
Article

Principled decision-making workflow with
hierarchical Bayesian models of high throughput
dose-response measurements

Eric J. Ma 1 and Arkadij Kummer 2

1 ericmajinglong@gmail.com
2 ETH Zurich, arkadij.kummer@gmail.com
* Correspondence should be sent to Eric J. Ma

Version May 2, 2021 submitted to Entropy

Abstract: We present a case study applying hierarchical Bayesian estimation on high throughput1

protein melting point data measured across the tree of life. We show that the model is able to impute2

reasonable melting temperatures even in the face of unreasonably noisy data. Additionally, we3

demonstrate how to use the variance in melting temperature posterior distribution estimates to4

enable principled decision-making in common high throughput measurement tasks, and contrast the5

decision-making workflow against simple maximum-likelihood curve fitting. We conclude with a6

discussion of the relative merits of each workflow.7

Keywords: hierarchical modelling; Bayesian statistics; probabilistic programming; high throughput8

measurements9

1. Introduction10

High throughput measurements are a staple of biological measurements. A wealth of literature11

exists for the statistical analysis of high throughput measurement data [1–3] However, to the best of our12

knowledge, the application of hierarchical Bayesian models in high throughput assay measurements13

is not widespread, with only a countably small number of papers leveraging hierarchical Bayesian14

methods [4,5]. Yet, the advantages of hierarchical models for estimation are well-known. For example,15

in [6], baseball players’ performance estimates are regularized away from extreme values. Players with16

fewer replicate observations of their fielding statistics had estimates shrunk closer to the population17

mean, though as more replicate measurements are obtained, the regularization effect diminishes. This18

property of hierarchical models may be desirable in a high throughput measurement setting, providing19

a guardrail against being fooled by apparently desirable extreme measurements generated at random,20

or worse, through systematic error. Because hierarchical Bayesian estimation models require explicit,21

hand-crafted distributional assumptions, they also helps us avoid canned statistical tests where our22

data might not necessarily fit the test’s assumptions (e.g., the t-test) [7]. We thus see a gap in the23

application of hierarchical Bayesian estimation in high throughput biological assay measurement.24

Recently, a global protein ’meltome’ was published, in which 41,730 proteins from across 1625

species of life had their protein melting points measured in a high throughput fashion, spanning26

1,114,710 data points that were released publicly [8]. Protein melting occurs when a protein unfolds27

under thermal stress; a protein’s melting point is thus of interest to biological research. In ecological28

studies, protein melting points can reveal their host organisms’ properties (such as its probable29

characteristic temperature range). For biomedical applications, having a high melting temperature (i.e.,30

high stability) while maintaining activity is a desirable protein therapeutics property, this property31

relates to a protein’s stability, which can be crucial for preserving a protein therapeutic until it is used.32
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The characteristics of this data are such that they mimic very closely the kind of measurement33

data generated in biological screening experiments used for drug hunting and protein engineering.34

Firstly, it is of the dose-response curve form; the melting temperature, being the mid-point of the curve,35

is analogous to the IC50 concentration values generated in chemical and enzyme screens. Secondly, it36

is measured in a high throughput fashion, with extremely high numbers of samples measured, and37

with every sample (here, a protein from an organism) being treated equally in bulk. Importantly, they38

only have a single replicate measurement on which inferences, and hence decisions, are to be made.39

This means that measurements are effectively sparse with respect to a sample; even though there may40

be anywhere from 6-10 measurements of a sample, these are not biological replicate measurements of41

the same sample. This mirrors very closely what we observe in high throughput screen measurements42

in drug discovery and high throughput protein engineering, where most samples are measured once,43

and prioritization decisions have to be made on the basis of these measurements. As such, we reasoned44

that we could use this public data to illustrate how hierarchical Bayesian models can be used to guide45

decision-making under uncertainty in a high throughput measurement setting. Where appropriate,46

we will contrast the Bayesian workflow against the traditionally used "separate curve fitting" with47

maximum likelihood estimation. 1
48

1.1. Base Model Definition49

The model provided in [8] for the melting temperature of a protein, as done by their measurement50

technique, is given by51

f (L, a, b, T) =
1− L

1 + e−(
a
T−b)

