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Abstract 

Modern benchtop DNA synthesis techniques and increased concern of emerging pathogens have elevated the importance 

of screening oligonucleotides for pathogens of concern. However, accurate and sensitive characterization of 

oligonucleotides is an open challenge for many of the current techniques and ontology-based tools. To address this gap, we 

have developed a novel software tool, SeqScreen, that can accurately and sensitively characterize short DNA sequences 

using a set of curated Functions of Sequences of Concern (FunSoCs), novel functional labels specific to microbial 

pathogenesis which describe the pathogenic potential of individual proteins. We show that our ensemble machine learning 

model after training on these curations can label sequences with FunSoCs via an imbalanced multi-class and multi-label 

classification task with high accuracy. In summary, SeqScreen represents a first step towards a novel paradigm of 

functionally informed pathogen characterization from genomic and metagenomic datasets. SeqScreen is open-source and 

freely available for download at: www.gitlab.com/treangenlab/seqscreen  

Introduction 

Rapid advancements in synthesis and sequencing of genomic sequences and nucleic acids have ushered in a new era of 

synthetic biology and large-scale genomics. While the democratization of reading and writing DNA has greatly enhanced 

our understanding of large-scale biological processes1, it has also introduced new challenges2. These include use of novel 

DNA synthesis strategies for potentially harmful applications either by accident or intentionally, posing significant biosafety 

and biosecurity risks3. Previous work in which poliovirus cDNA4 and the 1918 Flu virus5 were synthesized in the absence 

of a template illustrate the possibility of making infectious agents purely through biochemical means. In addition to 

synthesized pathogens, the diversity of naturally evolving and emerging pathogenic sequences also obscures such analysis. 

Some contributing factors to the aforementioned analysis include the role of abiotic and environmental stress response genes 
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in virulence, presence of seemingly pathogenic sequences in commensals, host-specific pathogen virulence, and interplay 

of different genes to generate pathology3. Accurate and sensitive detection of pathogenic markers has also been confounded 

by the difficulty of characterizing multifactorial microbial virulence factors in the context of the biology of the host6. The 

limited number of publicly available databases to annotate and identify specific pathogenic elements within sequencing 

datasets further exacerbates the problem. Thus, there exists a need in the community for a tool that can accurately 

characterize genomic sequences in the context of functional pathogen detection and identification, thereby sensitively 

capturing sequences of concern (SoCs) in each sample3. 

 

Due to difficulties with automated annotations and the lag between experimental results and sequence annotations, 

identifying sequences involved in pathogenesis is an ongoing challenge7-8. Gene Ontology (GO) terms were not designed 

to solely capture the nuanced biological processes and molecular functions specific to pathogens, and the pathogenesis GO 

term (GO:0009405) was recently scheduled for obsolescence, with the final notice given in March 2021 

(https://github.com/geneontology/go-annotation/issues/3452). In its absence, there is no way to recognize the pathogenic 

possibilities of >275K UniProt accessions. Tremendous recent progress has been made with respect to taxonomic 

classification and pathogen characterization from isolates and metagenomic datasets. However, all existing methods either: 

i) assume the presence of the entire genome, ii) ignore functional information, or iii) are ill-equipped to analyze individual 

short sequence lengths typical of synthesized oligonucleotides (Table 1). For example, the current best practices 

recommendation for oligonucleotide screening by The International Gene Synthesis Consortium (IGSC) focuses solely on 

the presence or absence of BSAT select agents9. Previous benchmarking studies on microbial identification from 

metagenomes have shown that there exists a crucial tradeoff between taxonomic resolution and accuracy given the current 

state-of-the-art tools10. While modern synthetic biology and computational methods have made it possible to design and 

synthesize a wide variety of custom DNA11,12, there exists a gap in annotation frameworks able to accurately identify known 

and emerging pathogens from short oligonucleotides13.   

 

Recent studies have shown the potential of using k-mer based probabilistic models leveraging k-mer genotyping and logistic 

regression analysis to identify k-mers indicative of antibiotic resistance14. Other tools incorporating statistical frameworks 

for predicting markers of pathogenicity from sequencing data include PathoScope15,16  and SURPI17. The former utilizes 

sequence quality and mapping quality as parts of a Bayesian model to rapidly compute posterior probabilities of matches 

against a database of known biological agents, while the latter uses either Scalable Nucleotide Alignment Program (SNAP)18  

based alignments to bacterial or viral databases and in some cases RAPSearch19 for more sensitive identification. Both tools 

also had separate releases, Clinical PathoScope20 and SURPI+21, specifically focused on pathogen characterization from 

clinical samples. Another k-mer based tool by CosmosID22, precomputes reference databases (reference genomes as well 

as virulence and antimicrobial resistance markers) to create a phylogeny tree of microbes as well as variable-length k-mer 

fingerprint sets for each branch and leaf of the tree. Sequencing reads are then scanned against these unique fingerprint sets 

for detection and taxonomic classification. The statistics derived are then refined using predefined internal thresholds and 

statistical scores to exclude false positives and fine grain taxonomic and relative abundance estimates. Evaluations of this 

approach have shown that CosmosID achieves a high level of sensitivity in antibiotic resistance gene detection for predicting 
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staphylococcal antibacterial susceptibility23; however, this is not an open-source tool and was not further evaluated in this 

study. 

 

Previously, we introduced a proof-of-concept framework24 for robust taxonomic and functional characterization of 

nucleotide sequences of interest. Here, we build upon the earlier framework and present a robust and comprehensive tool 

based on ensemble machine learning and functions of sequences of concern (FunSoCs) for pathogen identification and 

detection. Our system, SeqScreen, combines alignment-based tools, ensemble machine learning classifiers, curated 

databases, and novel curation-based labelling of protein sequences with pathogenic functions, to identify sequences of 

concern in high throughput sequencing data. Through careful, manual assignment of pathogenic functions based on 

published investigations of each sequence, SeqScreen depends on high quality training data to predict FunSoCs accurately. 

SeqScreen aspires to be the first tool to combine human interpretability and machine learning-based classification in a 

human-in-the-loop construct to provide a holistic solution towards classifying pathogens and offers a novel functional 

framework for pathogen identification in contrast to existing tools (Table 1.). 

Results 

Functional Benchmarking 

Recent studies have underlined the significance of accurate functional annotation in various biological25,26, pathological27,28, 

and drug design29,30 applications. Though advances have been made to label protein sequences with corresponding GO 

terms, this task remains a challenging problem especially for shorter sequences. To assess the ability of SeqScreen to 

accurately annotate proteins and short sequences, we analyzed the performance of SeqScreen on 250 proteins from the 

CAFA 331 training datasets. All the proteins chosen for benchmarking had associated FunSoC labels and hence were 

sequences containing markers considered to be harmful to humans by a panel of subject matter experts. In addition to full-

length sequences, we also looked at protein fragments of four different lengths (34, 50, 67 and 80 amino acids) sampled 

from the same set of 250 proteins. For the purposes of this benchmarking experiment, we compared against three other 

functional annotation tools shown to do well in previous CAFA competitions and other benchmarking studies, namely 

PANNZER232, eggNOG-mapper33 and DeepGOPlus34. It is important to note that these tools were developed to annotate 

unknown full-length protein sequences, and, to our knowledge, no other leading tools have been developed to assign GO 

terms to short protein subsequences. From the CAFA study we only considered those tools that are available to be run as 

command line interfaces, similar to SeqScreen, and hence omit purely web-based servers even if they were amongst the top 

performers in that competition (ex: NetGO35, INGA 2.036). Both DeepGOPlus and PANNZER2 also outputted confidence 

values along with GO terms. We set the lower threshold of confidence values to consider as 0.1 after a sweep of all values 

to determine the one with the best performance. For the full-length sequences, Fig. 1 illustrates the results obtained on this 

dataset. SeqScreen had the highest precision among all the tools considered in the benchmarking study. We also observed 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.02.442344doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442344
http://creativecommons.org/licenses/by-nd/4.0/


4 

that, although DeepGOPlus and PANNZER2 had lower precision than SeqScreen, they had higher recall. The performance 

of eggNOG-mapper on complete sequences was slightly better than on subsequences. 

