms, standard encapsulation in bulk materials offers limited control over the geometry and volume of the 

individual cell niches. To address this limitation, microfabricated platforms have been developed that control 

previously inaccessible aspects of the 3D cellular environment, including niche geometry and volume.22,23 

Microfabricated hydrogel platforms demonstrated that cell morphology and volume in 3D influenced cell shape, 

contractility, and transcription factor activity.24,25 Many of these micropatterned platforms employed 

geometrically-defined wells that constrained cells to attain morphologies that deviated from unconfined 2D cell 

shape. The wells were often similar to the average cell volume and smaller than the average cell spread length, 

confining the cells relative to standard 2D culture. Recent studies have demonstrated that 3D confinement can 

impact cell behavior constraining common cellular processes, such as spreading, migration, and proliferation, 

which require changes in cell volume, shape, or movement.26 Furthermore, cellular responses to confinement have 

been suggested to vary with matrix stiffness.27,28 

A careful investigation of how 3D geometric confinement and stiffness of the cell niche couple to influence cell 

fate requires simultaneous control over the mechanical and geometric parameters of the cell microenvironment. 

Therefore, we developed a tunable and micropatterned culture platform to study how single cell fate was governed 

by niche properties in 3D. We encapsulated single hMSCs in individual niches with varied volume and stiffness 

and quantified how these properties affected cell viability and proliferation. As an unconfined control, hMSCs 

were seeded on 2D hydrogels with equivalent mechanical properties. In confined 3D niches, the viability of the 

hMSCs was reduced at low stiffness, most notably in low volume niches. The proliferation rate of hMSCs in 

confined 3D environments decreased significantly relative to 2D. To investigate if these effects were related to 

known mechanotransduction pathways, we assessed YAP localization in all conditions. Nuclear localization of 

YAP in cells in 3D niches was low correlated with cell proliferation. This suggested that the influence of 3D 

confinement on stem cell fate is coordinated through canonical mechanosensitive signaling pathways. 
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Results 

Single cell microniche arrays to investigate physical regulation of cell fate in 3D 
To investigate the role of geometric confinement and niche elasticity on single stem cell fate in 3D, we fabricated 

arrays of microniches with controlled geometry, volume, and stiffness (Figure 1a,b). We used poly(ethylene 

glycol) (PEG) hydrogels as the base material for the platform (Figure 1c). To form the gel, 10 kDa eight-arm PEG 

macromers functionalized with norbornene (PEG-NB) were reacted with a dithiol (dithiothreitol; DTT) via a 

photoinitiated thiol–ene reaction.29 To enable cell adhesion, the inert PEG hydrogel was functionalized with thiol-

containing peptides. Specifically, we included the ECM-derived adhesion peptide CRGDS, which engages 

integrins (e.g., avb1, avb3 and avb5) and enables cell adhesion and spreading.30 To create fully confined 3D 

single cell environments, we sealed the niches with a second, non-patterned hydrogel layer using an enzymatic 

ligation via Sortase A, which covalently cross-linked substrate peptides present in each of the two hydrogel layers 

(Figure 1d, Supplementary Movie 1). 

 

Figure 1. Design of the single cell culture platform with arrays of niches of defined volume and stiffness. a) The single 
cell platform was designed to fit on a standard glass slide. The hydrogel was patterned with structured arrays of geometrically 
defined micron-sized niches that can host single cells. We used this platform to investigate the role of geometric confinement 
and niche properties on hMSC fate, cell viability, and proliferation in 3D. b) We studied the specific effects of 3D niche volume 
and stiffness on hMSC viability, proliferation, and YAP localization (cell fate). We also compared these confined cells to 
unconfined hMSCs on 2D hydrogels of the same stiffness. c) The hydrogels were formed via thiol–ene photopolymerization 
between norbornene-functionalized star PEG macromers (PEG-NB) and a dithiol. The hydrogels were functionalized with 
CRGDS to facilitate cell adhesion. d) To create full 3D confinement of the encapsulated cells, the single cell niches were sealed 
using enzymatic ligation. The bacterial enzyme Sortase A cross-linked two substrate peptides present in the array base and a 
non-patterned lid. First, the sulfhydryl group of Sortase attacks the T-G amide linkage in Ac-GCRE-DDD-LPMTGG to form 
a LPMT-Sortase thioester intermediate, which is then attacked by the N-terminus of GGGG-LERCL to form a covalent amide 
cross-link between the two gel stabs, with the structure Ac-GC(PEG)RE-DDD-LPMT-GGGG-LERC(PEG)L. In this manner, 
the hydrogel lid was linked to the micropatterned array enclosing the niches. 

 

We fabricated the microniche arrays using traditional microfabrication and soft lithography techniques (Figure 

2a). The micropattern was designed in AutoCAD and generated on a silicon wafer via photolithography using SU-

8 photoresist (Figure 2b). The silicon wafer was used as a master for the fabrication of intermediate 
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polydimethylsiloxane (PDMS) molds. Teflon molds were cast from the intermediate PDMS patterns to avoid 

hydrogel patterning directly on PDMS. In our experience, the radical mediated thiol–ene polymerization was 

inhibited at the interface of PDMS, likely due to oxygen inhibition of primary radicals, limiting pattern transfer 

fidelity (Figure S1). We then cast microniche arrays in the PEG-based hydrogels using the Teflon molds and 

confirmed transfer by visualization of Rhodamine-labelled hydrogels via transmitted light and confocal 

microscopy (Figure 2c,d). The elastic modulus (and stiffness) of the base hydrogel was controlled by the polymer 
concentration in the precursor solution. Shear rheometry quantified the mechanical properties of the hydrogels in 

situ during formation and at equilibrium swelling. We selected hydrogel formulations with three distinct moduli 

at equilibrium swelling, E = 6, 16, or 30 kPa, referred to as soft, medium, and stiff gels (Figure 2e). These moduli 

were selected based on the stiffness range of physiologic hMSC microenvironments and prior in vitro 

investigations of hMSC mechanobiology.31 Previously, low moduli PEG-based substrates (E < 10 kPa) 

mechanically deactivated hMSCs (lower proliferation rates and cytoplasmic YAP localization) while stiff PEG-

based substrates (E > 10 kPa) activated hMSCs (increased proliferation rates and nuclear YAP localization).32 

 

Figure 2. Fabrication of single cell microniche arrays and encapsulation of single hMSCs. a) The microfabrication process 
of the microniche arrays: i. Fabrication of the silicon master was performed via standard soft photolithography techniques. ii., 
iii. Fabrication of the intermediate PDMS mold from the silicon master was followed by the casting of the Teflon mold. iv. The 
Teflon mold was used to generate the patterned hydrogel. b) Images showing fragments of the AutoCad masks for V1 (20 x 50 
x 35 µm3), V2 (35 x 50 x 35 µm3), and V3 (50 x 50 x 50 µm3) niches. The microwells were structured in 10x10 arrays to 
facilitate position identification and rapid image analysis. c) Transmitted light image of the resulting hydrogel pattern showing 
x–y shape fidelity between the original pattern and the generated microarray. Scale bar, 20 µm. d) Confocal image of a labelled 
hydrogel demonstrating shape fidelity in the z-dimension. The hydrogel was visualized through the incorporation of a thiolated 
Rhodamine dye that was covalently attached to the PEG backbone. Scale bar, 50 µm. e) The Young’s modulus of the hydrogel 
networks was controlled by the polymer fraction yielding soft (3.5 wt%; E = 6 kPa), medium (5 wt%; E = 16 kPa) and stiff (6 
wt%; E = 30 kPa) gels. f) The lids adhered to the microarrays following Sortase A linking. The work of adhesion between the 
two hydrogels was quantified using pull-off experiments with and without the application of the bacterial enzyme Sortase A. 
The adhesion was sufficient for gels to remain adhered over the time course of the experiment. g) Live imaging showing a 
representative hMSC spreading within a V3 niche. The cell spread and stabilized its shape over the course of 9 h. Scale bar, 50 
µm. h) The highest single cell occupation in the microniches was observed for 20 000 cells cm-2. i) Cells seeded in V3 niches 
after 3 days of culture. The actin cytoskeleton was labelled with Phalloidin-AF488 and the nucleus with DAPI. Scale bar, 50 
µm. 
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The microniche arrays were sealed with a hydrogel made with the same formulation and material properties as the 

niche environment. To adhere the non-patterned hydrogel layer to the microniche base, the sealing hydrogel layer 

was modified with one substrate for Sortase A (GGGG-LERCL-NH2; 688 µg mL-1, 800 µM) and the 

micropatterned hydrogel was modified a complementary substrate (Ac-GCRE-DDD-LPMTGG-NH2; 1125 µg 

mL-1, 800 µM). The work of adhesion between gels was assessed using pull-off tests measuring stable adhesion 

between hydrogel surfaces in presence of Sortase A enzyme (Figure 2f). The Sortase-mediated bonding adhered 

the sealing hydrogel to the base throughout the time course of cell culture and in a manner that did not alter the 

network structure of the gels at the cell–material interface or interfere with cell function. 

