SUPPLEMENTARY INFORMATION

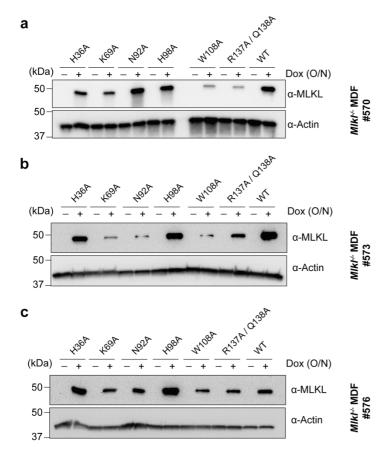
Membrane permeabilization is mediated by distinct epitopes in mouse and human orthologs of the necroptosis effector, MLKL

Ashish Sethi^{1,5}, Christopher R. Horne^{2,3,5}, Cheree Fitzgibbon², Karyn Wilde⁴, Katherine A. Davies^{2,3}, Sarah E. Garnish^{2,3}, Annette V. Jacobsen^{2,3}, André L. Samson^{2,3}, Joanne M. Hildebrand^{2,3}, Ahmad Wardak², Peter E. Czabotar^{2,3}, Emma J. Petrie^{2,3}, Paul R. Gooley¹, James M. Murphy^{2,3,*}

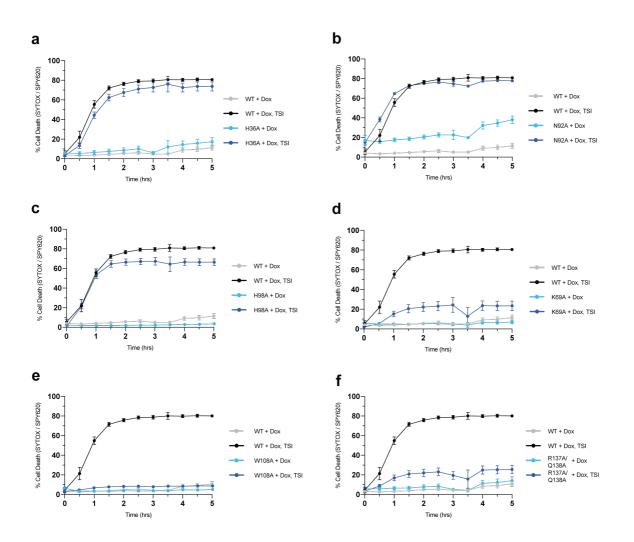
¹ Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia

² Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia

³ Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia


⁴ National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia

⁵ These authors contributed equally


* Please address correspondence to JMM (jamesm@wehi.edu.au)

SUPPLEMENTARY FIGURES

Supplementary Figure 1 | Expression of wild-type and mutant mouse MLKL in *Mlkt*^{-/-} MDF cells. Following doxycycline (Dox) induction, whole cell-lysates were fractioned by SDS-PAGE and probed by immunoblot for MLKL with anti-actin as a loading control. Immunoblots are representative of n = 2 independent experiments.

Supplementary Figure 2 | Raw IncuCyte data of cell death mediated by wild-type and mutant mouse MLKL. a-f) To establish the contribution of each lipid-binding residue in cellular necroptosis signaling, full-length wild-type (WT) and mutant mouse MLKL were stably introduced into $Mlkl^{-/-}$ MDF cells. Following doxycycline (Dox) treatment to induce expression, percent cell death was quantified using IncuCyte S3 live cell imaging in the presence or absence of the necroptotic stimulus, TNF and Smac-mimetic Compound A and pan-caspase inhibitor, IDN-6556, (TSI) for 5 h, by determining the number SYTOX Greenpositive cells (dead cells) relative to the number of SPY620-positive cells (total cell confluency). The percent cell death of wild-type mouse MLKL is shown in each plot as a reference. Data represent mean \pm SEM from three biologically independent $Mlkl^{-/-}$ MDF cell lines (n = 6 to 9).

SUPPLEMENTARY TABLES

MLKL mutation	Location of mutation	Lipid-binding (Impact on liposome permeabilization)	Necroptotic signalling function
mMLKL WT			+
mMLKL Y15A/E16A	α1 helix	N/D	_1
mMLKL C18A/C24A/C28A	$\alpha 1/2$ helix	N/D	_1
mMLKL K22A/R30A	$\alpha 2$ helix and preceding loop	N/D	_1
mMLKL H36A	α2 helix	Yes (compromised)	$+^{\dagger}$
mMLKL R63A/D65A	α3 helix	N/D	_1
mMLKL K69A	α3 helix	Yes (compromised)	$Reduced^{\dagger}$
mMLKL E70A/N72A	α3 helix	N/D	_1
mMLKL E76A/K77A	α3 helix	N/D	_1
mMLKL K80A/K81A	a3-a4 loop	N/D	_1
mMLKL N92A	a3-a4 loop	Yes (comparable to WT)	+†
mMLKL H98A	α4 helix	Yes (compromised)	$+^{\dagger}$
mMLKL H98A/E99A	α4 helix	N/D	_1
mMLKL E102A/K103A	α4 helix	N/D	_1
mMLKL R105A/D106A	α4 helix	N/D	_1, 2
mMLKL W108A	α4 helix	Yes (compromised)	_†
mMLKL E109A/E110A	α4 helix	N/D	_1, 2
mMLKL LLLL ¹¹²⁻¹¹⁵ AAAA	α4 helix	N/D	_1
mMLKL R137A/Q138A	First brace helix	Yes (compromised)	_†

