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Abstract 

Background 

Immunotherapy is quickly coming to the forefront of cancer treatment; however, the implementation of 

immunotherapy in solid pediatric cancers, which classically display a low mutational load, is hindered 

by insufficient understanding of the determinants of cancer immune responsiveness in children. In order 

to better understand tumor-host interplay, we sought to characterize solid pediatric cancers based on 

immunological parameters using analytes extracted from gene expression data. 

Methods  

We used RNAseq data from the publicly available TARGET studies for five pediatric solid tumor types 

(408 patients): Wilms tumor (WT), neuroblastoma (NBL), osteosarcoma (OS), clear cell sarcoma of the 

kidney (CCSK) and rhabdoid tumor of the kidney (RT). We assessed the performance of previously 

identified immune signatures like the Immunologic Constant of Rejection (ICR), which captures an 

active Th1/cytotoxic response associated with favorable prognosis and responsiveness to 

immunotherapy. We also performed gene set enrichment analysis (ssGSEA) and clustering, using 

more than 100 immune signatures to define immune subtypes in pediatric tumors and compared the 

overall survival across subtypes. The expression of immune checkpoints and enrichment of oncogenic 

pathways were also assessed across the immune subtypes. 

Results  

The five tumor types showed distinct ICR score distributions. A higher ICR score was associated with 

better survival in OS and NBL-HR-MYCN_NA, but with poorer survival in WT.  The clustering of immune 

signatures revealed the same five principal modules observed in adult solid tumors: Wound Healing, 

TGF-B signaling, IFN-G signaling, Macrophages, and Lymphocytes. These modules clustered pediatric 

patients into six immune subtypes (S1- S6) with distinct survival outcomes. The S2 cluster showed the 

best overall survival and was characterized by low enrichment of the wound healing signature, high 

Th1, low Th2. Conversely, cluster S4 showed the worst survival and highest enrichment of wound 

healing signature, low Th1, and high Th2. Furthermore, the upregulation of the WNT/Beta-catenin 

pathway is associated with unfavorable outcomes and lack of T-cell infiltration in OS. 

Conclusions  

We demonstrated that extracranial solid pediatric tumors could be classified according to their immune 

disposition, unveiling similarity with adults’ tumors. Immunological parameters might be explored to 

refine diagnostic and prognostic biomarkers and to identify potential immune-responsive tumors.  

Keywords  

-  Pan-cancer  
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Background 
  
Cancer is one of the leading causes of death in children worldwide, and the recorded incidence tends 

to raise with time (Steliarova-Foucher et al. 2017). The overall incidence rates of childhood cancer vary 

between 50 and 200 per million children across the world (Steliarova-Foucher et al. 2017). The most 

common categories of childhood cancers include leukemias, brain tumors, lymphomas, neuroblastoma 

and Wilms tumor (Gelband et al. 2015). Solid tumors comprise almost half of the cancer cases (J. A. 

Lee 2018), and neuroblastoma, nephroblastoma are tumor types that occur almost exclusively in 

children(Quintero Escobar et al. 2019) . 

Although major progress has been made in the treatment of pediatric cancers since the 1960s, and 

despite intensification of treatment, contemporary progress has been limited or absent (Adamson 

2015),(Dome, Perlman, and Graf 2014). For those where the disease relapses, survival remains poor 

and for patients presenting with non-invasive tumors, surgical intervention can cause major long-term 

consequences. In addition, many children with high‐risk cancers develop severe, life‐ threatening, or 

fatal toxicity during their medical treatment (Crist et al. 1995). 

It is now well established that the immune system has a substantial role in controlling cancer growth 

and stemming progression, and immunotherapy is quickly coming to the forefront of cancer treatment. 