To investigate the effect of the degree of confinement on cell function, we generated microarray patterns with 

three distinct niche volumes: 35, 61, and 125 x 103 μm3, further denoted as V1, V2, and V3 niches. The dimensions 

of the single cell niches were large enough to accommodate both the nuclear and cytoplasmic volumes of rounded 

hMSCs, with the smallest niche dimension (20 µm) exceeding the mean radius of hMSC nuclei (14.1 ± 2.0 µm; 

Figure S2). The niches were designed in this manner so that the cells and their nuclei would not be deformed upon 

encapsulation. Single cells were able to spread and fill smaller niches, while having sufficient space to spread, 

grow, and proliferate in larger niches. However, the largest niche dimension was smaller than the mean hMSC 

spread length in 2D culture (>50 µm, soft gels; >100 µm, stiff gels) in order to physically confine cells within the 

3D microenvironments (Figure S3).33 In 3D, the maximum cell spread length was restricted to the longest 

dimension of the niche (~64 µm, V1; ~70 µm, V2; ~86 µm, V3). 

After preparing the microarrays, we seeded cells into the niches by applying a suspension of hMSCs on the surface 

of the patterned hydrogel. To determine a suitable seeding density for single cell occupation, we seeded the cells 

in the niches at different concentrations (5 000–30 000 cells mL-1, 1 mL cm-2). We allowed the cells to sediment 

into the microwells under a constant gentle shaking on an orbital shaker (60–70 rpm) for 15 min. Once the cells 

settled into the microwells, the platform was rinsed with culture medium to remove excess cells from the surface. 

The niches were then sealed with the non-patterned hydrogel layer. Cell spreading was observed in the niches 

within 3 h after seeding (Figure 2g, S4, Supplementary Movie 2). We found that seeding 20 000 cells cm-2 of 

patterned surface resulted in the highest rate of single cell occupancy (~40%) for all niche geometries (Figure 2h). 

On day 3, the majority of the cells had spread within the niches attaining 3D morphologies (Figure 2i, S5, 

Supplementary Movie 3). In the V1 niches, spread cells often occupied the full microniche, whereas cells in V3 

niches only spread to occupy a fraction of the niche (Figure S6). 

Geometric confinement and matrix stiffness affect hMSC viability 
Having established the microarray platform for single hMSC culture, we investigated the effects of geometric 

confinement and matrix stiffness on hMSC fate. Initially, we employed our platform to investigate how 3D 

confinement and niche stiffness affect cell viability. We monitored cell viability with ethidium homodimer (EthD-

1) staining, a DNA intercalator that cannot cross the membrane of viable cells. hMSCs that did not stain for EthD-

1 (EthD-1-) were counted as viable and hMSCs that stained for EthD-1 (EthD-1+) were counted as dead. We 

screened viability across all niche volumes (V1, V2, and V3) in low, medium, and high stiffness gels. On day 1, 

hMSCs cultured in the 3D microniches exhibited a mean viability ≥80% for all conditions (Figure 3a). On day 3, 

hMSC viability varied with microniche volume and matrix stiffness. The number of viable cells decreased in low 

and medium stiffness niches (72.3 ± 13.6% and 79.5 ± 6.8%, respectively) and remained high in high stiffness 
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niches (93.6 ± 5.5%). A weak and non-significant trend in viability was observed for niche volume. On day 3, the 

V1 niches at low stiffness exhibited heterogeneous results with decreased viability (59.1 ± 18.9%). Whereas the 

V3 niches with high stiffness exhibited the highest viability observed in 3D (97.5 ± 2.1%; Figure 3b). These data 

suggested that cells respond to 3D confinement, that niche volume and stiffness influence confinement sensing, 

and that these effects may be related to mechanical signaling. 

To further characterize the effect of geometric confinement on cell viability, we compared the viability of hMSCs 

in 3D microniches (confined) with hMSCs on 2D gels (unconfined) of the same stiffness. Cells exhibited high 

viability (≥ 90%) in all cases on 2D gels (Figure 3c). hMSC morphology varied with substrate stiffness; cells were 

less spread and more rounded on low stiffness gels and more spread on high stiffness gels with an average spread 

length of 57.9 ± 4.1 and 114.1 ± 11.2 µm, respectively (Figure 3d). However, the most notable effect was the 

overall increase in hMSC viability in 2D as compared with hMSCs in 3D microniches. While the specific niche 

volume did not have a significant effect on cell viability, 3D confinement dramatically reduced the overall viability 

of hMSCs. This could have been caused, in part, by mechanical effects during the assembly of the microarrays; 

however, as the majority of cells exhibited a decrease in viability after 3 days of culture in niches, we hypothesized 

that the cells actively sensed the confinement and that mechanosensitive signaling related this signal to coordinated 

cell fate decisions. 
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Figure 3. 3D confinement decreased cell viability. a) hMSCs were viable (>80%) in all conditions in 3D microniche culture 
after 1 day (n = 3; at least 500 cells per condition; comparisons between stiffness and size groups were made using two-way 
ANOVA with Tukey’s test for post-hoc analysis). b) After 3 days, the high stiffness niches displayed the highest numbers of 
viable (EthD-1-) cells (n = 3; at least 500 cells per condition; comparisons between stiffness and size groups were made using 
two-way ANOVA with Tukey’s test for post-hoc analysis). c) On 2D gels, cell viability was close to 100% for all conditions 
after 3 days in culture (n = 3; at least 2000 cells per condition; comparisons between stiffness groups were made using one-
way ANOVA, with Tukey’s test for post-hoc analysis). d) In unconfined 2D culture, hMSCs were more elongated on stiff gels 
as compared with soft gels (n = 3; 30 cells per condition; comparison of means between groups was made using a Two-Sample 
t-Test). e) In both conditions, hMSC spreading was confined in the 3D microniches relative to unconfined 2D gels. In 2D, cell 
spreading increased with gel stiffness and, in all conditions, cells adopted spread morphologies with mean cell lengths greater 
than the maximum available distance in the V1, V2, and V3 niches. In 3D, cell spreading was constrained by the geometry of 
the microniche, providing geometric confinement of the cells. Representative images of hMSC morphology on day 3 in 2D 
and 3D culture. Cell cytoplasm was imaged with Calcein AM. Scale bars, 200 μm. For a-c) plots represent mean ± s.e.m., for 
d) bar plots represent mean + s.e.m. 
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hMSC proliferation decreases upon 3D confinement 
Having shown that the rates of cell death increased upon confinement, we then investigated the proliferative 

capacity of hMSCs in the confined microniches as a function of niche stiffness and volume. Seminal results 

demonstrated that cell proliferation rates decreased with decreasing cell adhesive area on 2D adhesive islands (75–

3 000 µm2).34 Other findings demonstrated that proliferation in 3D—porous ECM-derived and synthetic bulk 

hydrogels—is reduced with respect to 2D culture.35,36 Therefore, we hypothesized that proliferation rates would 

decrease upon confinement in 3D niches relative to 2D and that the rate of proliferation would correlate positively 

with niche volume. Further, we hypothesized that increased matrix stiffness would promote hMSC proliferation 

similar to observations in vivo or in 2D culture.37 Increased tissue stiffness has been associated with increased cell 

proliferation and invasion in different types of cancers.38,39 Similarly, stiffness has been shown to activate 

proliferation in vitro on 2D substrates and in porous ECM-derived hydrogels in 3D.37,40 However, conflicting 

effects have been observed in bulk 3D biomaterials showing a decrease in cell proliferation with increasing 

stiffness.35 This may be caused by the inherent increase in cell confinement at high stiffnesses in traditional bulk 

hydrogels. 