 
For the partial sequences (34 aa, 50 aa, 67 aa, and 80 aa) sampled from full-length proteins, we evaluated SeqScreen’s 

performance versus the CAFA 3 top performer. Over all four sub-lengths of the proteins, SeqScreen had the highest F1 

score (Fig. 2).  For the 34 amino acid length case, both DeepGOPlus and eggNOG-mapper had poor precision (0.76 and 

0.38 respectively) compared to the rest of the tools. PANNZER2 had the highest recall of all the tools and the second best 

F1 score behind SeqScreen. All tools besides eggNOG-mapper demonstrated better recall than precision. As we increased 

the length to 50 amino acids, eggNOG-mapper showed the most improvement in terms of precision and recall, increasing 

from 0.38 to 0.69 and 0.11 to 0.40 respectively, though it still had lower accuracy than the other three tools. DeepGOPlus 

also showed an improvement in precision from 0.76 to 0.82. At length 67 amino acids, PANNZER2’s recall remained the 

best among the tools whereas its precision dropped from 0.93 to 0.92. Also, DeepGOPlus’s precision starts to pick up, 

increasing from 0.82 to 0.91. Moving from 67 to 80 amino acids, a major change was observed as DeepGOPlus attained a 

higher precision than PANNZER2 (0.95 compared to 0.91) and marginally surpassed PANNZER’s F1 score (0.952 

compared to 0.945). The recall of all the tools increased at 80 amino acids length compared to 67 amino acids.  

Machine Learning - FunSoC Predictions 

FunSoCs encompass sequences involved in the mechanisms of microbial pathogenesis, antibiotic resistance, and eukaryotic 

toxins (e.g., arachnids, cnidarians, insects, plants, serpents) threatening to humans, livestock, or crops. We identified 32 

groups of sequences that could be categorized under the FunSoC framework (Supplementary Table S1) that each protein 

could potentially be assigned to, thereby indicating pathogenicity. We decided to formulate this as a multi-class, multi-label 

(i.e., each protein/sequence can be associated with one or more of the 32 FunSoCs) ML classification problem.  In order to  

annotate potentially large numbers of query sequences with FunSoCs, we reasoned that utilizing a lookup table containing 

pre-predicted FunSoC labels (obtained from the ML models) for the proteins in the UniProt database would enable efficient 

extraction of labels for corresponding hits from the query to the table. Towards this, we tested 10 ML models based on three 

different strategies that use different feature selection criteria as well as a two-step pipeline that aims to filter proteins that 

are not associated with any FunSoCs. These models were trained on proteins manually curated and labelled with FunSoCs.  

For the purposes of our discussion, we show the top three performing models. To gain a more nuanced understanding of the 

models’ performances, we considered the average precision and recall of the models on the positive labels specifically, i.e., 

proteins that were labelled with a “1” (minority class) for a particular FunSoC. This is an important measure to understand 

how well they learn to predict the minority positive class given the data imbalance which mirrors a practical application of 

SeqScreen where the expected number of non-pathogenic sequences in a sample is larger than specific pathogenic markers. 

Our test splits were reflective of this imbalance, for example, the test split for the FunSoC virulence activity had 23292 

samples labelled “0” and 29 samples labelled “1”.  Table 2 shows the results of different models for each of the metrics. 

Although the accuracy of the methods is similar, we observed significant differences in the positive label precision and 

recall. Two Stage Detection + Classification Neural Networks (TS NN) and Two Stage Detection + Classification Balanced 
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Support Vector Classifier (TS Bl.SVC) represented two different ends of the spectrum of precision and recall, the former 

being more precise (P: 0.88, R: 0.69) and the latter being more sensitive (P: 0.73, R:0.88). We also found that Balanced 

Support Vector Classifier + Neural Network Classification using Oversampling (Bl. SVC+NN(OS)) represented an 

intermediate version of the other two models with precision and recall being more balanced (P: 0.87, R: 0.81). The majority 

vote classifier built on these three classifiers to provide a further improvement in the specificity with a slight loss in terms 

of recall (P: 0.90, R:  0.82). To get a more detailed perspective of the performance of the models on each of the FunSoCs, 

we plotted the positive label precision and recall per FunSoC. As seen in Fig. 3, the Majority Voting classifier combined 

the strengths of these individual classifiers to balance precision and recall across these FunSoCs.  

 

Use case #1: Screening for known pathogens  

We first present three pairs of hard-to-distinguish bacteria that often confound current metagenomic classification tools to 

show how SeqScreen analyzes and distinguishes hard-to-classify pathogens. Fig 4. describes the FunSoCs found to be 

associated with each of the eight bacterial isolate genomes. All isolates showed presence of different antibiotic resistance 

genes, indicating their ubiquitous presence in most bacteria. In Fig. 4 (a,b) we show a comparison of the commensal strain 

of E. coli K-12 MG1655 versus the pathogenic strain E. coli O157:H7. The two strains showed presence of four FunSoCs, 

namely cytotoxicity, secreted effector, secretion, and antibiotic resistance. SeqScreen was able to accurately predict the 

additional presence of Shiga toxin subunit B (stxB)37 in pathogenic E. coli O157:H7 with the cytotoxicity FunSoC and 

differentiate it from E. coli K-12 MG1655. In addition, E. coli O157:H7 also showed the presence of the secreted effector 

protein EspF(U), which was labelled with the secreted effector and virulence regulator FunSoCs. Another example is shown 

in Fig. 4 (c,d) where Clostridium botulinum and Clostridium sporogenes are shown to be differentiated by four specific 

FunSoCs associated with C. botulinum. Though the organisms have a high degree of overall sequence similarity, C. 

botulinum contains the BotA toxin which is absent from C. sporogenes. We observed the presence of four FunSoCs 

associated with C. botulinum, which included disable organ, cytotoxicity, degrade ecm and secreted effector associated with 

hits to the BotA and neurotoxin accessory protein (orf-X2) genes, indicating the presence and the successful detection and 

annotation of pathogenic genes in C. botulinum. In contrast, C.sporogenes showed a unique hit to the secretion FunSoC, 

while both organisms were marked with a hit to the bacterial counter signaling and antibiotic resistance FunSoCs. Fig. 4 

(e,f) shows that FunSoCs can also be used to differentiate between Streptococcus pyogenes (Group A Streptococcus, 

causative agent of Strep throat) and Streptococcus dysgalactiae (Group C/G Streptococcus), a near neighbor with pathogenic 

potential. S. pyogenes had the streptopain (speB) and exotoxin type H (speH) genes associated with the induce inflammation 

FunSoC, whereas S. dysgalactiae had the immunoglobulin G-binding protein (spg) gene with the counter immunoglobulin 

FunSoC, thereby differentiating it from S. pyogenes. Both bacteria showed presence of cytotoxicity, secretion, and antibiotic 

resistance. In addition to pathogens, we show in Fig. 4 (g,h) that the FunSoC based framework can also capture well-

characterized commensals like Streptococcus salivarius and Lactobacillus gasseri. We see that both these bacteria reported 

the least number of FunSoCs, validating the negative control experiment. S.salivarius contained a hit the secretion FunSoC 
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from genes encoding competence proteins. In differentiating near neighbor pathogens, SeqScreen selectively annotated 

regions in genomes that contributed to pathogenicity across various categories.  

                            

In addition to FunSoCs assignments, we evaluated how existing alignment approaches handle the identification of pathogen 

near neighbors. To motivate our experiments, we initially considered the widely used BSAT list to triage isolates (see 

Methods section on SeqMapper), as it is representative of a current strategy for pathogen screening approaches in the DNA 

synthesis industry. We mapped C. sporogenes (SRR8758382) reads against the BSAT database using the Bowtie2 module 

of the SeqMapper workflow, and 98.28% of the reads hit to C. botulinum. The high percentage of hits to C. botulinum 

underlines the shortcoming of simplistic triaging methods to accurately differentiate between near neighbors and 

pathogens. We further considered popular taxonomic classifiers to analyze how accurately near neighbor pathogens were 

separated. We compared the results of six different tools, Mash dist38, Sourmash39, PathoScope15,16, Kraken240, 

MetaPhlAn241, KrakenUniq42 and Kaiju43, with the following three pairs of near-neighbors and pathogens: E. coli K-12 

MG1655 and E. coli O157:H7, C. sporogenes and C. botulinum, and S. dysgalactiae and S. pyogenes. Table 3 shows the 

results of running the taxonomic tool on these bacteria with their complete databases and the top hits for each are reported. 