Immunotherapy has rapidly changed the therapeutic landscape and prognosis for many hematologic 

malignancies (Hallek et al. 2010)(Burger et al. 2015)(Moreno et al. 2019) and adult solid tumors (Keilson 

et al. 2021). However, immunotherapy response depends on the tumor’s immune phenotype, therefore, 

it is important to characterize the tumor’s immune infiltration. Immune mediated tumor rejection can be 

estimated using gene expression signatures that stratify tumors into immune active (hot) and immune 

silent (cold) phenotypes. One such immune signature, which is prognostic in adult tumors, is the 

Immunologic Constant of Rejection (ICR). The ICR consists of 20 genes that reflect activation of Th-1-

signaling (IFNG, TXB21, CD8B, CD8A, IL12B, STAT1, and IRF1), expression of CXCR3/CCR5 

chemokine ligands (CXCL9, CXCL10, and CCL5), cytotoxic effector molecules 

(GNLY, PRF1, GZMA, GZMB, and GZMH) and compensatory immune regulators (CD274/PD-L1, 

PDCD1, CTLA4, FOXP3 and IDO1). Furthermore, T helper 1 (Th1) immune active phenotype is 

associated with responsiveness to immunotherapy and favorable prognosis in most but not all tumor 

types (Thorsson et al. 2018; Galon et al. 2013; Roelands et al. 2020).  

These tumor-type-specific differences might be due to differences in the underlying oncogenic 

dysregulations. For instance, we recently demonstrated that the prognostic value of Th1 immune 

infiltration is dependent on the activation status of specific oncogenic processes such as proliferation 

and TGF-B signaling, even within the same cancer type (Bertucci et al. 2018; Roelands et al. 2019). 

Therefore, it is important to assess immune phenotypes in relation to activated oncogenic pathways in 

order to understand the differences in prognosis and response. 

Despite the successes of immunotherapy in adult cancers, immunotherapy for pediatric solid tumors 

remains in the early stages of development, and significant clinical benefit is yet to be realized, except 

for the anti-GD2 antibody that is used for treating neuroblastoma (Yu et al. 2010)(Ladenstein et al. 
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2018). Several challenges prevent the adoption of immunotherapeutic strategies that have been 

successful in other settings. A relatively stable cancer genome with a low mutational burden results in 

limited neoepitope expression, which decreases T-cell infiltration to the tumor microenvironment, 

rendering the inhibition of exhaustion checkpoints like PD1/PDL1 and CTLA-4 less effective (Rizvi et al. 

2015)(Buchbinder and Desai 2016). Moreover, the efficiency of immunotherapy depends on the specific 

molecular subtype of a given tumor, but identification of molecular subtypes is more difficult in pediatric 

tumors, since they are much rarer than their adult counterparts. 

The development of immunotherapeutic strategies for solid pediatric cancers requires better 

understanding of the biology of the tumor immune microenvironment and identification of immune 

checkpoints that could be targeted by current or future checkpoint inhibitors (Roelands et al. 2020; 

Hendrickx et al. 2017). 

In this study we analyzed transcriptomic data to characterize the immune infiltrate of solid pediatric 

tumors to define immune phenotypes in these tumors. 
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Methods  

 
All analysis was done in R version 3.6.1, software names are R packages unless stated otherwise. 

 

Data acquisition and normalization 

RNA-seq data for 5 pediatric tumors: Wilms tumor (WT), neuroblastoma (NBL), osteosarcoma (OS), 

rhabdoid tumor (RT) and clear cell sarcoma of the kidney (CCSK) from the TARGET pediatric dataset, 

which is published on the GDC portal website, were downloaded and processed using TCGAbiolinks (v. 

2.14.1)(Colaprico et al. 2016). Gene symbols were converted to official HGNC symbols using 

TCGAbiolinks, genes without symbol or gene information were excluded and this resulted in a pan-

cancer expression matrix with 20,155 genes. Metastatic tumor, recurrent primary tumor or blood derived 

samples were excluded and a single primary tumor (TP) sample was analyzed for each patient. 

RNA-Seq gene counts were normalized using the TCGAanalyze_Normalization function from 

TCGAbiolinks, including within-lane normalization procedures to adjust for GC-content effect, between-

lane normalization procedures to adjust for distributional differences between lanes as sequencing 

depth and quantile normalized using TCGAbiolinks. After normalization, the pan-cancer matrix was split 

per cancer type and log2 transformed and the clinical data of the TARGET study were obtained from 

the GDC portal. 