To further study how confinement affects proliferation, we cultured hMSCs in our 3D microniches for 1 and 3 

days and assessed proliferation by calculating the fraction of cells in S-phase via 5-ethynyl-2´-deoxyuridine (EdU) 

staining (Figure S7). Strikingly, the mean percentage of proliferating cells on day 1 in all 3D conditions was below 

10%, which is much lower than hMSC proliferation observed in standard 2D culture (57.0 ± 3.0%; P7 hMSCs on 

TCPS) (Figure 4a).41 The mean value of EdU+ hMSCs in the 3D niches varied from 4.6 ± 2.3% to 8.1 ± 1.4%. At 

this early timepoint, the percent of proliferating cells increased with niche volume but did not exhibit an obvious 

trend with niche stiffness. On day 3, the proliferation rate settled below 10% and was lowest for the smallest (V1) 

niches (Figure 4b). The percent of EdU+ cells remained at ~7–8% in the V3 niches but dropped to 3.6 ± 0.4% in 

the V1 low stiffness niches. Overall, hMSCs exhibited the highest proliferation rates in V2 and V3 niches at 

medium and high stiffnesses (7.7 ± 0.9% and 7.9 ± 0.7% in high stiffness niches, respectively). Niche stiffness 

had a significant effect on proliferation rates resulting in the lowest number of EdU+ cells in low stiffness arrays, 

and proliferation rates increased with stiffness for all size niches (Table S13–15). The effect of stiffness was most 

pronounced in V1 and V2 niches. 

To relate these observations to geometric confinement, we compared proliferation values for hMSCs in 3D 

microniches with unconfined hMSCs on 2D gels of the same mechanical properties. After 24 h in culture, the 

percent of EdU+ cells on 2D substrates varied from 19.8 ± 8.1% to 36.0 ± 5.5%; proliferation rates increased with 

substrate stiffness (Figure 4c). On day 3, 2D proliferation increased further to 25.9 ± 0.8% for soft and 40.1 ± 

1.6% for stiff gels (Figure 4c). Overall proliferation rates were markedly higher for unconfined hMSCs on 2D 

gels than for confined hMSCs in 3D microniches for all stiffnesses tested (Figure 4d). These results indicated that 

3D geometric confinement and matrix stiffness affect stem cell life and death. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.05.02.442094doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442094
http://creativecommons.org/licenses/by-nc/4.0/


 9 

  

Figure 4. 3D confinement downregulated hMSC proliferation. hMSCs were cultured on 2D substrates (unconfined) and in 
3D microenvironments (confined) for 1 and 3 days. a) In 3D, cells displayed mean proliferation rates below 10% after 1 day in 
all niche conditions. (n = 3; at least 500 cells per condition; comparisons between stiffness and volume groups were made using 
a two-way ANOVA with Tukey’s test for post-hoc analysis). b) After 3 days, proliferation in the 3D niches remained low, 
further decreasing for V1 niches. (n = 3; at least 500 cells per condition; comparisons between stiffness and volume groups 
were made using a two-way ANOVA with Tukey’s test for post-hoc analysis). c) On day 1 in 2D culture, the number of EdU+ 
cells varied from ~20 to 36%; the proliferation rate increased with substrate stiffness. After 3 days, 2D proliferation increased 
further to above 25% for soft and 40% for stiff gels (n = 3; comparisons between stiffness groups were made using a one-way 
ANOVA with Tukey’s test for post-hoc analysis). d) After 1 and 3 days of culture, hMSC proliferation rates in the confined 
3D microniches were substantially than values for unconfined hMSCs in 2D culture. For a-d) plots represent mean ± s.e.m. For 
e) bar plots represent mean + s.e.m. 
 

Geometric confinement and niche stiffness regulate YAP localization in 3D 
Our observations demonstrated that stem cell fate was influenced by geometric confinement in 3D—proliferation 

rates decreased upon mechanical confinement and rates of cell death increased, and both of these effects were 

coupled to niche volume and stiffness. Since the cells on 2D displayed average spread lengths that exceeded the 

longest dimension of the niches, we hypothesized that physical restriction in confined microniches may result in 

decreased mechanotransduction by inhibiting cell elongation and cytoskeleton maturation. Of the many effectors 

involved in mechanosensing, we opted to investigate YAP, which shares homology with transcriptional coactivator 

with PDZ-binding motif (TAZ), as a potential mediator of the response to 3D confinement. YAP/TAZ nuclear 

activity is governed, in part, by mechanical cues that are transduced through the cytoskeleton and YAP/TAZ 

localization depends on internal cell tension.42,43 Previously, YAP/TAZ activation has been shown to depend on 
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the available adhesive area on confined 2D micropatterned fibronectin islands; YAP/TAZ was activated in cells 

on large islands and inactivated on smaller islands.44 

To investigate if the effects of mechanical confinement on cell fate were indeed mediated by YAP signaling, we 

characterized YAP localization (nuclear or cytoplasmic) in hMSCs cultured in confined 3D microniches and on 

unconfined 2D gels. The nucleo‐cytoplasmic distribution of YAP is not a binary state but rather a time capture of 

continuous nuclear and cytoplasmic shuttling dynamics.45 We quantified YAP distribution by calculating nuclear 

and cytoplasmic mean fluorescent intensities, further defined as the nuclear/cytoplasmic ratio (N/C); we defined 

YAP nuclear localization at N/C values above 1.7 (Figure 5a, S8). YAP localization was assessed after 1 and 3 

days in culture. First, we quantified YAP localization for hMSCs in 2D. As expected, the N/C scaled with the 

stiffness of the 2D substrates (Figure 5b). On day 3, the mean N/C ratio on soft gels was low (1.2 ± 0.5) indicating 

mechanical deactivation. Increased mean N/C values were observed on medium and stiff gels (1.8 ± 0.8 for 

medium and 1.7 ± 0.7 for stiff niches). 

In confined 3D microniches, hMSCs displayed mean YAP N/C ratios below the activation limit of 1.7 for all niche 

conditions on days 1 and 3. This suggested a general mechanical deactivation for confined cells as compared with 

unconfined cells in 2D culture. The mean percentage of YAP activation varied from 8.2 ± 5.6% in soft V2 niches 

to 23.9 ± 8.3% for stiff V3 niches (Figure 5c). On day 1, mean YAP N/C ratios did not correlate with niche volume 

and exhibited a weak trend with stiffness (Figure 5d). On day 3, the cells showed increased nuclear YAP 

localization in larger niches for soft and medium gels (Figure 5e). Interestingly, stiffness had a dominant effect 

on YAP N/C ratio: activation and N/C ratios were highest in stiff niches compared with other 3D microniche 

conditions, and the N/C ratio was independent of niche volume at this stiffness. Overall, suppressed YAP 

activation (mechanical deactivation, decreased YAP N/C ratios) in 3D niches correlated with our viability and 

proliferation measurements. It has been shown previously that proliferation correlates with mechanical activation 

of cells, which can be regulated through YAP signaling.46 Furthermore, YAP activation is a known suppressor of 

cell death.47,48 This indicates, that the changes in cell function within confined 3D environments may be in part 