+ L

Here, L is the lower bound of the melting curve, which is treated as a random variable to estimate;52

a
b is the characteristic melting point of a protein, and T is the temperature at which a measurement is53

taken.54

The modifications we made to the model to enable hierarchical modelling are detailed in the55

Materials and Methods section.56

1.2. Data characteristics and summary statistics57

The data that was provided by the authors are 1.1 million rows of measurements, which contain:58

1. The species and extraction method that a protein was isolated from.59

2. The protein ID (a unique identifier encompassing its gene name)60

3. The gene from which the protein is expressed61

4. The temperature at which an observation was taken62

5. The fold change of detected stable protein at that temperature, relative to the level at the lowest63

measured temperature.64

Of the 41,730 proteins that were measured, 11,142 of them had no melting point assigned. This is65

a direct result of the curve fitting protocol used in the original analysis [8], which included criteria for66

data quality checks.67

1 As we are focusing on the application of hierarchical Bayesian methods to high throughput measurements, we will only be
discussing the relevant protein biochemistry in light detail. Any biological assumptions and conclusions we draw are held
lightly; specific improvements to the model are discussed only in brief.
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2. Validation of model implementation68

2.1. Melting curves69

To validate whether our model implementation was done correctly or not, we employed a few70

diagnostics. Firstly, we rank-ordered proteins by their melting temperatures and spot-checked a subset71

of curves. Proteins that had low posterior uncertainty generally had high quality curves, such as the72

blue curves in Fig. 1. In this regime, the estimated melting temperatures from separate curve fitting73

(dotted lines) generally agreed with the hierarchical Bayesian fits (solid line and shaded area), with74

minimal differences in the estimated melting temperature. As the posterior uncertainty increases,75

we gradually observe lower quality curves (yellow and red in Fig. 1. In particular, the red curves76

come from data that failed quality checks in the original analysis method, and hence did not have an77

assigned melting temperature. For the proteins that did have a melting temperature assigned, the78

magnitude of the difference between the hierarchical Bayesian estimate and the maximum likelihood79

estimate co-varies with the magnitude of the posterior distribution standard deviation, but is generally80

centered around zero (Fig. 2).81

Figure 1. Example estimated melting curves against original measurement data for three species
(by row). Blue figures are curves from proteins that had the lowest variance in estimated melting
temperatures for each species. Yellow figures are curves from proteins for which melting points are
not obvious from the data and did not have an assigned melting temperature, but nonetheless could
plausibly be assigned one. Red figures are curves from proteins that exhibited highest variance in
estimated melting temperature for each species. Dotted lines indicate separate curve fit using SciPy’s
curve fitting facilities (Materials and Methods); cases where errors were raised in curve fitting are
omitted.
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Figure 2. Proteins with greater discrepancies between the two methods for their estimated melting
points also had greater uncertainties for their Bayesian estimated melting points. Residual is calculated
by taking the Bayesian estimated melting point minus the separate curve estimated melting point.

2.2. Posterior variance82

In the meltome paper, proteins that had melting curves that failed quality control checks did not83

get assigned a melting temperature. In a hierarchical Bayesian setting, we expect that these proteins’84

curves should give us high uncertainty in their posterior estimates. Indeed, in our model fits, we85

observe this phenomena. Where our model imputed a protein’s melting temperature because of bad86

curve data (as assessed by the curve quality control checks), the posterior uncertainties for those87

melting temperatures were much higher than those without imputation (Fig. 3).88
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Figure 3. Imputed melting temperatures have higher uncertainty than non-imputed melting
temperatures.