ICR classification 

The gene expression data of the ICR signature used to cluster the patients from each cancer type and 

pan-cancer using the ConsensusClusterPlus (Wilkerson and Hayes 2010) (v.1.42.0) with the following 

parameters: 5000 repeats, a maximum of six clusters and agglomerative hierarchical clustering with 

Ward.D2 criterion. The optimal number of clusters was determined based on the Calinski-Harabasz 

index. 

The three obtained clusters were annotated as ‘ICR High’, ‘ICR Medium’ and ‘ICR Low’, where ‘ICR 

High’ showed the highest expression of ICR genes and ‘ICR Low’ the lowest. ICR score was calculated 

for each sample, defined as the mean of the normalized, log2-transformed gene expression values of 

the ICR genes. Heatmaps were drawn using the ComplexHeatmap package (Gu, Eils, and Schlesner 

2016). 

T-distributed stochastic neighbor embedding (t-SNE) plot was used as a dimension reduction technique 

on the complete RNA expression matrix using Rtsne (Krijthe 2015) (v. 0.15) (settings perplexity=15, 

theta=0.5). t-SNE plots were annotated for cancer types and ICR clusters. 

 

Survival analysis 

Clinical files contain survival data and clinical parameters such as age at diagnosis, tissue type, vital 

status, disease stage and disease metastasis, amongst others. For the overall survival analysis, we 

used the time to death and time to last follow up, vital status. For the event free survival, we considered; 

1) relapse, 2) progression, 3) second malignant neoplasm death, and 4) death without remission, as 

events. We performed Kaplan-Meier survival analyses using the ggsurv function from survminer (v. 
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0.4.8). Patients with less than 1 day of follow-up were excluded and survival data were censored after 

a follow-up duration of 10 years. Hazards Ratio (HR) between ICR Low and ICR High groups or between 

the six immune subtypes and the corresponding p-values were calculated using X2 test. Confidence 

intervals (97.5% CIs) were defined using survival (v. 2.41–3). 

Cox proportional hazards regression analysis was performed using Survival and visualized as a forest 

plot. Cancer types were added as a factor in the multivariate analysis. We applied the cox.zph function, 

to test the proportional hazards assumption (PHA). The same method was used to correct for the clinical 

parameters that contribute to the survival across immune subtypes in the High-risk MYCN not-amplified 

NBL cohort. These clinical parameters are the (Mitosis-Karyorrhexis Index) MKI (High, Intermediate and 

Low), Ploidy (diploid and hyperploid), Age group (0-18m,18m-5y and above 5y). Forest plots were 

generated using forestplot (v.1.7.2).  

 

Immune cell subpopulation and oncogenic pathway enrichment analysis  

To determine the enrichment of particular gene sets, that reflect either immune cell types or certain 

oncogenic pathways, we performed single sample gene set enrichment analysis (ssGSEA) on the log2 

transformed, normalized gene expression data. Immune cell-specific signatures were used as described 

in Bindea et al. (Bindea et al. 2013) with slight modification.  The dendritic cell (DC) signature was 

replaced by immature dendritic cells (iDC), plasmacytoid dendritic cells (pDC), myeloid dendritic cells 

(mDC) and DC. Additionally, the regulatory T-cell (Treg) signature was used as described in Angelova 

et al. (Angelova et al. 2015). Gene sets that reflect specific tumor-related pathways were selected from 

multiple sources as described in detail in (Salerno et al. 2016)(Hendrickx et al. 2017)(Lu et al. 2017), 

and gene sets reflecting cancer related immune signatures were used as previously described by 

Thorsson et al. (Thorsson et al. 2018) .The association between continuous gene set enrichment scores 

and survival was calculated as described above. Differences between the HRs of signatures were 

illustrated in a heatmap (ComplexHeatmap (v. 2.2.0)) and the p values were calculated by the cox 

formula. Signatures with a p value > 0.1 across all tumors were excluded.  

 

Comprehensive pediatric immune subtypes   

ssGSEA was performed using 105 of the 108 previously described immune signatures (Thorsson et al. 

2018). Three signatures were excluded from the analysis due to missing gene expression information. 

Spearman correlation between the resulting enrichment scores was calculated and visualized using 

corrplot. Signature modules were identified visually and then patients were clustered according to the 

ssGSEA enrichment of the 5 signatures representing the identified modules, previously identified by 

Thorsson etal. Sample clustering was carried out using k-means clustering (km = 6, repeats = 10000), 

using ComplexHeatmap. The gap statistics was used to calculate the optimal number of clusters. 