regulated through YAP-mediated mechanotransduction. 
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Figure 5. hMSCs were mechanically deactivated upon 3D confinement. a) Representative images of hMSCs in confined 
3D V3 microniches with cytoplasmic (left; N/C ratio < 1.7) and nuclear (right; N/C ratio > 1.7) localization of YAP. Scale 
bars, 10 µm. b) During unconfined 2D culture on day 3, YAP N/C ratio (YAP/TAZ localization) increased gradually from ~1.3 
for soft gels to ~1.7 for medium and stiff gels (n = 3; at least 250 cells per condition, comparisons between stiffness groups 
were made using a one-way ANOVA with Tukey’s test for post-hoc analysis). c) In confined 3D microniches on day 3, mean 
YAP activation varied from ~8% in soft V2 niches to ~24% in stiff V2 niches. Data represent mean ± s.e.m. (n = 3; at least 250 
cells per condition; comparisons between stiffness and size groups were made using a two-way ANOVA with Tukey’s test for 
post-hoc analysis). d) The YAP N/C ratio of hMSCs after 1 day in 3D culture varied with niche volume and stiffness. All values 
were suppressed relative to similar conditions for unconfined hMSCs in 2D culture. e) After 3 days in 3D microniches, the 
YAP N/C ratio of hMSCs increased in larger volume niches for soft and medium gels. The YAP N/C ratio was elevated in stiff 
niches, independent of niche volume. However, the YAP N/C ratios remained suppressed relative to hMSCs on unconfined 2D 
gels with the same stiffness.  For d) and e) the plots represent Kernel Smooth (KS) distributions with mean and 95% confidence 
interval of the mean (n = 3; at least 100 (d) or 250 (e) cells per condition, comparisons between stiffness and size groups were 
made using two-way ANOVA with Tukey’s test for post-hoc analysis).  
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Discussion 
When culturing cells outside of the body, the context matters and functional differences are observed between 2D 

and 3D culture.49,50 In 2D, cell death rates are generally low and proliferation rates are often supraphysiologic.51,52 

In 3D, proliferation rates often decrease and cell death rates increase.35,36 These differences in cell function are 

often attributed to changes in cell polarization, adhesion, and uptake of soluble factors.2 Recently, an additional 

focus has been placed on physical confinement of cells in 3D as a factor that contributes to the context-dependent 

differences in cell fate.26 Seminal work on micropatterned 2D substrates demonstrated the role of confinement in 

directing cell fate and function.7,9,53,54 Further studies corroborated the link between cell confinement and fate 

suggesting that these effects are, in part, regulated by mechanotransduction.7,9,53 Studying the effects of 

confinement on cell fate in 3D is more challenging due to the general lack of control over geometric parameters 

of the cell microenvironment. 

As an alternative, micropatterned 3D platforms enable the culture of individual cells in defined microwells.55 Here, 

we developed a platform to culture and monitor single hMSCs in confined microenvironments in order to 

investigate systematically the effect of geometric confinement on stem cell fate in 3D. We studied cell fate in 

unconfined 2D culture and confined 3D culture across a range of niche volumes and stiffnesses. In 3D, cell death 

increased with confinement and was significantly elevated relative to 2D culture. In addition, we observed a 

marked decrease in cell proliferation in 3D microniches as compared with 2D culture across all niche volumes and 

stiffnesses. Even though the largest volume niches exceeded the average hMSC volume, proliferation in 3D was 

significantly lower than in 2D. The observed proliferation rates in 3D were similar to in vivo proliferation rates in 

soft tissue, which typically do not exceed 10% of S-phase cells except during tissue development, regeneration, or 

tumor growth.56–58 These data indicate that cells sensed confinement in their microenvironment even when the 

niche volume exceeded that of an individual cell and that confinement affected the rates of cell life and death. 

We hypothesized that the observed effects of physical confinement may be mediated by mechanosensitive 

signaling pathways.53,59 We investigated YAP localization as a function of confinement and stiffness. YAP activity 

is, in part, governed by mechanical loading transduced through cytoskeleton organization, and reduced YAP 

activation in hMSCs has correlated with reduced viability and proliferation in 2D culture.60–62 Consistent with our 

proliferation results, YAP activation in 3D was reduced relative to 2D, indicating that cells experienced lower 

mechanical stresses upon confinement. Traction dynamics of actin stress fibers are related to their length and in 

2D cells balance external forces by adjusting the stiffness and organization of cytoskeleton, including its length, 

to substrate stiffness.40,63,64 2D confinement of cells to smaller spread areas has been shown to suppress stress fiber 

formation.59,65 3D niches impose similar physical restrictions on cell elongation, length, and organization of actin 

stress fibers. Therefore, 3D confinement may act similarly to 2D confinement hindering actin stress fiber formation 

resulting in dampened cell contractility and stiffness sensing.66,55 Correspondingly, both proliferation and YAP 

activation in 3D niches scaled positively with niche volume—larger niches allowed for increased cell elongation. 

Related studies that assessed proliferation with respect to the diameter of scaffold porosity have shown similar 

results—larger pore sizes stimulated cell proliferation.67,68 

Furthermore, in the microwells, hMSCs spread in 3D, which results in less polarized cell spreading as compared 

with 2D; cell polarity has been shown to alter mechanotransduction.69,70 Namely, cell polarization on 2D substrates 

has been shown to induce stretching of the nuclear envelope.32 Nuclear flattening increases nuclear pore diameter 

on the cytosol side and reduces it on the nucleoplasmic side, lowering the export rate of YAP/TAZ in comparison 
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to the import rate, favoring nuclear accumulation.71 Chaudhuri and coworkers have shown that, in contrast to 2D 

substrates, 3D conditions allow for non-polarized adhesion, imposing lower stretching forces on the nucleus and 

resulting in lower nuclear cross-sectional area.72 In our niches, hMSCs spread in 3D given the isotropic distribution 

of adhesive cues. We hypothesize that limited cell elongation and 3D morphology of cells in our confined niches 

may correspond to a less polarized nuclear conformation, reducing YAP/TAZ activation at high stiffness as 

compared with 2D culture. 

Lastly, increased cell death was most apparent in soft and medium stiffness niches, while, in stiff niches, cells 

maintained high viability close to 2D levels. Across all conditions, proliferation increased with niche stiffness. In 

2D, increased stiffness stimulates cell survival and proliferation due to elevated cell tension transduced through 

the cytoskeleton and contractile machinery of the cell.51,73 Although stiffness sensing in 3D niches might be 

reduced due to inhibited spreading, mechanotransduction is also regulated by the size and stability of focal 

adhesions, myosin contractility, and abundance of stress fibers, which are typically downregulated on low stiffness 

substrates.74 Thus, mechanotransduction may have been upregulated in stiff niches irrespective of cell elongation, 

resulting in the relative increase in cell viability and proliferation. 

 

Conclusion 
In conclusion, this study improves our understanding of how the physical milieu regulates stem cell function and 

fate. By culturing hMSCs in microengineered niches, we demonstrated the role of geometric confinement and 

niche stiffness on hMSC proliferation and viability in 3D. Importantly, we observed significantly increased cell 

death rates and decreased rates of proliferation in hMSCs cultured within confined 3D microniches as compared 

with cells on unconfined 2D gels. We related the observed effects of geometric confinement and niche stiffness 

on cell fate to YAP localization, indicating that mechanotransduction pathways mediate these effects. Further 

investigation is needed in order to quantitatively describe the effects of confinement on the mechanical activation 

in cells and how it relates to cytoskeletal organization, focal adhesion formation, and generation of traction forces. 