3. Principled, Bayesian decision-making in high throughput settings89

In this section, we discuss what hierarchical Bayesian modeling enables when used in lieu of90

separate curve fitting.91

In a setting where we measure high throughput dose response data, the goal is to find92

extreme-valued entities on the desirable side, such as low IC50 molecules for protein binders, or93

high stability proteins for stability. Some downstream questions that need to be answered generally94

fall into the categories of:95

1. Which samples need higher quality confirmatory measurements?96

2. Which samples should we take forward for further investigation in other measurement modes?97

A classic constraint we find ourselves in is that of capacity: it is infeasible to take everything that98

is desirable. Additionally, it is desirable for us to have a ranking principle that factors in the confidence99

we have in any particular sample measurement. Leveraging the uncertainty in our estimates gives us100

a path towards principled decision making.101

In the next two sections, we outline how to address the decision-making dilemma in a principled102

fashion.103

3.1. Acquiring informative measurements104

One of our goals might be to acquire re-measurements of samples to improve the quality of our105

data set. To do so, we could rank-order samples by their posterior uncertainty in their measurements.106

(Fig. 4 (a)) In our example, this would be samples that have the highest posterior variance in107

melting temperatures; in classic molecular screening settings, this may be samples with highest108

IC50 measurement uncertainties. Doing so would allow us to improve our data set quality in an109

iterative fashion, with uncertainty being the guiding principle for re-measurement.110
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3.2. Confirming optimal measurements111

In a vein similar to the acquisition of more informative measurements, we may wish to acquire112

confirmatory or secondary measurements on samples that have measurement values greater than113

a particular threshold. An example where this shows up is in enzyme engineering. Our primary114

assay measurement may be cheap to conduct, but the confirmatory assay may be more expensive. In115

addition, we may be doing multi-objective optimization, and the secondary properties that we are116

optimizing for may be similarly expensive to measure. Made concrete, enzyme thermal stability is117

often a cheap and high-throughput measurement to acquire, while enzyme chiral activity requires118

more sophisticated instrumentation and is hence more difficult to conduct. In scenarios like this,119

our desired selection of samples are the ones that have the highest probability of being above some120

threshold we define a priori. (Fig. 4 (b) Here, access to the posterior distribution allows us to calculate121

the probability of a sample being greater than a particular value and thus rank-order all samples122

according to this principle.123

3.3. Prioritizing samples for further modification124

One other goal we might have would be to select samples from the pool of measurements as a125

baseline for further optimization. This is a classic protein and molecular engineering problem. Given126

the uncertainties in our measurements, by what principle could we select samples as our baseline?127

This problem is similar to the previous section, where the desired outcome is the selection of128

the best new starting point. The difference lies in that in molecular and protein engineering, we are129

effectively optimizing, or searching, for samples that have extreme values. Higher activities, greater130

binding affinities, or smaller catalysis rates are what we are in search of. Hence, we once again131

desire samples that have the highest probability of being better than the rest as our new starting132

point. To calculate this, we would simply compare each sample’s posterior estimates and calculate133

the probability of superiority w.r.t. other samples’ estimates (Fig. 4 (c)). By contrast, under a classical134

setting, picking the sample with the most desirable point estimate would only give us samples that135

have the highest expected value, which does not help us explore extremities as effectively.136

Figure 4. Probabilistic decision-making framework leveraging posterior distributions. (a) In choosing
the next most informative re-measurement, we would suggest taking the blue sample because it has the
highest uncertainty. (b) In choosing samples for confirmatory measurements that are above a threshold
value defined a priori, we would suggest taking the red sample because it has the highest probability
of being greater than a threshold value. (c) To decide which samples to use as a base for further
modification towards extreme values, we would calculate the probability of superiority between all
pairs of samples and identify the one that has the highest probability.
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Run Name Mean StDev Min 25% 50% 75% Max

A. thaliana seedling lysate 43.8 1.5 34.6 43.1 43.9 44.5 49.6
B. subtilis lysate 43.7 3.0 36.8 41.9 43.8 44.8 58.4
C. elegans lysate 44.0 3.5 34.2 42.2 44.5 45.4 57.6
D. melanogaster lysate 43.3 2.6 39.2 41.9 42.5 43.7 54.6
E. coli cells 54.1 3.5 45.4 51.8 53.8 55.7 67.1
E. coli lysate 55.2 4.6 45.9 51.8 54.1 57.9 67.3
G. stearothermophilus lysate 81.9 5.7 59.7 77.7 81.3 85.8 97.3
M. musculus BMDC lysate 49.4 2.0 44.0 48.2 49.4 50.7 60.0
M. musculus liver lysate 51.0 2.2 44.4 49.7 51.0 51.8 64.1
O. antarctica lysate 48.8 4.5 36.5 46.0 47.5 51.3 63.7
P. torridus lysate 72.9 3.6 65.2 70.5 72.2 74.5 83.6
S. cerevisiae lysate 47.1 2.3 40.9 45.7 46.8 48.4 55.4
T. thermophilus cells 108.5 8.5 80.7 104.8 110.3 114.5 125.0
T. thermophilus lysate 107.3 8.4 79.2 101.8 109.0 113.4 125.0

Table 1. Summary statistics of the imputed melting temperatures, excluding D. rerio.