Strain level differences between the two E. coli near neighbor was hard for almost all the tools to distinguish. Kaiju and 

MetaPhlAn2 could only predict E. coli at species level for both strains, and since those tools were designed to only report 

down to the species level, strain-level pathogenicity will always be missed. Kraken2 incorrectly predicted non-pathogenic 

E. coli K-12 MG1655 as the pathogenic strain E. coli O157:H7. PathoScope and KrakenUniq incorrectly predicted the 

non-pathogenic E. coli K-12 MG1655 strain as E. coli BW2952 and E. coli O145:H28. Mash dist and Sourmash were the 

only tools that reported the true E. coli K-12 strain. The tools performed considerably better when predicting for E. coli 

O157:H7, as Mash dist, Sourmash, PathoScope, Kraken2 and KrakenUniq were able to predict the strain correctly. When 

considering the two Clostridium near neighbors, PathoScope, Kraken2 and KrakenUniq misclassified C. sporogenes as C. 

botulinum. In contrast, C. botulinum was incorrectly called C. sporogenes by Mash dist, Sourmash and MetaPhlAn2. While 

predicting for the Streptococcus near neighbors, all tools predicted S.pyogenes correctly and only PathoScope misclassified 

S. dysgalctiae as S. pyogenes, while other tools called it accurately. In summary, our experiments demonstrated that none 

of the tools were able to correctly predict all pathogens and near neighbors at the species and strain levels. SeqScreen 

provides a more detailed framework beyond species or strain-level taxonomic classifications to aid the user in interpreting 

the pathogenicity potential of a query sequence, including exact protein hits, GO terms, multiple likely taxonomic labels 

with confidence scores, and FunSoC assignments.  

 

Use case #2: Screening for novel pathogens  

To highlight the advantage of using SeqScreen’s FunSoC based pathogen detection pipeline in contrast to relying on 

taxonomic labels we evaluated how the absence of the exact set of species or strain entries in the database corresponding to 

the bacterial genome query would impact the classifications by these tools. This was done to simulate a query of a novel 

pathogen genome by removing the entries corresponding to the query bacterial genome from the database. We chose two 

tools for this experiment, Mash dist and PathoScope, as modifying their databases for this experiment was readily achievable 
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and both performed well in the previous use case. Table 4 shows the results of the classifiers using these modified databases. 

As expected, the closest near neighbor of the query genome is selected when a pathogen is not present in the database, which 

while representing the expected behavior, is not suitable for sensitive flagging of pathogenic sequences. As is the case with 

the complete databases, both the tools misclassified the E. coli strains with PathoScope only being able to classify E. coli 

K-12 MG1655 at species level and Mash dist instead reporting a hit to the pathogenic E. coli O16:H48 strain. For the 

Clostridium species, both the tools called the pathogen as its non-pathogenic near neighbor, emphasizing the difficulty of 

identifying these pathogens in a simulated novel pathogen environment. In the case of Streptococcus, S. dysgalactiae was 

classified as S. sp. NCTC 11567 by Mash dist and S. intermedius by PathoScope, whereas S. pyogenes was classified as its 

near neighbor S. dysgalactiae by Mash dist and S. infantarius by PathoScope. In contrast, as seen in Fig. 4, retaining genus 

specific hits from SeqScreen was sufficient to observe functional differences between the near neighbor pathogens. This 

experiment showed that current approaches may still fail to separate near neighbor pathogens and hence a novel FunSoC-

based functional framework could help fill the gap and capture sequence level pathogenic markers.  

 

Use case #3: Screening human clinical samples for an unknown pathogenic virus  

To further illustrate SeqScreen’s ability to identify pathogenic sequences in clinical samples, we ran SeqScreen on the 

sequencing data obtained from the peripheral blood mononuclear cells (PBMC) of three COVID-19 patients and three 

healthy patients as reported in the study by Xiong et al44. We reasoned that the samples from COVID-19 patients should 

contain certain reads with functional markers that would indicate presence of the SARS-CoV-2 virus. To better understand 

SeqScreen’s application in analyzing clinical samples for unknown pathogenic viruses, we chose to run an older version of 

SeqScreen (v1.2) on these samples, retaining the same analysis functionality with a database that predated the COVID-19 

pandemic and the inclusion of SARS-CoV-2 virus. This was done for two main reasons. First, we wanted to evaluate 

SeqScreen’s ability to retrieve functional pathogenic information by simulating an experiment with an unknown virus along 

with a database that did not contain the causative virus. Second, we wanted to highlight SeqScreen’s ability to detect GO 

terms and FunSoCs directly from metatranscriptomes of clinical samples with low levels of the novel pathogen. For this 

study, we focused on GO terms that were specific to the COVID-19 samples and viral proteins (i.e., GO terms that were not 

assigned to bacterial, eukaryotic, or archaeal proteins or observed in the healthy controls). Only three GO terms met these 

criteria within one of the COVID-19 samples (CRR119891). All three of the GO terms, suppression by virus of host ISG15 

activity (GO:0039579), induction by virus of catabolism of host mRNA (GO:0039595), and suppression by virus of host 

NF-kappa B transcription factor activity (GO:0039644) were indicative of SARS-CoV-2 virus activity. SeqScreen assigned 

replicase polyprotein 1ab from Bat coronavirus 279/2005 (UniProt ID: P0C6V9, e-value: 5.8e-29) to one sequence read and 

reported these three GO terms in sample CRR119891. Searching for other coronavirus taxonomic assignments in that sample 

revealed one additional read that SeqScreen assigned to spike glycoprotein from Bat coronavirus HKU3 (UniProtID: 

Q3LZX1, e-value: 1.3e-09). No other coronavirus reads were identified in the samples, consistent with the report from the 

original publication in Xiong et al44 that very few to no SARS-CoV-2 reads were identified in the PBMC samples. In the 

SeqScreen v1.2 database, the associated FunSoC with the replicase polyprotein 1ab was evasion and the FunSoCs predicted 

for the spike protein were adhesion and invasion, which reflect the biological functions of the two proteins and indicate 
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presence of virulence. To compare SeqScreen v1.2 results to another tool, we ran HUMAnN245 on the six PBMC 

metatranscriptomes to check for presence of virulence markers and pathways. The HUMAnN2 results did not point to any 

evidence for presence of COVID-19 specific markers in this sample nor the others (Supplementary Data S1), which is 

expected given the focus of the tool on reporting enriched genes and pathways, rather than rare pathogenic sequences. As 

SeqScreen extensively characterizes individual short protein-coding sequences and is geared towards identifying functional 

markers of pathogenicity, it can sensitively detect trace amounts of pathogenic signal in clinical samples. 

Discussion 

The performance of SeqScreen on a wide variety of benchmarking and real datasets highlights SeqScreen’s utility for 

pathogen characterization of short sequences.  One fundamental result of this study is SeqScreen’s demonstrated ability to 

provide functional annotations of partial protein sequences with high accuracy. While annotating full-length sequences, 

SeqScreen showed high levels of precision amongst all benchmarking datasets but DeepGOPlus and PANNZER2 had higher 

levels of recall indicating that, though precise, SeqScreen is selective in its annotation. We showed that SeqScreen has better 

precision on shorter sequences than current functional annotation tools and on a subset of data obtained from the CAFA 331 

challenge. We also established that our machine learning models can learn the underlying GO term annotations and 

keywords associated with proteins and annotate protein-coding sequences with FunSoCs.  