A general understanding of how cell behavior is affected by geometric confinement will be an important step 

toward mapping a complete regulation profile of in vivo cell fate. While we focused here on the role of confinement 

on single cell fate, 3D confinement is likely to be involved also in the regulation of multicellular structures 

influencing growth, development, and homeostatic profiles of tissues.  
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Methods 

Hydrogel platform design 

Synthesis of norbornene-functionalized PEG 

8-arm PEG amine (Mn ∼10 kDa; 4 g, 0.4 mmol PEG, 3.2 mmol NH2, 1 eq. NH2; JenKem USA) was dissolved in 

anhydrous dimethylformamide (DMF; 5 mL; Sigma-Aldrich) and purged with argon. N,N-Diisopropylethylamine 

(DIPEA; 2.23 mL, 12.8 mmol, 4 eq.; Sigma Aldrich) was added to the PEG solution followed by the addition of 

1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate] (HATU; 

2.43 g, 6.4 mmol, 2 eq.; Sigma-Aldrich). Next, 5-norbornene-2-carboxylic acid (1.56 ml, 12.8 mmol, 4 eq.; Sigma-

Aldrich) was added to the solution and the reaction was stirred overnight at room temperature (RT) under argon 

atmosphere. The product was precipitated twice in diethyl ether (4 °C) and the precipitated polymer product was 

recovered and dialyzed in a dialysis membrane (MWCO 1000 g mol−1; Spectrum Laboratories) against dH2O for 

3 days. The aqueous polymer solution was lyophilized obtaining the product in the form of a white amorphous 

solid. Functionalization of the 8-arm PEG with norbornene was determined to be above 95% via 1H NMR in 

CD2Cl2 by comparing the integrated areas under the peaks of the norbornene vinyl protons (δ = 6.0–6.3, m, 2H) 

and the PEG ether protons (δ = 3.5–3.9, m, 96H; Figure S9). 

Sortase A production 

The Sortase A pentamutant (eSrtA) in pET29 plasmid was kindly gifted by Prof. David Liu (Addgene plasmid # 

75144). Production was performed in BL21 (DE3) E. coli (Invitrogen). We first inoculated 12 ml of lysogeny 

broth (LB; ThermoFisher) containing 50 µg/ml kanamycin (ThermoFisher). The inoculate was then incubated at 

37°C, 180 rpm overnight. We then transferred 5 ml of this inoculate to 500 ml of LB + kanamycin for culture at 

37°C, 180 rpm until OD600 = 0.8 (around 3h30). After induction with 0.2 mM Isopropyl-β-D-thiogalactoside 

(IPTG, Sigma-Aldrich), we further incubated at 16°C for 22 h, and cells were centrifuged and lysed with 

BugBuster (Merck), followed by purification on a His-Trap HP affinity column (GE Healthcare) using a gradient 

from 10 to 250 mM imidazole over 30 min in Tris buffered saline pH 7.5 in the presence of 1 mM beta-

mercaptoethanol (Sigma-Aldrich). After concentration by centrifugation on Vivaspin (10000 g mol−1 MWCO; 

Sartorius), we further purified to remove endotoxins with Pierce high capacity endotoxin removal spin columns 

(ThermoFisher). The buffer was exchanged to TBS + 1 mM beta-mercaptoethanol (Sigma-Aldrich) by dialysis at 

4 °C (1000 g mol−1 MWCO; Spectrum Laboratories), 4 times 6 h. Finally, TBS+20% glycerol (Sigma-Aldrich) 

was added dropwise over stirring to the protein solution until reaching 10% glycerol content, and after quantitation 

using area under the curve on analytical gel permeation chromatography (Agilent Aquagel 20 column, 

7.8 × 300 mm, with 5 μm particle size, using TBS 0.5 ml/min as the eluent), the solution was further diluted with 

TBS+10% glycerol to obtain a 400 μM stock. This stock was sterilized by filtration at 0.2 μm, aliquoted, and stored 

at −80 °C. 

Synthesis of Sortase A peptide substrates 

The Sortase A substrate peptides Ac-GCRE-DDD-LPMTGG-NH2 (Sortase A Threonine-donor or SAT) and 

GGGG-LERCL-NH2 (Sortase A Glycine-donor or SAG) were synthesized on a Prelude X peptide synthesizer 

(GYROS Protein Technologies). Ac- and -NH2 refer to acetylated and amidated N- and C-termini respectively, the 

GCRE cassette provides a reactive cysteine for Michael addition in a hydrophilic block, DDD acts as a hydrophilic 
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spacer, and LPMTGG is a highly reactive Sortase A substrate sequence. The alternative LERCL cysteine makes 

the peptide slightly less hydrophilic to facilitate purification (using a conventional cassette with G instead of L 

results in a peptide that elutes with the injection peak here). The solid phase supported synthesis used 

fluorenylmethoxycarbonyl (fmoc) protected amino acid building blocks, induction heating, and mixing was 

performed with nitrogen bubbling in all reaction steps. For a 0.5 mmol synthesis, 25 ml glass reaction vials and 

12.5 ml of solvent/solution. High load Rink Amide MBHA Resin (GYROS Protein Technologies cat. RAM-100-

HL) was swelled for 60 min in DMF at RT. Deprotection was performed with 20% piperidine in DMF treatment 

twice for 1 min at 50°C, followed by three DMF washes. Coupling was performed twice (thrice for first coupling) 

for 5 min at 50°C, using a reaction mix in DMF containing protected amino-acids 0.2 M stocks, HBTU 0.4 M 

stock, and N-methylmorpholine 0.4 M stock, in 40/20/40 proportions, for a total of 1 mmol (2 equivalents) amino 

acid per coupling. The resin was then washed three times with DMF before repeating the deprotection/coupling 

cycle. For N-terminus acetylation, the resin was treated in situ with 20% acetic anhydride in DMF for 10 min at 

RT. Finally, the resin was washed with dichloromethane (DCM; Sigma-Aldrich), dried with nitrogen for 60 min, 

and cleaved for 2h at RT. The cleaving solution for SAG (optimized to avoid side products from reaction with rink 

amide linker in addition to side reactions with cleaved protecting groups and cysteine oxidation) contained 

TFA/H2O/TIPS/EDDT in proportions 85/7.5/5/2.5. The cleaving solution for SAT (further optimized to avoid 

methionine oxidization) contained TFA/TIPS/EDDT/thioanisole/anisole in proportions 83.75/3.75/3.75/6.25/2.5, 

where TIPS (Sigma-Aldrich) is triisopropylsilane and EDDT is 2,2’-(ethylenedioxy)diethanethiol (Sigma-

Aldrich). The crude peptides were the precipitated in ice cold diethyl ether (Et2O; Sigma-Aldrich), collected by 

centrifugation, further washed with ice cold Et2O, dried under nitrogen flow, and resuspended in a minimal amount 

of acetonitrile/water/TFA, followed by purification by preparative reverse-phase high-performance liquid 

chromatography (HPLC; Agilent 1260 infinity) on a 55 mm diameter C18-capped silica column (Agilent), using 

a gradient from 10 to 90% acetonitrile in water over 40 min in the presence of 0.1% TFA. LC-MS (high resolution, 

positive mode, Figure S10): SAG, calculated mass: 860 g mol-1; measured m/z: 860 [M]+, 1720 [2M+H]+; SAT, 

calculated mass: 1406.49 g mol-1; measured m/z: 704 [M+2H]2+, 1407 [M+H]+.  

Synthesis of lithium phenyl-2,4,6-trimethylbenzoylphosphinate 

Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) was synthesized as described previously.75 2,4,6-

trimethylbenzoylchloride (3.2 g, 18 mmol) of was added dropwise to an equimolar amount of continuously stirred 

dimethyl phenylphosphonite (3.1 g; 18 mmol) at RT and under argon. The reaction was stirred overnight under 

argon atmosphere. Lithium bromide (6.1 g; 72 mmol) was dissolved in 100 mL of 2-butanone and added to the 

reaction mixture. The reaction was heated to 50 °C to induce product precipitation. After 10 min, a solid precipitate 

formed. The reaction was cooled to RT over 4 h and then filtered to recover the precipitate. The precipitate was 

washed 3 times with 2-butanone (50 mL) to remove unreacted lithium bromide and dried under vacuum. The 

product was recovered in near quantitative yield. 1H NMR in D2O: 7.57 (m, 2H), 7.42 (m, 1H), 7.33 (m, 2H), 6.74 

(s, 2H), 2.09 (s, 3H), 1.88 (s, 6H) (Figure S11). 