Stacked bar chart from ggplot2 (v. 3.3.3). was used to show the percentage of each cancer type in the 

immune subtypes and the percentage of each immune subtype within each cancer type. 
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Density plots from ggplot2 were used to show the median of enrichment scores of selected immune 

signatures from the 105 signatures (Thorsson et al. 2018) , in addition to the log2 values of HLA-1 and 

HLA-2 from the filtered normalized RNASeq matrix. 

 

Gene expression correlation 

Correlation matrices of ICR genes expression were generated by calculating the Pearson correlation of 

the ICR genes’ expression within cancer types and pan-cancer using the corrplot package, CCSK was 

excluded from this correlation analysis because of the small sample size (n=13). 

Spearman correlation was performed on the enrichment matrix of  105 tumor immune expression 

signatures (Thorsson et al. 2018) and plotted using corrplot (v. 0.84). 

Correlation matrices of NK cells / CD8T enrichment scores and the enrichment score (ES) of selected 

oncogenic pathways were calculated using Pearson correlation and plotted by ComplexHeatmap. 

 

Immune checkpoints expression  

We used a list of immune checkpoints, divided into activating and inhibitory. The median values of the 

log2 transformation of the normalized gene expression counts of these genes were used and plotted by 

ComplexHeatmap. 

 

 

 

CIBERSORTx immune cells fractions  

In order to compare the immune cell fractions between different immune subtypes, we analyzed the 

normalized gene expression data of the 408 pediatric samples using the CIBERSORTx website. The 

relative proportions of 22 immune cell types within the leukocyte compartment (LM22) were 

estimated.  Cell fractions were visualized in barcharts and boxplots using ggplot2. 

We summed the proportions of related immune cells together in ‘Aggregates’ to facilitate comparisons 

(Thorsson et al. 2018). 

Lymphocytes are the sum of B cells naive, B cells memory, T cells CD4 naive, T cells CD4 memory 

resting, T cells CD4 memory activated and T cells follicular helper, T cells regulatory, Tregs, T cells 

gamma delta, T cells CD8, NK cells resting, NK cells activate and Plasma cells fractions. Macrophages 

are the sum of Monocytes, Macrophages M0, Macrophages M1 and Macrophages M2 fractions. 

Dendritic cells are the sum of Dendritic cells resting and Dendritic cells activated fractions. Mast cells 

are the sum of Mast cells resting and Mast cells activated fractions. 
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Results 

 
Prognostic value of ICR is different in pediatric tumors 

We analysed the expression profiles of patient samples from five distinct solid pediatric cancer types: 

WT, NBL, OS, RT and CCSK from TARGET. After exclusion of the following patients: 20 OS patients, 

who were older than 18 years-old; one NBL patient, who did not have MYCN status information; one RT 

patient, whose sample clustered with NBL samples based on the whole transcriptome; we analyzed 408 

patient samples (WT (n = 118), NBL (n = 150), OS (n = 68), RT (n= 59), CCSK (n= 13)). The NBL cohort 

was separated into three groups based on the COG risk group and the MYCN gene amplification status: 

High-risk MYCN amplified (NBL-HR-MYCN_A) (n = 33), High-risk MYCN not-amplified (NBL-HR-

MYCN_NA) (n = 91), and Intermediate and Low-risk MYCN not-amplified (NBL-ILR) (n = 26), because 

these subgroups were shown to have distinct immune infiltration (Wei et al. 2018) (P. Zhang et al. 2017). 

Dimension-reduction using t-Distributed Stochastic Neighbor Embedding (tSNE) based on the whole 

transcriptome also showed separation of NBL subgroups (Figure 1A), therefore, we considered each 

subgroup as a separate cancer type in our analysis. 