 

Determining the potential for pathogenicity only from information contained in UniProt is challenging because most of the 

sequences that mediate pathogenicity are under-annotated or unannotated. Existing GO terms are not particularly apt for 

describing parasitism as practiced by bacterial, fungal, and protozoan pathogens. In contrast, many GO terms specify how 

viruses parasitize host cells. In general, the viral sequences in UniProt appeared to be of a higher annotation quality than 

those of other parasites. However, one issue with many of the sequences from RNA viruses is that they are represented only 

as parts of polyproteins. The GO term and keyword annotations in UniProt are assigned to the entire polyprotein, which 

prevents the evaluation of the constituent protein functions. For our purposes, we found that the best annotated sequences 

of concern in UniProt were the eukaryotic toxins that affected mammals46. The “toxin activity” GO term designation can be 

problematic for the uninitiated because of its lack of specificity. For example, a toxin may only be toxic for invertebrates or 

plants. Plasmid toxins of the toxin/antitoxin system are only toxic to bacteria, but they are numerous in sequence databases 

and can be reported in generic searches for “toxins”47. To distinguish these, we found the UniProt keywords that subclassify 

toxins to be particularly helpful.  

  

A novel feature of SeqScreen for pathogen detection and characterization is the addition of FunSoCs as a labeling system 

for each sequence in the query. FunSoCs are molecular activities of pathogens that contribute to its pathogenesis in human, 

crop, or livestock hosts. Using controlled vocabularies and other data mined from popular protein databases, we showed 

that our models can capture FunSoCs with a high level of precision. To improve the balance between precision and recall 

over most of the FunSoCs, we proposed a majority voting ensemble classifier. SeqScreen utilizes a lookup table created by 
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classifying all UniProt48 proteins using the ensemble classifier to annotate query sequences with FunSoCs. SeqScreen’s 

FunSoC biocurations are not the first attempt to collate sequences of concern in a specific computational framework and/or 

database. Prior efforts such as the Virulence Factor Database (VFDB)49, Pathosystems Resource Integration Center 

(PATRIC)50, and Pathogen-Host Interaction database (PHI-base)51 all offer resources for identification of virulence factors 

and pathogenic sequences. VFDB is a database of virulence factors that have been widely used52 but is limited due to many 

of the sequences not having clearly available annotations or justification for their pathogenic status. PATRIC primarily 

focused on annotation of isolates/pathogens but not individual sequences, and PHI-base describes the pathogen-host 

interactions but does not focus on pathogenic effects on the host. SeqScreen was designed to specifically overcome some 

of the major aforementioned limitations through an iterative ensemble learning framework that leverages functional 

information combined with biocurations to identify FunSoCs 

 

The challenge of pathogen identification and detection from sequence level features is significant and requires a careful, 

nuanced approach. A given species may include both pathogenic and non-pathogenic strains. These may not be well-defined 

by taxonomic considerations6, since sequences with similar taxonomic labels may contain pathogenic elements as well as 

non-pathogenic markers. In our work, we showed that sequences annotated with a subset of high-confidence FunSoCs can 

be analyzed to detect pathogenic presence in the sample. Taxonomic classifiers often are ambiguous about similar pathogens 

and near neighbors within the same genus or species, such as commensal E. coli K-12 MG1655 and pathogenic E. coli 

O157:H7, as well as C. botulinum and C. sporogenes, and S. dysgalactiae and S. pyogenes. We show that FunSoCs can be 

used as unique signatures to distinguish these pairs. We also saw that commensal bacteria such as L. gasseri had no FunSoCs 

associated with it, other than antiobiotic resistance, validating our negative control and highlighting SeqScreen’s ability to 

accurately identify commensals. Note, several the commensals analyzed in this study contain genes that can cause infection 

in humans, but these microbes are rarely disease-causing agents. 

 

Our experimental results underscore the importance of using a function-based framework in contrast to the prevailing 

taxonomy-based classifiers and pathogen detection tools. SeqScreen’s FunSoC based pathogen detection approach is 

sensitive to specific gene-based differences between closely related strains and accurately identifies pathogenic markers. 

Out of the tools we evaluated, only Kaiju was able to accurately distinguish all the near neighbors from pathogens at the 

species level. The protein-based classification strategy used by Kaiju is different from other k-mer based tools, but similar 

to SeqScreen’s functional based characterization framework, indicating the advantages of using the functional units in 

proteins to identify pathogens. SeqScreen provides an advantage in that it also reports the most likely strain-level 

assignments and protein-specific functional information for each sequence, including GO terms and FunSoCs, to accurately 

identify pathogenic markers in each sequence without relying solely on taxonomic markers. Though it was not created to 

be a taxonomic classifier, SeqScreen’s performance on taxonomy can be found in Supplementary Data S2, S2.2 and 

Supplementary Table S2. We also observed through inspecting the FunSoC lookup table that SeqScreen preserves FunSoC 

labels even when the proteins are distantly related (up to 40% sequence similarity). Hence, the FunSoC abstraction 

represents a robust framework to detecting novel pathogens as it does not rely on specific taxonomic labels in the database 

but on learning latent features that connect similar pathogenic makers. SeqScreen also provides a more detailed framework 
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beyond species or strain-level taxonomic classifications to aid the user in interpreting the pathogenicity potential of a query 

sequence, including exact protein hits, GO terms, multiple likely taxonomic labels with confidence scores, and FunSoC 

assignments. 

 

The task of mapping biological (e.g., functional annotations) and textual features (e.g., keywords and abstract metadata) to 

these FunSoCs is non-trivial for three reasons. The first concerns identifying from the literature a sufficiently large training 

set of sequences associated with each FunSoC. Second, variability in annotation across subject matter experts and 

inconsistencies in database annotations often makes it challenging to incorporate relevant features. Third, the amount of 

labelled data available per FunSoC is disproportionate which makes accurate multi-label and multi-class classification 

difficult. Also, the positive labels are far fewer when compared to the negative labels making the accurate prediction of 

positive labels non-trivial due to class imbalance. 

 

One known limitation of SeqScreen is that it heavily depends on annotated sequences for identification of FunSoCs. As of 

April 2021 (UniProt release 2021_02), there are 1.5 million proteins with evidence at the protein or transcript level (less 

than 0.75%), with 64 million proteins with functions inferred from homology and over 212 million proteins total. Through 

multiple years of biocuration efforts, our team was able to characterize thousands of proteins specific to pathogenic function, 

augmenting information contained in UniProt, and enabling robust pathogenic sequence screening of sequences of high 

concern. However, coordinated community efforts are needed to further extend out and improve annotation quality of 

proteins in these key databases. We also note that while we have shown SeqScreen to be an accurate pathogen detection 

tool, explicitly identifying and labelling pathogens is not possible with only FunSoC information, as seen in Fig. 4,and the 

presence of genes underlying the FunSoC annotations should be considered when interpreting results. SeqScreen identifies 

and flags sequences having functions of concern (or FunSoCs) but stops short of performing pathogen identification, as it 

was designed to only characterize individual DNA sequences. In future work, we aim to extend our FunSoC-based machine 

learning (ML) framework towards pathogen identification by analyzing sequences at the whole genome level.  

 

Finally, while SeqScreen can accurately screen oligonucleotides and short DNA sequences for FunSoCs, large metagenome-

scale pathogen analysis is still an open challenge. Currently, the accuracy and sensitivity of SeqScreen annotation comes at 

a substantial cost of runtime and memory requirements compared to other tools and pipelines. To address this, one possible 

solution is to use a read or database subsampling method such as RACE53 that may be able to preserve the full complement 

of taxonomic and functional diversity while drastically reducing runtime.  

 

In conclusion, SeqScreen describes a novel, comprehensive sequence characterization and pathogen detection framework 

based on a multimodal approach that combines conventional alignment-based tools, machine learning and expert biocuration 

to produce a new paradigm for novel pathogen detection tools beneficial to both synthetic DNA manufacturers and 

microbiome scientists alike. SeqScreen is the first open-source, modular framework for transparent and collaborative 

research to improve DNA screening practices beyond simple screens against BSAT agents and toxins.  
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Methods 

Pipeline Overview 
 
The SeqScreen pipeline was built using Nextflow54, a domain-specific language for creating scalable and portable 

workflows. SeqScreen combines various stages in separate Nextflow modules and is available as an open-source tool on 

bioconda (https://anaconda.org/bioconda/seqscreen). The modular nature of the pipeline offers advantages in terms of ease 

of updating or replacing specific software modules in the future versions if new bioinformatics tools and databases are 

shown to outperform its current modules and workflows. SeqScreen accepts nucleotide FASTA files as input, assuming one 

protein-coding sequence is present within each query sequence of the FASTA file. Each input file is verified for the 

correctness of the FASTA format and then passed on to the initialization workflow in sensitive mode, which first converts 

ambiguous nucleotides to their corresponding unambiguous options and performs six-frame translations of nucleotide to 

amino acid sequences for input into downstream modules like RAPSearch219, which accepts amino acid sequence as input. 