Rheological characterization 

The cross-linking kinetics and mechanical properties of the PEG hydrogels (3–10 wt%) were quantified using a 

strain-controlled shear rheometer (MCR 502; Anton Paar). The hydrogel precursor solution was loaded between 

an 8 mm parallel plate geometry (PP-08) and a transparent bottom plate with a gap of 0.5 mm. The gel forming 
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solution was cross-linked with upon exposure to collimated UV light (λ = 365 nm, I = 20 mW cm-2; M365L3-C1, 

ThorLabs). Storage (G′) and loss (G″) moduli were measured over time with oscillatory strain measurements at γ 

= 1% amplitude and with an angular frequency of ω = 1 Hz (Figure S12) within LVE. All measurements were 

carried out in the linear viscoelastic regime for the formed gels. The Young’s modulus (E) was estimated using 

the relation between shear and Young’s moduli for isotropic and homogeneous materials, E = 2G′(1+ν) where ν is 

the Poisson’s ratio for the material. For the PEG-based materials tested, ν was assumed to be 0.5.76 

Additionally, the rheological tests described above were repeated on hydrogels after equilibrium swelling (~24 h) 

in phosphate buffered saline (PBS) to determine the swollen G′. The measurements were performed on hydrogels 

which dimensions were matching 8 mm geometry (sandblasted surface). 

Sigmacote coating 

To coat a substrate with Sigmacote, the substrate (silicon master or glass slide) was first cleaned in strong soap 

(SDS, Sigma-Aldrich) and washed thoroughly with water, ethanol, and acetone. After air drying, the substrate was 

placed in a Petri dish (silicon mater) or in a glass staining container (glass slides) and submerged in Sigmacote 

(Sigma-Aldrich) for 5 min. The container was sealed with a lid to avoid evaporation of Sigmacote. Subsequently, 

Sigmacote was removed and the surface was washed again twice with dH2O and air dried. In addition, the substrate 

was dried in oven at 100 °C for 30 min to produce a durable coating. Used Sigmacote was stored in a glass container 

and reused. 

Silanization with (3-mercaptopropyl)trimethoxysilane 

3-(Trimethoxysilyl)propyl methacrylate (TMPMA; Sigma Aldrich) has been used to covalently link thiol–ene gels 

to glass slides. Hydrogels cast on methacrylated slides did not lift from the glass when immersed in medium during 

cell culture and remain attached during staining procedures. To prepare the glass slides for silanization, the glass 

slides were cleaned with SDS, rinsed thoroughly with water, washed with ethanol and acetone, and dried in an 

oven at 80 °C for an hour. 1 mL of TMPMA was diluted in 200 mL of ethanol and 6 mL of dilute acetic acid (1:10 

glacial acetic acid:dH2O) was added to the mixture directly prior use. The glass slides were placed in a glass 

staining container and submerged in the activated TMPMA solution allowing full contact of the glass surface with 

the silane solution. The solution was allowed to react for 5 min. The excess solution was poured off and the glass 

slides were rinsed with ethanol to remove the residual reagent and dried in air at RT. 

Hydrogel adhesion via enzymatic ligation 

Two hydrogel slabs (0.1 and 0.5 mm) were prepared at the same polymer wt% including complementary Sortase 

A peptide substrates (SAG or SAT, 800 µM). Two glass slides were treated with Sigmacote (Sigma-Aldrich) and 

separated with a 0.1 or 0.5 mm silicone rubber spacer. The hydrogel precursor solution was injected between the 

glass slides and polymerized upon exposure to UV light (λ = 365 nm, I = 20 mW cm-2, t = 2 min) The surface of 

the hydrogel slab containing SAT peptide was dried in air and treated with Sortase A solution (20 µL, 86 mg mL-

1, 4 µM). Directly after, the second hydrogel layer containing SAG peptide was placed on top of the thicker slab 

substrate and pressed gently. The adhered hydrogels were submerged in a minimal amount of DPBS buffer 

containing Ca2+ and stored in the incubator at 37 °C for half an hour. Adhesion was assessed visually upon 

mechanical agitation (Supplementary Movie 1). 
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The work of adhesion following enzymatic cross-linking of two PEG hydrogel layers was assessed using pull-off 

tests performed using the normal force transducer of the rheometer (MCR-502; Anton Paar). Pre-swollen gels 

formulated with SAG or SAT (as described above) were attached to the Peltier plate or the 8 mm parallel plate 

geometry (PP-08) of the rheometer using cyanoacrylate glue. The surface of the hydrogel attached to the Peltier 

plate was treated with 10 µM Sortase A solution in Dulbecco’s phosphate buffered saline (DPBS with Ca2+ and 

Mg2+; ThermoFisher). The gel surfaces were brought into contact and pressed together until a normal force of 0.8 

N was registered. The temperature of the Peltier plate was adjusted to 37 °C and a ring of DPBS was applied 

around the gels. The protective hood was lowered, to mitigate solvent evaporation, and the gels were left to 

crosslink for 30 min. After that, the DPBS was removed, and the upper geometry was retracted (0.01 mm s-1) 

during which the normal force (Fn) upon retraction was measured and Fn–displacement curves were recorded 

(Figure S13). In order to calculate the work of adhesion (J m−2) from the recorded curves, we integrated the 

retraction force as a function of the displacement, followed by dividing the resulting adhesion energy by the known 

contact area (surface area of geometry) at the interface. 

 

Microfabrication 

Microfabrication of silicon master 

The microniche arrays were designed in AutoCAD (Autodesk). The obtained designs were used to fabricate 

polyethylene terephthalate (PET) based transparency masks with soft photographic negative emulsion film, right 

reading emulsion up (JD-Photodata). The resulting mask was used to transfer the design to a silicon wafer via 

photolithography in a clean room facility. A layer of photoresist SU-8 50 (MicroChem Inc.) was spin-coated onto 

a plasma-cleaned silicon wafer. Manufacturer recommendations were followed for prebaking, lithography, 

postbaking, and photoresist development. The resulting silicon wafer contained a micropost pattern. The pattern 

profile was assessed using white light interferometry (WLI), confirming that the dimensions of the microposts 

matched the dimensions of the desired microniches [V1 (20 x 50 x 35 μm3), V2 (35 x 50 x 35 μm3), and V3 (50 x 

50 x 50 μm3)]. The masters with correct dimensions were used for the fabrication of the intermediate molds. 

PDMS mold fabrication 

The silicon master fabricated in the previous step was used for casting intermediate PDMS molds. In short, Sylgard 

184 (Dow Inc.) was mixed with Sylgard curing agent (Dow Inc.) at a 10:1 mixing ratio by weight. The mixture 

was placed under vacuum in a desiccator for 30 min to remove trapped air bubbles. The silicon master was placed 

in a Petri dish and the PDMS mixture was gently poured onto the silicon master avoiding bubble formation. The 

Petri dish containing both the master with PDMS prepolymer was placed in an oven at 70 °C and cured for 6 h. 

The generated PDMS with a microwell pattern was separated from the silicon wafer and used in the following 

steps. 

Teflon mold fabrication 

The PDMS mold obtained in the previous step was used to fabricate a Teflon mold. The patterned PDMS mold 

was placed in the glass Petri dish and the surface was covered with Teflon beads. The Petri dish with PDMS and 

Teflon beads was placed overnight in the oven at 200 °C. After cooling to RT and detachment of the two materials, 
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the generated Teflon mold with microposts was released and used for hydrogel patterning to produce the 

microniche arrays. 

Hydrogel patterning 

The hydrogel precursor solution was prepared as described in the procedure for the preparation of 2D hydrogels. 

The silicon spacer (0.5 mm) was placed on the TMPMA treated glass slide and the Teflon mold was placed on top 

of the spacer. The hydrogel precursor solution was carefully injected between the glass slide and the Teflon mold 

until the whole interstitial volume was filled, avoiding the formation of air bubbles on the surface of the mold. The 

precursor solution was placed under UV light (λ = 365 nm, I = 20 mW cm-2) for 1 to 3 min depending on the 

hydrogel formulation. Teflon mold was carefully removed from the hydrogel using a spatula as a lever while 

minimizing shear forces on the hydrogel. The patterned hydrogel adhered to the TMPMA-treated glass slide was 

immersed in PBS until further use. 