4. Discussion137

4.1. Hierarchical Bayesian methods enable reasonable estimates where separate curve-fitting fails to provide one138

The key analysis "safeguards" that the meltome authors used to call a non-melter, and hence139

assign no melting temperature to a protein, was a combination of a threshold value for the lower-bound140

and a normalized area under the curve value [8,9]. However, one may ask the question: do we expect141

proteins to "not melt" under increasing thermal stress? Using a hierarchical Bayesian model, we142

effectively express a prior in the model structure that all proteins do eventually "melt" under thermal143

stress; proteins with low quality measurements can still be assigned a melting temperature. As shown144

by our imputation distributions, the imputed values generally fall within the regime of This stands in145

contrast to the original statistical analysis protocol, in which this model-wise structural assumption146

cannot be encoded in the model, thus requiring external heuristics as a safeguard for "quality" of data.147

As for the question of which assumption is more reasonable, the answer would require debate and148

justification.149

In the meltome atlas authors’ statistical methods, data that did not fulfill quality control criteria150

were given a null value for their estimated melting temperatures. By contrast, our use of a hierarchical151

Bayesian model that baked in biologically-relevant priors enabled us to provide imputed melting152

points that fell within the general regime of those that did have melting points estimated (Table 1),153

Because we have the posterior distributions inferred, further statistical analysis can leverage this154

model-based multiple imputation [10]. In doing so, we have managed to preserve hard-won data155

points without discarding them, even if their quality were questionable, and we have a framework for156

deciding which to re-measure if we so desired.157

A natural caveat to this imputation method is that the imputed values are only as good as the158

model’s assumptions. For example, we do not factor in horizontal gene transfer or prior knowledge159

of a protein’s known function, both of which might affect our estimates of that protein’s melting160

point. We reiterate, as a reminder to the reader, that where the data quality are good, separate curve161

fitting and hierarchical Bayesian curve fitting will generally match up; one of the value propositions of162

hierarchical Bayesian curve fitting lies in principled model-based imputation where the data quality might163

not permit such a thing.164

4.2. Limitations of our model and inferential procedure165

We used approximate Bayesian estimation through ADVI [11] because of the large number of166

data points present. Though we ran it for a long number of steps (Materials and Methods), and could167

visually inspect for convergence loss, we could still be under-fitting. One other consequence of using168
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ADVI is that the posterior distributions will have an under-estimated variance [12]. Suppose we are169

concerned mostly with the expected values of our posterior distributions. In that case, we expect to170

run into few issues. By contrast, if we are concerned with leveraging the posterior distribution for171

input design problems [13], such as optimizing melting temperatures, where the extremities of the172

posterior distributions are important, then the use of ADVI would give us less extreme extremities.173

For this particular model, further hierarchical structure could have been imposed on protein174

measurements that came from both cells and lysate, or from two tissues. For simplicity’s sake, we175

treated these measurements as independent. However, incorporating this knowledge into the structure176

of the model would be an obvious next step to improve it for this dataset. By extension, similar177

knowledge may be incorporated into other estimation models for different experiments. However,178

we do not anticipate that this point interferes with the main point of our article, which describes a179

decision-making protocol in high throughput experimentation that leverages hierarchical modelling’s180

advantages.181

4.3. The promise of hierarchical Bayesian models in high throughput biological measurements182

High throughput biological measurements are known to be extremely noisy. Small sample183

volumes, large numbers of samples, and measurement of non-control samples with single replicates,184

all contribute to the noise. The corollary is that these we may expect extreme-valued measurements to185

show up by pure random chance and systematic error. Even though in some settings we may wish to186

find extreme values, we desire not to be fooled by random and systematic error. With shrinkage and187

posterior analysis, hierarchical Bayesian modelling provides us with a principled way out.188