After initialization, the sequences pass through various downstream modules that add taxonomic and functional annotations 

to the sequences that inform its FunSoC assignment. Fig. 5 illustrates the various modules and workflows in SeqScreen. 

SeqScreen can be run in two different modes - fast mode and sensitive mode.  The fast mode runs a limited set of pipelines 

that are tuned to rapidly annotate sequences in an efficient performance-centric approach. The sensitive mode (using the --

sensitive flag) uses much more accurate and sensitive BLASTN-based alignments and outlier detection55 steps for taxonomic 

characterization. Further, for sensitive functional annotations it uses BLASTX to identify hits to the curated UniRef100 

database. All analyses in this study were performed with SeqScreen fast mode, other than the SeqMapper-focused analysis 

that was run in sensitive mode. 

 
SeqMapper 
 

The SeqMapper workflow is part of the sensitive mode of SeqScreen and aims at detecting Biological Select Agents and 

Toxins (BSAT) sequences through efficient sequence alignment methods. We use a two-pronged approach by analyzing 

both the nucleotide and amino acid sequence alignments to BSAT reference genomes using Bowtie256 and RAPSearch219, 

respectively. While this workflow is only limited to reporting hits to BSAT genes and proteins, downstream workflows are 

used to capture and collate whether a gene is of interest at a functional level (e.g., functional differentiation between BSAT 

housekeeping and toxin hits are not delineated at this step). This workflow is sensitive to detect BSAT sequences, but not 

precise in differentiating BSAT sequences from their near neighbors. In addition to the above databases, users can also 

optionally obtain other features of interest, such as HMMs identified by HMMER57 from Pfam58 proteins by using the 

optional HMMER module in SeqScreen. The BSAT sequences were primarily derived from the following website: 
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https://www.selectagents.gov/sat/list.htm and the full contents of the BSAT bowtie2 database is available at: 
https://rice.box.com/s/6c5xl0qcu66xbuf3n8yp4fkf9cfwn3wv. 

 
Taxonomic Classification 
 
In the taxonomic classification workflows for both fast and sensitive modes we rely on widely used state-of-the-art 

alignment-based tools to classify sequences. SeqScreen obtains alignments to both DNA and amino acid databases. While 

aligning to amino acid databases provides taxonomic information as well as functional information, aligning to nucleotide 

databases provides additional sensitivity, especially for non-coding regions. The taxonomic classification module for fast 

mode is an ensemble of DIAMOND59 and Centrifuge60, two established and widely used tools for protein alignment and 

taxonomic classification. First, DIAMOND is used to align the input sequences to a reduced version of the UniRef100 

database. DIAMOND is an open-source software that is designed for aligning short sequence reads and performs at 

approximately 20,000 times the speed of BLASTX with similar sensitivity. Our reduced version of the UniRef10061 database 

only contains proteins with a high annotation score. Not including poorly annotated proteins both decreases the runtime and 

increases the specificity of SeqScreen functional annotations. SeqScreen then runs Centrifuge, a novel tool for quick and 

accurate taxonomic classification of large metagenomic datasets. Centrifuge classifications are given higher weights and 

are always assigned a confidence score of 1.0. SeqScreen always picks the taxonomic rank with the highest score for 

Centrifuge and assigns it to the sequence. In the case where Centrifuge fails to assign a taxonomic rank to a particular 

sequence, we assign DIAMOND’s predictions to it. To incorporate DIAMOND’s predictions, we consider all taxonomic 

ids that are within 1% of the highest bit-score as the taxonomy labels for a sequence (Supplementary Figure S1). The 

sensitive taxonomic classification workflow uses BLASTX and BLASTN for aligning to amino acid and nucleotide 

databases, respectively. For BLASTX, we again use our reduced version of the UniRef100 database (Supplementary Data 

S3). BLASTN results are processed through outlier detection to identify which of the top hits are significantly relevant to 

the query sequence. The sensitive mode parameters are set so that if a cut is made, all hits above the cut line are returned; 

otherwise, all hits are returned. All hits within the outlier detection cutoff (BLASTN) or within 1% (sensitive parameter 

cutoff=1) of the top bitscore will be saved as the top hits for a given query sequence. Next, all hits reported by BLASTN 

and BLASTX are sorted by bitscore and listed for a query. Taxonomic IDs are ordered so that BLASTN are reported first, 

followed by BLASTX. Order-dependent taxonomic assignments will then be based on the first taxonomic ID reported 

(typically BLASTN hit). Default E-values (--evalue) and max target seqs (--max_target_seqs) for BLASTN and BLASTX 

are set to 10 and 500, respectively. Since both parameters limit the number of matches to the query sequence, modification 

of these parameters may be necessary for short and ubiquitous sequences. For BLASTN and BLASTX, the reported 

confidence values are based on bitscores (bitscore / max bitscore), as inspired by orthology estimation62. 

 
Functional Annotation and FunSoC Prediction 
 
Using the predicted UniProt IDs and their bit scores from DIAMOND, SeqScreen obtains a list of all predicted UniProt IDs 

whose bit score is at most 3% less than the highest bit score and compiles all the associated GO terms for each UniProt ID. 
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To assign FunSoCs to each input sequence, we have developed a database which contains a mapping of all UniProt IDs to 

FunSoCs. The construction of SeqScreen database is described in detail in Supplementary Data S3. 

 
Report Generation 
 
Following the computational workflows, SeqScreen produces a tab-separated report file with the predictions of each input 

sequence as well as an interactive HTML report. The HTML report allows users to search and filter the results based on a 

variety of criteria such as FunSoC presence, GO term presence, and sequence length. The HTML report is a convenient way 

to browse the results of large inputs as it loads results in small chunks so that arbitrarily large results can be viewed (Fig. 6 

and Supplementary Figure S2).  

 

Functional Benchmarking 
 
Data for the functional benchmarking was downloaded from the CAFA website 

(https://www.biofunctionprediction.org/cafa/). The CAFA 3 training data was downloaded from the website 

(https://www.biofunctionprediction.org/cafa-targets/CAFA3_training_data.tgz). From the training set, a subset of 250 

proteins having appropriate lengths (at least 200 aa) were chosen for the benchmarking. A set of (250) proteins of sub-

lengths 34 aa, 50 aa, 67 aa and 80 aa was derived from this set of proteins for sub-lengths benchmarking. To create the sub-

lengths for the respective proteins, we randomly selected a starting residue from each of the 250 proteins and considered 

the stretch of residues up to the desired lengths as the sub-protein. The proteins were then run through each of the tools: 

PANNZER232, eggNOG-mapper33 and DeepGOPlus34. Further details about the dataset, tools and commands and databases 

the tools were run with are shown in the Supplementary Data S2, S2.1 and Supplementary Table S2. 

Ensemble Machine Learning for FunSoC Prediction 

One of the major applications of SeqScreen is its ability to combine functional and taxonomic information for pathogen 

detection. To assign pathogenic functions to query sequences in each sample, SeqScreen labels relevant sequences with 

FunSoCs. Each FunSoC captures a process contributing either to pathogenesis or countermeasure resistance. Proteins 

representing the FunSoCs were identified primarily through literature review with some database perusal (VFDB49, PHI-

base51). The expert human biocurators developed queries using terms from controlled vocabularies and in specified UniProt 

fields to obtain sequence sets for each FunSoC.  Examples of UniProt queries are provided in Supplementary Data S4. After 

initial formulation with UniProt queries, the biocurator FunSoC annotations were verified through manual literature reviews 

thereby maximizing the number of sequences specific to the FunSoC category while eliminating false positives. An updated 

database of SeqScreen biocurated FunSoCs is maintained in Supplementary Data S5. The proteins of each FunSoC were 

then used as a training set. The training set sizes for each FunSoC ranged from 4,722 for disable organ to 24 for counter 

immunoglobulin. These also included proteins that had annotation scores less than 3, which were pruned out in the 

preprocessing step to get high-quality labelled training data. We used these proteins as the training dataset for our Machine 

Learning models to capture underlying mappings between the sequence features and FunSoCs.  Each of the curated proteins 
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is assigned a binary label for each of the 32 FunSoCs. This can be visualized as a matrix M where an entry mij marked as 1 

represents that Proteini is annotated as having FunSoCj, or in other words Proteini is positively labelled for that particular 

FunSoCj. On the contrary, mij marked as 0 means that Proteini does not belong to FunSoCj and is negatively labelled for that 

FunSoC. Every sequence of the collected set of labelled proteins is positively labeled for at least one FunSoC. 