Supplementary Table 1 | Summary of wild-type and mutant mouse MLKL properties

 $N/D = Not determined; - = loss-of-function; ^{\dagger} This study$

MLKL mutation	Location of mutation	Lipid- or IP6-interactor	Impact on liposome permeabilization	Necroptotic signalling function
hMLKL WT				+
hMLKL E2A/N3A	α1 helix	Lipid	Compromised	_3
hMLKL K5A	al helix	Lipid	Compromised	_3
hMLKL H15A	al helix	IP6	N/D	N/D^4
hMLKL K16A/R17A	al helix	Lipid	Compromised	Reduced ^{3, 5}
hMLKL E19A	al helix	IP6	N/D	N/D^6
hMLKL K22Q/K25Q	$\alpha 2$ helix and preceding loop	Lipid	Compromised	_7
hMLKL R29E/R30E	α2 helix	Lipid	Compromised	_7
hMLKL L36A	α2 helix	IP6	N/D	N/D^6
hMLKL K50A/K51A	α2-α3 loop	Lipid	Compromised	_3
hMLKL K78A	α3 helix	IP6	N/D	N/D^6
hMLKL D107A/E111A	α4 helix	Lipid	Compromised	_5, 8
hMLKL L114A	α4 helix	Lipid	Compromised	_8
hMLKL L116A	α4 helix	IP6	N/D	N/D^6
hMLKL E119A	α4 helix	IP6	N/D	N/D^6
hMLKL R152A	First brace helix	IP6	N/D	N/D^6

Supplementary Table 2	Summary of wild-type ar	nd mutant human MLKL properties

N/D = Not determined; - = loss-of-function

Supplementary Table 3 | Primers used in this study

Primer name	Sequence	
mMLKL Bam 5' fwd*	5'-CGC <u>GGATCC</u> atggataaattgggacagatcatc-3'	
mMLKL 158 stop EcoRI rev	5'-CGC <u>GAATTC</u> Agctaatttgcaactgcatcaggataac-3'	
mMLKL 464 stop EcoRI rev	5'-CG <u>GAATTC</u> ttacaccttcttgtccgtggattc-3'	

*Restriction sites underlined

Supplementary Table 4 | Plasma membrane-like lipid mix for liposomes

Lipid	Proportion of plasma membrane-like mix	Source	
Phosphatidylethanolamine (POPE)	20%		
Phosphatidylcholine (POPC)	40%	Avanti Polar Lipids (Alabaster, AL, USA)	
Phosphatidylinositol (PI)	10%		
Phosphatidylserine (DOPS)	20%		
Phosphatidylglycerol (POPG)	10%		

SUPPLEMENTARY REFERENCES

- 1. Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, *et al.* Activation of the pseudokinase MLKL unleashes the fourhelix bundle domain to induce membrane localization and necroptotic cell death. *Proc Natl Acad Sci U S A* 2014, **111**(42): 15072-15077.
- 2. Tanzer MC, Matti I, Hildebrand JM, Young SN, Wardak A, Tripaydonis A, *et al.* Evolutionary divergence of the necroptosis effector MLKL. *Cell Death Differ* 2016, **23**(7): 1185-1197.
- 3. Quarato G, Guy CS, Grace CR, Llambi F, Nourse A, Rodriguez DA, *et al.* Sequential Engagement of Distinct MLKL Phosphatidylinositol-Binding Sites Executes Necroptosis. *Mol Cell* 2016, **61**(4): 589-601.
- 4. Dovey CM, Diep J, Clarke BP, Hale AT, McNamara DE, Guo H, *et al.* MLKL Requires the Inositol Phosphate Code to Execute Necroptosis. *Mol Cell* 2018, **70**(5): 936-948 e937.
- 5. Petrie EJ, Sandow JJ, Jacobsen AV, Smith BJ, Griffin MDW, Lucet IS, *et al.* Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis. *Nat Commun* 2018, **9**(1): 2422.
- 6. McNamara DE, Dovey CM, Hale AT, Quarato G, Grace CR, Guibao CD, *et al.* Direct Activation of Human MLKL by a Select Repertoire of Inositol Phosphate Metabolites. *Cell Chem Biol* 2019.
- Su L, Quade B, Wang H, Sun L, Wang X, Rizo J. A plug release mechanism for membrane permeation by MLKL. *Structure* 2014, 22(10): 1489-1500.
- 8. Petrie EJ, Birkinshaw RW, Koide A, Denbaum E, Hildebrand JM, Garnish SE, *et al.* Identification of MLKL membrane translocation as a checkpoint in necroptotic cell death using Monobodies. *Proc Natl Acad Sci U S A* 2020, **117**(15): 8468-8475.