In our case study, we have provided an example where in curve-fitting scenarios, such as dose189

response curves, regularization provided by hierarchical Bayesian models can act as a model-based190

safeguard against random extreme and noisy measurements, allowing us to provide a curve parameter191

estimate despite noisy measurements, while providing posterior uncertainties as a quality control192

measure. These posterior uncertainties can also help inform downstream experiments, such as deciding193

whether to re-measure a sample, re-measure groups of samples, or deciding which samples to take194

forward other measurements. We believe that developing hierarchical models in high throughput195

biological measurements may better leverage all available data and guide better iterative experimental196

design.197

5. Materials and Methods198

5.1. Hierarchical Bayesian Estimation Model199

Here, we describe the model structure. A graphical representation of the model is available in Fig.200

5201
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Figure 5. Graphical representation of the hierarchical model.

Our observed data, the fold change y across all proteins, are assumed to be Gaussian-distributed,202

with the central tendency µ for each observation given by the melting curve function f (which is a203

function of both temperature and the L, a and b parameters), and errors assumed to be homoskedastic.204

y ∼ Normal( f (Lp,r, ap,r, bp,r, T), σp)

Now, we describe the prior distribution assumptions that lead to each of the parameters.205

L, the lower-bound, is given by a hierarchical prior, and is indexed on a per-protein basis, Lp,206

where p ∈ {0, 1, 2, ...} indexes each protein. It is modeled by an Exponential distribution, with the207

population rate prior Le also given by a relatively flat Exponential distribution. (Subscript e indicates208

experiment.) This parameter helps us capture a global measurement lower-bound for each experiment,209

as we know from the experiment description [8] that the experimental conditions primarily influence210

the lower-bound.211

Le ∼ Exponential(
1

30
)

Lp ∼ Exponential(Le)

Together, a and b give us the melting point Tm = a
b , and are indexed on a per-protein basis.212

However, to model the organism-wide melting temperature, we introduce a per-organism ar and br,213

which are random variables modeled by a positive-only Normal distribution. (The subscript r is used214

instead of o for visual clarity, and r is the second letter of "organisms".)215

Given the curve equation, a and b have to be positive for the curve to take on a denaturation216

shape (i.e. decreasing y as temperature increases.) We then model a shift in a and b that is indexed by217

protein δa,p and δb,p, which shifts the value of a and b from the organism level to give us a per-protein218

ap,r and bp,r.219

Additionally, ar and br are given population priors (al and bl). (We use subscript l to denote220

that these are global priors across the tree of life.) Taken together, this model structure expresses that221

proteins from one organism most likely shares an underlying melting temperature distribution with222

other proteins from the same organism.223

In mathematical notation, starting with the random variable a:224

al ∼ Normal(500, 1)
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ar ∼ BoundNormal(al , 10)

δa,p ∼ Normal(0, 3)

ap = ar + δa,p

And now for the random variable b:225

bl ∼ Normal(10, 1)

br ∼ BoundNormal(bl , 1)

δb,p ∼ Normal(0, 1)

bp = br + δb,p

Their noise is assumed to be homoskedastic on a per-protein basis, i.e. σp, and is modeled with a226

standard HalfCauchy prior (with β = 1).227

σp ∼ HalfCauchy(1)

We caution that this model is bespoke for the meltome dataset; other datasets with different228

structural assumptions will require a different model.229

The model was implemented in PyMC3 [14]. Because of the size of the data set, we used ADVI for230

200,000 steps with default settings instead of the default NUTS sampling, yielding an approximation231

to the posterior distribution from which we drew 2000 samples.232

5.2. High Throughput Measurement Data233

High throughput measurement data were sourced from the Meltome Atlas’ public-facing web234

server (at http://meltomeatlas.proteomics.wzw.tum.de:5003/) on 15 April 2020.235

5.3. Separate curve fitting236

Separate curve fitting was performed using the "curve fit" function in the "optimize" submodule237

of the SciPy library [15].238
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The following abbreviations are used in this manuscript:245

246

ADVI Automatic Differentiation Variational Inference247
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