We used the expression of ICR genes to classify the overall immune orientation of cancer samples. The 

ICR genes exhibited high overall correlation with each other in most TARGET pediatric solid tumor 

cohorts, with a lower correlation in NBL-HR-MYCN_A and in WT (Supplementary Figure 1). Samples 

from each cancer type were separated into three ICR clusters (“ICR High”, “ICR Medium” and “ICR 

Low”). While dimension reduction of the expression data shows no clear segregation of samples by ICR 

clusters within each tumor type (Figure 1B), a clear difference in the distribution of ICR scores across 

cancer types was observed (Figure 1C). Lower ICR scores were found in WT and CCSK, while RT had 

the highest ICR scores. Significant differences in ICR scores were observed across NBL subgroups (p 

< 0.00001) for NBL-HR-MYCN_NA vs NBL-ILR and NBL-HR-MYCN_A respectively (Supplementary 

Figure 2B), reflecting large immune orientation differences between samples within NBL. Substantially 

lower ICR scores were observed in NBL-HR-MYCN_A and in NBL-ILR when compared to NBL-HR-

MYCN_NA. This finding is consistent with previous reports of poor T-cell infiltration in NBL-HR-MYCN_A 

(Layer et al. 2017)(Wei et al. 2018) (P. Zhang et al. 2017) and higher T-cell infiltration in NBL-HR-

MYCN_NA (Wei et al. 2018). Overall survival analysis of continuous ICR scores showed significant 

association of ICR scores with high survival rate in Osteosarcoma (p <0.016) (Figure 1D) and 

comparing the survival between the ICR clusters showed that in Osteosarcoma (OS), the ICR Low group 

had significantly lower overall survival (p < 0.001) (Figure 1E) and event-free survival estimates (p < 

0.05) (Supplementary Figure 2D) compared to the other groups combined. The same pattern was 

found in NBL-HR-MYCN_NA where ICR High was associated with better overall survival compared to 

ICR Low (Figure 1F). This pattern was reversed in WT (Supplementary Figure 2C), as has been 

observed in adult kidney tumors (Roelands et al. 2020). No significant association with survival was 

found in rhabdoid tumor or clear cell sarcoma of kidney (Kaplan Meier curve for CCSK not showed 

because of the low number of samples n=13). 
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Since ICR was most prognostic in Osteosarcoma and high-risk MYCN-not-amplified NBL, we proceeded 

to examine which tumor intrinsic attributes correlate with immune infiltration, reflected by ICR score, in 

OS and NBL-HR-MYCN_NA. Tumor intrinsic pathways that correlated with ICR score in these tumors 

(Supplementary Figure 3A) are TNFR1, PI3K Akt mTOR signaling, Immunogenic cell death, 

Apoptosis, mTOR and others, while signatures inversely correlated with survival in both tumors include 

barrier genes, mismatch repair, proliferation, G2M checkpoints. Wnt beta catenin signaling showed very 

strong inverse correlation with ICR in Osteosarcoma but not in MYCN not amplified NBL 

(Supplementary Figure 3A). 

We then examined the association of tumor intrinsic attributes with survival in these tumors, Wnt beta 

catenin pathway was significantly associated with a worse prognosis in OS (p < 0.05). We did not 

observe this same association in NBL-HR-MYCN_NA (Supplementary Figure 3C). In this 

neuroblastoma subgroup, several pathways were associated with worse prognosis, such as Myc 

targets, Glycolysis, mTORC1, DNA repair, Mismatch repair, E2F targets, G2M checkpoints and 

proliferation (Supplementary Figure 3C).    

 

Immune subpopulations show prognostic value in pediatric tumors  

To explore the different immune characteristics of pediatric tumor types in more depth, we compared 

the enrichment of leucocyte subpopulations within and among cancer types (pan-cancer), using the 

gene expression signatures of previously published datasets (Bindea et al. 2013)(Angelova et al. 2015), 

as described in the methods section. Signatures such as NK cells, Tcm, TFH, Tem, CD8+ T-cells and 

neutrophils were significantly associated with better overall survival in the pan-cancer analysis, while T 

helper and Th2 cells were associated with worse prognosis (Figure 1G). 

Compared with other cancer types, Osteosarcoma showed an immune active phenotype illustrated by 

increased mean enrichment of transcripts for dendritic cells (DC), macrophages, neutrophils, and mDC 

(Figure 1H). Enrichment scores for some leucocyte populations were associated with significantly 

improved prognosis as TFH, DC, neutrophils, macrophages, monocytes, Th1 and regulatory T cells 

(Treg) (Figure 1I), while B cell and gamma delta T-cell enrichments were associated with significantly 

worse survival in this cancer type (Figure 1I). 