 
Dataset Curation and Preprocessing 
 

To build a training and testing dataset for our models, proteins were obtained that were not positively associated with 

each FunSoC. This was done to avoid tagging every sequence analyzed by SeqScreen with a particular FunSoC. The 

great majority of biological sequences are benign, so we decided to append the set of curated proteins with a selected set 

of proteins from SwissProt and labelled them with 0’s for each FunSoC. This forced the model to learn it could neglect 

assigning FunSoCs to proteins. Further, these proteins were only selected if they had an annotation score greater than 3, 

to control for the quality of annotation. Once this set of proteins and their respective negative labels were added to the 

initial list of curated proteins, we extracted relevant features from each of the proteins to be included as features. GO 

annotations and keywords for each protein were extracted from UniProt. Once extracted, a large binary feature matrix F 

was constructed for the total set of proteins. The rows represent each protein in the dataset and the columns represent all 

possible features of the dataset, (i.e., a union of all the individual features of each protein in the dataset). Each entry fij in 

the feature matrix F, is a binary value representing presence or absence of a particular featurej for a proteini. Apart from 

controlling for annotation scores, to further help reduce the effect of noise and non-specific keywords or GO terms from 

our datasets, we decided to preprocess the feature set to exclude any sparse features that occurred in less than 10 proteins. 

This reduced the total number of features from over 50k to around 16k features. This was the final feature matrix used 

for downstream Machine Learning tasks. 

 
Machine Learning Models 
 

The challenge of assigning FunSoCs to proteins is a multi-class, multi-label classification problem where a given protein 

can be assigned to any (or none) of 32 different FunSoCs. These are often independent of one another and can be learned 

individually. Multi-class and multi-label classifications are hard as often these classes have different amounts of training 

data available. This might make certain labels harder to predict than others and result in a poor classifier that is biased to 

certain well curated class labels. This also makes accuracy a tricky metric to handle given the imbalance in data labels. 

From our feature matrix we observed that the number of proteins labelled negatively (i.e., 0) for all FunSoCs greatly 

outnumbered those with at least one positive label. Though this mirrors the imbalance in real data, it poses a challenge 

in learning tasks as the models tend to learn features only from the majority class thereby achieving high accuracy by 

classifying everything as negative. To address this, we investigate incorporating class weights and sampling techniques 

into our models. 
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Recently, the explainability of predictive models for machine learning has been emphasized in microbiome research63,64. 

To follow this idea of producing explainable results, we used feature selection or two-step modular approaches that aided 

the interpretability of the models. Though we analyzed 10 models for our FunSoC prediction task, here we describe the 

top three best-scoring approaches. The first is a two-stage modular pipeline that uses neural networks. For the purposes 

of this discussion, we describe stage 1 as the detection stage and stage 2 as the classification stage. In the detection stage, 

we use a multi-layer perceptron with one hidden layer consisting of 200 neurons. The network has a binary output which 

encodes whether the input sequence is associated with at least one FunSoC. Proteins without FunSoCs are eliminated 

from downstream classification. Proteins that have at least one FunSoC reach the classification stage which detects 

FunSoCs associated with a sequence in a multi-label fashion. The architecture of the detection stage consists of one 

hidden layer with 500 neurons. The output layer contains one neuron per FunSoC that outputs a binary label. For both 

detection and classification, all internal layers use ReLU activation while the output layers have sigmoid classification. 

The binary cross-entropy loss function is shown in Eqn. 1. where y (0 or 1) is the class label and p is the predicted 

probability that the observation belongs to class y. This is used in conjunction with the Adam65 optimizer and the models 

also incorporate a dropout layer with rate 0.2.  

 

Binary cross-entropy loss:    𝐿𝐿 =  − ( 𝑦𝑦 log(𝑝𝑝) + (1 − 𝑦𝑦) log(1 − 𝑝𝑝) )                            (1) 

 

The second model is analogous to the two-stage neural network pipeline except for two major differences. First, the 

neural networks are replaced with Linear-Support Vector Classifiers (LinearSVC). The LinearSVCs are tuned with 

training label weights to account for class imbalance and have a binary output for detecting the presence of at least one 

FunSoC. Second, the classification architecture now consists of different LinearSVCs, one for each FunSoC. Each 

classification LinearSVC has a binary output indicating the presence of that FunSoC. Both the detection and classification 

LinearSVCs uses squared hinge loss with L1 penalty (shown in Eq. 2, where Yi  is the output label, Xi  is the feature vector 

of sample i and β is the vector of weights, n is the number of samples and p is the number of features), a c-value (C) of 

0.01 and 4000 iterations for convergence during training. 

 

Cost function:           𝐿𝐿 =  𝐶𝐶 ∑ �𝑌𝑌𝑖𝑖max(0,1 − 𝛽𝛽𝑇𝑇𝑋𝑋𝑖𝑖) + (1 − 𝑌𝑌𝑖𝑖)max(0,1 + 𝛽𝛽𝑇𝑇𝑋𝑋𝑖𝑖)�
2𝑛𝑛

𝑖𝑖=1  +   ∑ �𝛽𝛽𝑗𝑗�𝑃𝑃
𝑗𝑗=1           (2) 

 

 
The third best performing model deviates from the two-stage detection and classification pipeline and instead 

incorporates a feature detection step prior to classification to help with interpretability. The model is a combination of 

LinearSVCs and neural networks and uses one of each for each FunSoC. In the first step, LinearSVCs are used as a 

feature selection tool to extract important features for each FunSoC. Since the L1 penalty was used for classification, it 

assigns a weight of zero to features that are not discriminative towards the FunSoC classification. The LinearSVCs were 

also augmented with class weights to make the feature selection sensitive to the minority positive labels in each FunSoC. 

The LinearSVC used an L1 penalty, a c-value of 0.01 and 3000 iterations. Once the features are selected, this new feature 
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set is fed as an input to the neural network for classification. The neural network has one hidden layer with 100 neurons 

and uses ReLU activation for internal layers and sigmoid activation for the output layer, a dropout layer with rate 0.2 

and binary cross-entropy loss. To further lessen the effects of class imbalance, after feature selection random 

oversampling of the minority class was done prior to training the neural network to balance the number of positive and 

negative samples in the training set. 

 

The LinearSVCs for all the models were directly incorporated using their scikit-learn66 implementations. To implement 

the neural networks, the Keras67 package was used. Parameter tuning was carried out by varying the c-value (C) and 

testing using different kernels for other non-linear SVCs whereas the number of layers, depth of the neural network, 

activations, dropout rate, and including class weights was tested for the neural network model. The parameters reported 

above were consistently the best performing across the parameter space while maintaining a relatively simple architecture 

and were chosen as the final parameters.  

 

To combine the strengths of all the classifiers discussed above, we also analyzed an additional model that employed an 

ensemble majority vote on the outputs of the three models. The ensemble classifier was developed after visualizing 

performances of the three individual classifiers on hard-to-classify FunSoCs like develop in host, nonviral invasion, toxin 

synthase and bacterial counter signaling (as seen in Fig. 3) to try and balance the disparity between precision and recall. To 

have a model that does not suffer from sub-optimal performances on multiple FunSoCs we reasoned that a majority vote 

classifier would be a better overarching model for a consistent performance across FunSoCs for downstream applications, 

especially pathogen detection. We choose a subset of  FunSoCs having both precision and recall above 0.8 for the pathogen 

detection applications and being the most determinative of pathogen presence as assigned by the biocurators. 