Hydrogel pattern assessment 

The hydrogel profile was analyzed using fluorescence confocal microscopy. In order to visualize the hydrogel 

profile, the hydrogel was labeled with acryloxyethyl thiocarbamoyl Rhodamine B (Sigma-Aldrich; Figure S1).77 

The acrylated Rhodamine B was dissolved in dH2O at a concentration of 1 mg mL-1. From this stock solution 50 

µL was added to 1 ml of hydrogel precursor solution (0.005 wt%). The hydrogel was polymerized under each 

Teflon mold and immersed in PBS for 30 minutes to swell out all unreacted Rhodamine dye. Subsequently, the 

pattern was imaged via confocal microscopy (LSM 780, Zeiss). 3D images were reconstructed from Z-stacks and 

distants were analyzed using ZEN software (Zeiss). 

 

2D and 3D cell culture 

Cell culture 

Human bone marrow‐derived stromal cells (hMSCs) were isolated from bone marrow aspirates of healthy donors 

obtained during orthopaedic procedures with informed consent and in accordance with the local ethical committee 

(University Hospital Basel; Prof. Kummer; approval date 26/03/2007, Ref. Number 78/07).78 Cells were cultured 

at 37 °C in a humidified atmosphere at 5% CO2 in minimal essential medium with alpha modification and 

nucleosides (MEMα; Sigma-Aldrich) supplemented with fetal bovine serum (FBS, 10%; Gibco), 

penicillin/streptomycin (P/S, 100 U mL−1; Gibco), and fibroblast growth factor 2 (FGF‐2, 5 ng mL−1; PeproTech). 

Cells were passaged before reaching 90% confluency and the medium was changed every 2–3 days. 

Fabrication of hydrogels for 2D cell culture and cell seeding 

For 2D cell culture experiments, PEG hydrogels (3.5, 5, and 6 wt%) were prepared with E ∼ 5, 16, and 35 kPa, 

respectively. For 3.5 wt% hydrogels, 8-arm PEG-NB (35 mg; 28 mM NB) was mixed with freshly prepared DTT 

(2.0 mg; 28 mM SH), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator (2.5 mg; 0.25 mM), 

CRGDS (1 mM), and dH2O. For 5 wt% hydrogels, 8-arm PEG-NB (50 mg; 40 mM NB) was mixed with freshly 

prepared DTT (2.84 mg; 40 mM SH), LAP (2.5 mg, 0.25 mM), CRGDS (1 mM), and dH2O. For 6 wt% hydrogels, 

8-arm PEG-NB (50 mg; 48 mM NB) was mixed with freshly prepared DTT (3.4 mg, 48 mM), LAP photoinitiator 

(2.5 mg, 0.25 mM), CRGDS (1 mM), and dH2O. 
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Two glass slides were separated by a silicon spacer (0.5 mm). One of the glass slides was treated with TMPMA 

to facilitate adhesion of the hydrogel to the glass surface. The other glass slide was treated with Sigmacote to 

provide a hydrophobic surface that prevented hydrogel adhesion and enabled hydrogel detachment without 

damaging the surface. The hydrogel precursor solution was injected between the two glass slides and subsequently 

polymerized under exposure to UV light (λ = 365 nm; I = 20 mW cm-2) for 1 to 3 min depending on the gelation 

time of the hydrogel determined during rheological testing. After careful removal of the Sigmacote treated glass 

slide, 4- or 8-well chamber separators (SPL Cell culture slides, SPL Life Sciences Co.) were placed on the hydrogel 

adhered to the MPTMS treated glass slide. The gel was washed with PBS 3x for 5 min to diffuse out residual LAP, 

stored in PBS, and sterilized under UV light (l = 254 nm) for 30 min. After that, the gels were immersed in culture 

medium and stored in the incubator to equilibrate at 37 °C. The cell suspension was then applied in each chamber 

(20’000 to 30’000 cells cm-2) on top of hydrogels and the samples were placed on an orbital shaker for 10 min at 

60 rpm. The samples were then stored in the incubator for the further cell culture. 

Fabrication of hydrogels for 3D cell culture and cell seeding 

The hydrogel precursor solution was prepared as described in the procedure for the preparation of 2D hydrogels 

and additionally supplemented with SAT peptide motif (Ac-GCRE-DDD-LPMTGG-NH2; MW = 1406.5 g mol-1; 

1125 µg mL-1; 800 µM). The silicon spacer (0.5 mm) was placed on the TMPMA-treated glass slide and the Teflon 

mold was used to pattern the hydrogel, as described above. The patterned hydrogel adhered to the TMPMA-treated 

glass slide was rinsed with PBS 3x for 5 min to diffuse out residual LAP, immersed in PBS, and sterilized under 

UV light (l = 254 nm) for 30 min.  

4- or 8-well chambers (SPL Cell culture slides, SPL Life Sciences Co.) were mounted on the glass slide with the 

patterned hydrogels. The hydrogel slab was cropped with a sharp spatula to fit the dimensions of the wells in order 

to secure a proper chamber fixture and avoid leakage. The hydrogel was immersed in culture medium and stored 

in the incubator to equilibrate at 37 °C. The cells were seeded in 3D niches by gravitational sedimentation. The 

cell suspension was then applied in each chamber (5’000 to 30’000 cells cm-2) on top of patterned hydrogels and 

the samples were placed on an orbital shaker for 10 min at 60 rpm. The well occupation was examined using a 

light microscope and, when most niches were occupied by cells, the excess medium was lightly aspirated and 

samples were gently washed with fresh medium under 60˚ tilt to remove the cells from the array surface outside 

of the niches. The samples were stored in the incubator at 37 °C until the niche sealing. 

Niche sealing and subsequent cell culture 

A thin hydrogel sheet (0.1 mm) was prepared, which was used to seal the cell niches after cell sedimentation. The 

hydrogel was prepared with the same formulation as its patterned equivalent with the exception of a different 

Sortase A substrate. Sealing hydrogels were prepared with SAG peptide (GGGG-LERCL; Mw = 860.92 g mol-1, 

551 µg mL-1, 800 µM). A 0.1 mm spacer was sandwiched between two glass slides treated with Sigmacote. The 

hydrogel precursor solution was injected between the glass slides and polymerized upon exposure to UV light (l 

= 254 nm, I = 20 mW cm-2) for 1 to 3 min depending on the hydrogel formulation. The sealing hydrogel layer was 

rinsed with PBS 3x for min, immersed in PBS, and sterilized under UV light (l = 254 nm) for 30 min. After 

sterilization, the hydrogel layer was transferred to culture medium and stored in the incubator until further use. 
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For sealing the niches, the well chambers were removed and Sortase A solution (MW = 21.7 kDa, 20 µL, 86 mg 

mL-1; 4 µM) in Ca2+-containing culture medium at 37 °C was applied to the surface of the patterned hydrogel. The 

thin hydrogel layer containing SAG peptide was placed on top of the patterned substrate and pressed gently, after 

which the well chambers were again mounted on the glass slide. A minimal amount of culture medium (200 µL) 

was added prior to storage of the hydrogel in the incubator in order to ensure the covalent crosslinking of the 

hydrogel slabs without excessive drying. After 1–2 h, 500 µL fresh medium was added to each chamber and the 

cell-laden arrays were stored in the incubator for culture. The medium was changed every 2 days by substituting 

half of the old medium with fresh medium. 

 

Cell function assessment 

Live/Dead assay 

Membrane integrity was assessed after 1 and 3 days of culture using the Live/Dead assay (ThermoFisher). We 

used membrane integrity as a measure of cell viability in these studies. The gels were incubated in the 4 μM 

Calcein AM and 2 μM Ethidium homodimer-1 (EthD-1) in PBS. After 30 min of incubation, cell-laden hydrogels 

were washed twice with PBS for 5 min, resuspended in fresh medium, and imaged. 

EdU assay 

The fraction of proliferating cells was determined by incorporating 5-ethynyl-2′-deoxyuridine (EdU) in the culture 

medium for a 12 h pulse on the first and third day of culture for both 2D and 3D samples. Incorporation of EdU 

was visualized by Alexa Fluor 647 azide staining using EdU DetectPro Imaging Kit (BCK-EdUPro-IM647, 

BaseClick) according to the manufacturer's protocol. 