In Neuroblastoma, T cells, CD8+ T cells, Th17, NKT cells, Th1 cells, Treg cells, and DCs were 

significantly higher enriched in the high-risk MYCN-not-amplified group compared to MYCN amplified 

NBL (p < 0.05), TFH was high in the 3 subgroups and showed significant positive association with 

survival in the NBL-HR-MYCN_NA group. Gamma delta T cell (Tgd) enrichment also showed high 

association with survival in High-risk MYCN not-amplified group (p < 0.05). However, Th2 cells and NK 

CD56 bright cells were significantly higher enriched in the MYCN amplified group compared to NBL-HR-

MYCN_NA group (p < 0.05) and in NBL-ILR, strong association of NK CD56 bright cells with worse 

prognosis was seen (p < 0.05).  

In kidney tumors, WT and CCSK were characterized by low immune infiltration illustrated by a low ICR 

score, while RT showed the highest ICR score (Figure 1B). Decreased infiltration was associated with 
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better survival in WT (Supplementary Figure 1C); this reverse association was previously observed in 

adult kidney cancer (Roelands et al. 2020). Overall low enrichment of immune subpopulations was 

observed in WT with no clear association with survival (Figure 1H, 1I). 

In pan-cancer, expression patterns consistent with enrichment of several immune cells were associated 

with favorable prognosis, including NK cells, Tcm, TFH, Tem, CD8 T cells and Neutrophils, while the 

pattern was reversed in Th2 and T helper cells, consistent with similar observations in adult cancer. 

However, due to the small sample size of some cohorts, we could not identify consistent significant 

prognostic biomarkers in the leukocyte populations across all cancers.  

 

Immune subtypes show different immune characteristics in pediatric tumors    

To further elucidate the impact of the cancer immune phenotypes in pediatric solid cancer, we expanded 

our analysis to a collection of previously published immune signatures. We performed ssGSEA on 105 

immune signatures and clustered them to define modules of highly correlated immune signatures. We 

identified 5 main clusters of signatures (5 modules). Interestingly, in each of these modules we could 

identify one of the representative signatures presented in Thorsson et al (Thorsson et al. 2018) (INF-G, 

TGF-B, Macrophages, Lymphocytes, Wound healing) (Figure 2A). This finding demonstrates that 

modules of immune signatures in pediatric cancer showed a similar pattern of correlation as those 

identified in adult solid tumors, reflecting the robustness of these modules. 

We then clustered the 408 patients based on the enrichment scores of these 5 representative immune 

gene signatures, into 6 immune subtypes (S1 to S6) with distinct immunologic orientation (Figure 2B). 

Each subtype includes patients from several tumor types (Figure 2C), and each tumor type consists of 

different immune subtypes (Figure 2D). We generated density plots of each of the five representative 

immune signatures and also of each of seven additional immune biomarkers that are known to reflect 

the immune orientation (Figure 2E). This allowed us to better interpret each immune subtype and label 

them based on their enrichment profiles (Figure 2F). S1 is referred to as Th2 dominant subtype as it 

has the highest Th2 and the lowest TGF-B, Macrophage, Lymphocyte and IFN-g signal. S2 was labeled 

the Inflammatory subtype since it exhibits the highest Th1-Th2 ratio, the highest HLA1 expression and 

lowest wound healing enrichment. Since high TGF-B stands out in S3, in addition to the low enrichment 

of Th1, Th17 we call this subtype Immunologically quiet. S4 or the Wound healing subtype is dominated 

by the Highest wound healing enrichment, shows high Th2 and Treg cells presence. The S5 subtype 

has increased TGF-B and IFN-G signatures, high Th1 and Th17 enrichment but seems to be 

immunologically impaired by high Macrophage presence and is thus referred to as Macrophage 

dominant. The last immune subtype, S6 or the Lymphocyte suppressed subtype, has enrichment of 

almost all properties of a high immune infiltration including counter regulatory signals from Th2, Treg, 

downregulated HLA1, and Macrophage presence. However, it is also characterized by high expression 

of immune checkpoints and exhaustion markers, so we call it immune (or lymphocyte) suppressed. 