 

A primary focus during the development of the ML models was to make the feature selection and classification strategies 

as explainable as possible instead of applying it as “black box” techniques. The interpretability of the models was also 

imperative for iterative curation where the features and labels could be passed on to the biocurators to potentially curate 

and refine more examples of proteins belonging to the respective FunSoCs. These refined labels were then fed back into 

the ML models to obtain the final FunSoC assignments. To minimize variability of our ML results and make SeqScreen 

analysis more reproducible, ML-based predictions are pre-computed on all of UniProt and is included in the SeqScreen 

database as a lookup file. This allows users to explicitly view and check the FunSoCs associated with individual UniProt 

hits and corroborate their biological accuracy.  

 
Pathogen Sequence Identification 
 
In this work, we provide motivating experiments that underlie an important application of SeqScreen towards pathogen 

detection. We run SeqScreen on isolate reads obtained from four pairs of well characterized but hard-to-distinguish 

pathogens namely E. coli K-12 MG1655 and pathogenic E. coli O157:H7, as well as distinguishing C. botulinum from C. 

sporogenes, and S. dysgalactiae from S. pyogenes in addition to identifying the commensals S. pyogenes and L. gasseri. To 
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carry out accurate FunSoC annotations, the reads were preprocessed to remove low quality bases and adapters using 

Trimmomatic68. In addition to evaluating SeqScreen, we also ran the set of bacterial reads through Mash dist38, Sourmash39, 

PathoScope15,16, Kraken240, KrakenUniq42, MetaPhlAn241,and Kaiju43. These tools (except PathoScope) were run as part of 

the MetScale v1.4 pipeline (https://github.com/signaturescience/metscale) using default parameters and a quality trim 

threshold of 30 with Trimmomatic, k value of 51 with Sourmash and all other MetScale v1.4 default parameters, tool 

containers, and databases for analyzing paired-end Illumina reads. We evaluated the results on their respective complete 

databases as well as a modified version of their database (for Mash dist and PathoScope) in which the entries corresponding 

to the query genome were removed to simulate a novel or emerging pathogen.  In case of E. coli the respective strains were 

removed while in the case of the other bacteria the species (and all strains) were omitted from the database. To facilitate 

manipulating the Mash database, we created the Mash database from a new version of RefSeq (downloaded November 

2020, Release 202). The RefSeq genomes were downloaded using the tool ncbi-genome-download available on conda 

(https://github.com/kblin/ncbi-genome-download) 

 

Sequences from Peripheral Blood Mononuclear Cells in COVID-19 Patients 
 
Sequencing data from three samples of healthy individuals (CRR125445, CRR125456, CRR119890) and three samples of  

COVID-19 samples (CRR119891, CRR119892, CRR119893) from the study Xiong et al44 were considered for our analysis. 

After preprocessing reads through quality control and human read removal (see detailed methods here: 

https://osf.io/7nrd3/wiki/home/),  each sample was passed through SeqScreen v1.2 to obtain the respective set of proteins, 

FunSoCs, and GO terms outputs. GO terms were parsed with the CoV-IRT-Micro scripts 

(https://github.com/AstrobioMike/CoV-IRT-Micro), and GO terms were identified that were unique to both the COVID-19 

patient samples and viral proteins. The SeqScreen tsv final report was used to connect proteins to GO terms and find all 

coronavirus reads in the samples. 

 

Code Availability 

SeqScreen is available on GitLab at https://gitlab.com/treangenlab/seqscreen. SeqScreen can be installed via Bioconda: 

https://anaconda.org/bioconda/seqscreen 
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FIGURES 
 

 

Fig. 1. Functional annotation results on full-length proteins. SeqScreen shows the highest precision of all tools followed by 
PANNZER2 and DeepGOPlus. eggNOG-mapper’s precision is the lowest among all tools. In terms of recall, PANNZER2 followed 
by DeepGOPlus has the highest performance. They are followed by SeqScreen and eggNOG-mapper. SeqScreen still reported the 
highest F1 score among all tools.  
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Fig. 2. Functional annotation results on 250 proteins obtained from CAFA 3 training datasets for 34, 50, 67 and 80 amino 
acids (aa). The first figure on each panel represents precision followed by recall and F1 score. We observe that SeqScreen 
consistently achieves the best performance for both precision and recall and by extension the best F1 score for all the sub-lengths. 
The order of the tools is in decreasing order of their median F1 score. PANNZER2 maintains the highest recall through all the 
lengths while its precision increases slightly from 34aa to 67aa. eggNOG-mapper increases its precision, recall and F1 score from 
34aa to 67aa but only sees marginal improvement thereafter. DeepGOPlus improves its precision above that of PANNZER2 at 80aa.  
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Fig. 3.  Positive label precision and recall per FunSoc for the four ML models Bl. SVC+NN (OS) (in blue), TS NN (in green), TS 
Bl. SVC (in orange), and MV ensemble (in red). Precision is in solid lines and Recall is in dotted lines. TS Bl. SVC shows the best 
overall recall, whereas TS NN consistently has the highest precision across most of the 32 FunSoCs. In hard-to-classify FunSoCs like 
nonviral invasion and bacterial counter signaling TS NN performs poorly indicating a model with a high degree of variance. 
Similarly, TS Bl. SVC suffers from poor precision in most cases. The Majority Vote Classifier improves on the Bl. SVC+NN (OS) 
and finds an optimal balance between precision and recall across all FunSoCs. 
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Fig. 4. Pathogen identification of hard-to-classify pathogens: FunSoCs Assigned to Genes by SeqScreen. Abbreviated gene 
names are listed in pink cells if at least one read from the gene had an UniProt e-value < 0.0001, was assigned a FunSoC, and was 
from the expected genus (i.e., Escherichia or Shigella, Clostridium, Streptococcus, Lactobacillus). FunSoCs with at least one gene that 
met the criteria for detection in at least one isolate were included in the table. The removal of genes from genera that were not 
expected in these bacterial isolates allowed for removal of genes that were likely derived from likely contaminating organisms (e.g., 
PhiX Illumina sequencing control). An expanded table for cells denoted by (*) and complete gene names are listed within each cell in 
Supplementary Table S3. (a and b) E. coli O157:H7 is shown to have presence of the shiga toxin (stxB) as seen in the cytotoxicity 
FunSoC, as well as an additional hit to the secreted effector protein (espF(U)), labelled with secreted effector and virulence regulator 
FunSoCs, compared to E.coli K12 MG1655. (c and d) C. botulinum showed four distinct FunSoCs (disable organ, cytotoxicity, 
degrade ecm and virulence regulator) and presence of the botA and orf-X2 genes compared to C. sporogenes. (e and f) S. pyogenes 
showed presence of the induce inflammation FunSoC in contrast to the near neighbor pathogen S. dysgalactiae with the counter 
immunoglobulin FunSoC. (g and h). S. salivarius and L. gasseri are well-known commensals that are generally considered harmless. 
Both show presence of antibiotic resistance genes, while S. salivarius also contains some genes associated with secretion. The 
commensals have hits to the least number of FunSoCs. 
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Fig. 5. SeqScreen overview. (A.)  SeqScreen Workflow: This figure outlines the various modules and workflows of the SeqScreen 
pipeline. Boxes in green indicate that these modules are only run in the sensitive mode. The boxes in yellow are run in the fast mode, 
while the ones in blue are common to both modes. In addition to the two different modes, SeqScreen also contains optional modules 
that can be run based on the parameters provided by the user. (B.) SeqScreen Human-in-the-loop Framework: Includes initial 
annotation and curation of training data by manual curation. The data is used to train Ensemble ML models. The results obtained and 
selected feature weights are passed on back to biocurators to fine tune features and uniport queries which form a new set of refined 
training data for the Ensemble model. 
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Fig. 6.: HTML report output from SeqScreen. This is a screenshot of the interactive HTML page that outputs each query sequence 
in the file, the length, the gene name (if found), and GO terms associated with it. It also outputs the presence (or absence) of each of 
the 32 FunSoCs by denoting a 1 (or 0) in the given field. 
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TABLES 
 

Tool Tool Category Default  
DB 

Curated  
and 

Custom 
DBs 

Runs on 
Illumina 
reads 

Functional 
Characterization 

(gene based) 

Functional 
Characterization 

(gene 
fragments) 

Pathogen 
Sequence 

Identification 
(taxonomy 

based) 