In brief, hMSCs were seeded on 2D hydrogels and treated with EdU (10 μM) in culture medium 12 h prior to the 

end of the experiment. After 12 h of EdU treatment, the typical cell cycle period for hMSCs, samples were fixed 

by treatment with 2% PFA for 15 min and a subsequent treatment with 4% PFA for an additional 15 min. The 2D 

samples were washed with PBS 3x for 10 min and with PBS supplemented with 5% bovine serum albumin (BSA, 

Sigma-Aldrich) 2x for 5 min. All samples were permeabilized with TritonX-100 (0.1% in PBS) for 20 min at RT 

and washed 2x for 5 min with PBS supplemented with 5% BSA. 

The 3D samples were treated the same way as 2D samples. The incubation time with DetectPro reaction cocktail 

containing an azide functionalized Alexa Fluor 657 was extended to 3 h in the dark at RT. The samples were then 

washed with PBS 3x for 30 min and with PBS supplemented with 5% BSA 2x for 1 h. 

In both 2D and 3D samples, the cell nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI; 300 

nM; Sigma-Aldrich,) in PBS. 

YAP staining 

2D and 3D hydrogel samples with hMSCs were fixed by treatment with 2% PFA for 15 min and a subsequent 

treatment with 4% PFA for an additional 15 min. Next, the cells were washed and permeabilized with Triton X-

100 (0.5% in PBS). The samples were blocked with 5% BSA in PBS for 1 h and incubated with primary anti-

YAP1 antibody (1:300, mouse; Santa Cruz) in 5% BSA and left overnight at 4 °C. The cells were washed 3x for 
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10 min with PBS with Tween-20 (PBST, 0.05%; Sigma-Aldrich) and the corresponding anti-mouse Alexa Fluor-

647 conjugated secondary antibody (1:400, goat; ab150115, Abcam) was applied for 2 h at RT. Nuclei were 

labelled with DAPI and F-actin was labelled with Phalloidin-iFluor 488 (1:1000, ab176753; Abcam). After the 

staining, the sample was washed 3x for 10 min with PBST. The sample was resuspended in PBST with P/S and 

stored in the fridge until imaging. 

 

Imaging and image analysis 

Imaging 

For assessment of cell function, fluorescence microscopy was performed using an inverted confocal laser scanning 

microscope (LSM 780, Axio Observer; Zeiss) equipped with an Airyscan detector. The samples were imaged using 

an EC Plan-Neofluar 10x/ 0.30 Ph1 M27 objective. Each confocal image (1024 × 1024 pixel resolution) was 

obtained in z-stack (stack depth and step size were chosen according to the niche dimensions). The pixel size was 

1.384 x 1.384 µm. All live cell measurements were performed at 37 °C in an atmosphere containing 5% CO2. For 

all 3D samples, the transmitted light channel was recorded for well identification. 

For viability investigation, live hMSCs stained with Calcein AM, EthD-1 were illuminated at excitation 

wavelengths of 494 nm, 528 nm, and 650 nm and detected at 500–525 nm, 600–640 nm, and 655–700 nm, 

respectively. 

For proliferation assessment, fixed hMSCs, stained with DAPI and Alexa Fluor-647 conjugated secondary 

antibody, were illuminated at excitation wavelengths of 405 nm and 650 nm and detected at 450–480 nm and 655–

700 nm, respectively. 

For assessment of YAP localization, fixed hMSCs, stained with DAPI, Phalloidin-iFluor 488, and Alexa Fluor-

647 conjugated secondary antibody, were illuminated at excitation wavelengths of 405 nm, 488 nm, and 650 nm 

and detected at 450–480 nm, 500–550 nm, and 655–700 nm, respectively. 

Live imaging was performed on an inverted wide field fluorescence microscope (THUNDER Live Cell; Leica). 

The samples were imaged using an HC PL Fluorotar 10x/0.32 PH1 objective. Transmitted light channel was 

recorded over the course of 12 hours at specified positions, the movie was reconstructed from recorded images 

(Supplementary Movie S1). All live cell measurements were performed at 37 °C in an atmosphere containing 

5% CO2. 

For assessment of 3D spreading morphology fluorescence microscopy was performed using a THUNDER Live 

Cell microscope. The samples were imaged using an HC PL APO 40x/0.95 dry objective. Images were obtained 

in z-stack (stack depth was chosen according to the niche dimensions and step size was set automatically to 

optimize ICC). The pictures were processed using THUNDER Large Volume Computational Clearing settings, 

Feature Scale (nm): 5,000, Strength (%): 92, Adaptive Deconvolution set with a refractive index of the aqueous 

mounting medium of 1.33. The 3D images were reconstructed from z-stacks and rendered using LAS X 3D 

software (Leica). 
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Image processing 

The images were exported in batch in .lsm or .czi format using ZEN 3.1 blue edition using the z-stack alignment 

module. The z-stack .lsm or .czi images were exported as TIF RGB images (Live/Dead: maximum intensity 

projection (MIP), EdU: MIP, YAP: single plane at highest DAPI signal) in batch process using an ImageJ macro. 

All 3D cell images were overlaid with the AutoCAD masks with the corresponding well pattern to enhance the 

niche outlines to facilitatie the following analyses. The overlay was performed in MATLAB using 2D cross-

correlation between the binary mask of the well pattern and the binarized bright field image of the wells.Viability 

analysis 

Images were analyzed using Cell Profiler. Separate pipelines were constructed for 2D and 3D experiments. For 

2D, the Calcein AM positive cells and EthD-1 positive nuclei were identified using separate IdentifyPrimaryObject 

modules applying appropriate size and intensity thresholding. The identified objects were related via the 

RelateObjects module and the fraction of viable cells was reported as the fraction of cells that stained negative for 

EthD-1. 

For 3D, additionally the wells were identified using the IdentifyPrimaryObject module. The objects were related 

via the RelateObjects module and the wells containing multiple cells or nuclei were excluded from the analysis 

(only the wells containing single cells were analyzed). The fraction of viable cells was reported as the fraction of 

encapsulated cells staining negative for EthD-1. 

Proliferation analysis 

Images were analyzed using Cell Profiler. For 2D, the nuclear regions were identified using the 

IdentifyPrimaryObject module. The fraction of proliferating cells was reported as the fraction of total nuclei that 

stained positive for EdU divided by the total number of nuclei, indicated by DAPI staining. 

For 3D, the wells were identified using the IdentifyPrimaryObject module. The wells with multiple cells were 

excluded from the analysis (only the wells containing single cells were analyzed). 

YAP N/C ratio 

Images with DAPI and YAP signal were analyzed using Cell Profiler. For 2D, nuclei (DAPI) and YAP+ cells were 

identified using separate IdentifyPrimaryObject modules with appropriate size and intensity thresholds. The 

nuclear region was identified as a region that stained positive for DAPI. The area outside of the nuclear region that 

stained positively for YAP was identified as a cytoplasm using the IdentifyTertiaryObject module. YAP mean 

fluorescence intensities within nuclear and the cytoplasmic regions were calculated using the 

MeasureObjectIntensity module. The ratio of mean fluorescence intensities within the nucleus and cytoplasm was 

quantified and reported as the YAP N/C ratio. 

For 3D, the wells were identified using the IdentifyPrimaryObject module. The objects were related to each other 

and only the wells containing single cells were analyzed.   

All Cell Profiler pipelines have been uploaded on our GitHub repository: https://github.com/MEL-

ETH/Single_Cell_ECM. 
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Statistical analysis 

All experiments were performed with at least three biological replicates. Statistical analyses were performed with 

OriginPro 2019. Quantitative data for viability, proliferation, and YAP N/C ratio are presented as mean ± standard 

error or the mean (s.e.m.). Differences between experimental conditions were assessed using one-way or two-way 

analysis of variance (ANOVA) with Tukey post-hoc test. The significance levels were set at p = 0.05 (*). 
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