Pathogen 
Sequence 

Identification 
(function 
based) 

PANNZER2 Functional  
Characterization UniProtKB       

DeepGOPlus Functional  
Characterization UniProt       

eggNOG-
mapper 

Functional  
Characterization 

CoG, 
eggNoG 

Protein DB 
      

HUMAnN2 Functional 
Characterization 

UniRef, 
MetaCyc 

and 
MiniPath 

      

Mash dist Taxonomy based 
Pathogen ID 

RefSeq 
NCBI nt 

DB       

Sourmash Taxonomy based 
Pathogen ID 

RefSeq 
NCBI nt 
DB and 

GenBank 
      

PathoScope 
 

Taxonomy based  
Pathogen ID 

RefSeq 
NCBI nt 

DB       

KrakenUniq Taxonomy based  
Pathogen ID 

RefSeq 
NCBI nt 

DB       

Kraken2 Taxonomy based  
Pathogen ID 

RefSeq 
NCBI nt 

DB       

MetaPhlAn2 Taxonomy based  
Pathogen ID 

Integrated 
Microbial 
Genomes 

(IMG) 
system 

 

      

Kaiju Taxonomy based  
Pathogen ID NCBI nr       

SeqScreen 
(this paper) 

Taxonomic 
Classification + 

Functional 
Characterization 
+ Function based 

Pathogen ID 

UniProt/G
enBank/R

efSeq       

 

Table 1:  Comparison of SeqScreen to related tools. State-of-the art functional annotation tools and taxonomy-based 
pathogen identification tools are listed in this table, with checkmarks for features present. 
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Table 2. The Accuracy, Exact Match Ratio, Micro and Macro F1 Score, Macro Recall and Precision of the different ML 
models. The models we considered were Balanced SVC (Feature Selection) + Neural Network Classification using Oversampling (Bl. 
SVC+NN (OS)), Two Stage Detection + Classification Neural Networks (TS NN), Two Stage Detection + Classification Balanced 
Support Vector Classifier (TS Bl. SVC), and the Majority Vote Ensemble Classifier (MV ensemble). TS NN had the highest positive 
label (PL) precision and TS Bl.SVC had the highest positive label (PL) Recall, while Bl. SVC+NN (OS) had the best balance between 
precision and recall. Majority Vote Ensemble improved on the results of the three classifiers as conveyed by both the high precision 
and recall the method achieves. 
 

 
Model 

 
Accuracy 

Exact 
Match 
Ratio 

Micro  
F1 Score 

Macro  
F1 Score 

Macro  
Recall 

Macro 
Precision 

Mean 
PL  
Precision  

Mean 
PL  
Recall 

Bl. SVC+NN 
(OS) 

 
0.9997 

 
0.9924 

 
0.9859 

 
0.8210 

 
0.8039 

 
0.8716 

 
0.8759 

 
0.8180 

TS NN 0.9997 0.9924 0.9359 0.6934 0.6445 0.8011 0.8893 0.6988 

TS Bl.SVC 0.9996 0.9893 0.8692 0.7047 0.8310 0.6492 0.7382 0.8869 

MV ensemble 0.9997 0.9934 0.9424 0.7998 0.8016 0.8453 0.9003 0.8273 
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Table 3. Pathogen and near neighbor classification. SRA represents the SRA id of the sample, True Organism represents the actual 
bacterial strain or species, and the remaining columns indicate the results for the indicated method using the parameters detailed in the 
Methods section. Green cells indicate that the tool assigned a correct strain-level call, yellow indicates a correct species-level call, and 
red indicates an incorrect species-level call. The following tools and databases were run: Mash dist (RefSeq 10k), Sourmash (RefSeq + 
GenBank), PathoScope (PathoScope DB), Kraken 2 (Mini and full Kraken2 DB produced the same results), KrakenUniq (MiniKraken 
8GB), MetaPhlAn2 (default) and Kaiju (index of NCBI nr + euk). Even with a complete database, C. sporogenes was wrongly classified 
as C. botulinum by PathoScope, Kraken2, and KrakenUniq. Mash dist, Sourmash, MetaPhlAn2, and Kaiju predicted C. sporogenes 
correctly. C. botulinum was incorrectly classified as C. sporogenes by Mash dist, Sourmash, and MetaPhlAn2. S. dysgalactiae was 
predicted as S.pyogenes by PathoScope. All tools correctly called S. pyogenes. The E. coli strains were challenging for most tools. The 
pathogenic E. coli O157:H7 was correctly called by Mash dist, Sourmash, PathoScope, Kraken2 and KrakenUniq. MetaPhlAn and Kaiju 
could only make a species level assignment. In contrast, the commensal E. coli K12 MG1655 was the most challenging as only Mash 
dist and Sourmash got the strain level assignment correct. MetaPhlAn2 and Kaiju could make only species level assignments, and 
PathoScope, Kraken2, and KrakenUniq called it as strains E. coli BW2952, E. coli O157:H7, and E. coli O145:H28, respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

SRA True 
Organism Mash dist Sourmash PathoScope Kraken2 KrakenUniq MetaPhlAn2 Kaiju 

DRR198806 E. coli K12 
MG1655 

Equivalent hits 
for E. coli 
K12 and SQ37 

E. coli K12 E. coli 
BW2952 

E. coli  
O157:H7 

E. coli 
O145:H28 E. coli E. coli 

DRR198804 E. coli 
O157:H7 

E. coli 
O157:H7 

E. coli 
O157:H7 

E. coli 
O157:H7 

E. coli 
O157:H7 

E. coli 
O157:H7 E. coli E. coli 

SRR8758382 C. sporogenes C. 
sporogenes 

C. 
sporogenes 

C. 
botulinum 

C. 
botulinum 

C. 
botulinum 

C. 
sporogenes 

C. 
sporogenes 

SRR8981313 C. botulinum C. 
sporogenes 

C. 
sporogenes 

C. 
botulinum 

C. 
botulinum 

C. 
botulinum 

C. 
sporogenes 

C. 
botulinum 

SRR12825903 S. dysgalactiae S. 
dysgalactiae 

S. 
dysgalactiae S. pyogenes S. 

dysgalactiae 
S. 
dysgalactiae 

S. 
dysgalactiae 

S. 
dysgalactiae 

ERR1735064 S. pyogenes S. pyogenes S.pyogenes S. pyogenes S. pyogenes S. pyogenes S. pyogenes S. pyogenes 
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Table 4. Simulating a novel pathogen. Mash dist and PathoScope were run on pathogen sequences and their near neighbors with the 
corresponding truth species removed in their respective databases to simulate an example of classifying a novel pathogen not in the 
database. SRA represents the SRA id of the sample, True Organism represents the actual bacterial strain or species, Mash dist 
represents the Mash results on each of the samples (with the truth organism species or strain removed from its sketch database), and 
Pathoscope represents the PathoScope results on each of the samples (with the truth organism species or strain removed from its 
database). In three of the cases, C. sporogenes, C. botulinum and S. pyogenes, Mash dist classified the organism as it near neighbor - C. 
botulinum, C. sporogenes and S. dysgalactiae, respectively. S. dysgalactiae was classified as S. sp. NCTC 11567 whereas the commensal 
E. coli K12 and pathogenic E. coli 0157:H7 were classified as E. coli O16:H48 and E. coli 2009C-3554, respectively.  PathoScope only 
classified two pathogens, C. sporogenes and C. botuinum, as their nearest neighbor counterparts. S. dysgalactiae was classified as S. 
intermedius, whereas S. pyogenes was classified as S. infantarius. E. coli K12 was only classified at the species level, while the 
pathogenic strain E. coli O157:H7 was classified as E. coli xuzhou21. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRA True Organism Mash dist PathoScope 
DRR198806 E. coli K12 MG1655 E. coli O16:H48  E. coli 
DRR198804 E. coli O157:H7 E. coli 2009C-3554 E. coli Xuzhou21 
SRR8758382 C. sporogenes C. botulinum C. botulinum 
SRR8981313 C. botulinum C. sporogenes C. sporogenes 

SRR12825903 S. dysgalactiae S. sp. NCTC 11567  S. intermedius 
ERR1735064 S. pyogenes S. dysgalactiae S. infantarius 
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