(Figure 2E). 
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Immune Cellular Fraction Estimates (CIBERSORTx)  

We compared the immune cell fractions across the immune subtypes (Supplementary Figure 5, 

Supplementary Figure 6). High proportions of macrophages were observed in S5, with increased M2 

macrophages proportions in S4, high proportions of mast cells observed in S3 and elevated proportions 

of lymphocytes were found in S2 that has the highest survival. In addition, it was very clear the high 

proportions of lymphocytes in S6 that characterized by the elevation of immune checkpoints and 

exhaustion markers which suppress the effect of T lymphocytes and make it in an exhaustion status 

(Figure 4B). 

 

Immune subtypes showed difference in overall survival  

Cox proportional hazard models demonstrated significant violation of the model when adding the cancer 

type as a co-variate, so we stratified the model for the cancer type and performed Cox proportional 

hazard regression analysis which showed significant differences in overall survival between subtypes 

(Figure 3A). The best prognosis was observed for the Inflammatory subtype (S2) while the subtype with 

the worst survival was the Wound healing dominant subtype (S4). The lowest enrichment of Wound 

healing signature observed in S2, the subtype with the best survival among other immune subtypes 

(Figure 3A), suggesting an association of Wound healing signature expression with prognosis in 

pediatric tumors. In order to assess whether the difference in survival across immune subtypes is due 

to the tumor type distribution between clusters, we performed multivariate analysis using a Cox 

proportional hazards model including the cluster (immune subtype) and cancer type as co-variants, and 

we again found a significant difference in survival between S2 and S4 (p = 0.02), between S5 and S4 

(p= 0.013), and between S6 and S4 (p = 0.0325), demonstrating the prognostic impact of this immune 

stratification (Figure 3B). 

In order to test the prognostic value of our immune stratification within each tumor type, we compared 

overall survival between immune subtypes within each tumor (Figures 3C-E, Supplementary Figure 

4). Interestingly, for NBL-HR-MYCN_NA tumors, we found significant differences between all the 

immune subtypes versus S4 (p < 0.05) which indicates the presence of a subgroups with distinct 

immunological features within the NBL-HR-MYCN_NA cohort. The same survival pattern was observed 

for S4 in both Wilms and Rhabdoid tumors, and a clear difference in survival between the S3 and S5 

subtypes was seen in Osteosarcoma (p= 0.09) (Figure 3E). For CCSK the number of samples was too 

small and therefore the K-M curve was not plotted. These observations highlight the immune 

heterogeneity within tumors and the importance of understanding the immunological features of 

pediatric tumors and their subgroups in order to raise the therapeutic effect. 

NBL is heterogenous tumor and different clinical parameters contribute to the survival of NBL (Wei et 

al. 2018),(Z. Liu et al. 2020), as previously mentioned, significant difference across immune subtypes 

within the NBL-HR-MYCN_NA was observed (Figure 3C, 3D), we performed multivariate analysis to 

correct for the contribution of other clinical parameters in the survival of NBL, significant difference in 

survival was found between S2 (p= 0.0319) and S6 (p= 0.0452) compared to S4. 
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Immune checkpoints expression in immune subtypes  

To understand the prognostic role of immune checkpoints in pediatric tumors, we performed survival 

analysis for checkpoint expression pan-cancer and across our immune subtypes. The CD276 gene was 

significantly associated with survival in pan-cancer analysis (Figure 4A). We noticed that immune 

checkpoints that are strongly associated with better prognosis as CD276, KIRD3DL1, VTCN1, C10orf54 

(VISTA), had a low enriched in S4 (Figure 4B), while those associated with worse prognosis, the 

immune checkpoints as LAG3, CD70, TNFSF4, IDO1, KIRD3DX1, CD28 and TNFSF9, were highly 

expressed in S4. To deeper understand the prognostic effect of the immune checkpoints expression 

within each immune subtype we generated a HR heatmap annotated by immune subtypes (Figure 4C). 

In S4 a unique pattern of association with worse prognosis was found with C10orf54 (VISTA) and CD86 

(p 0.05 – 0.1). While TNFRSF9 was associated with worse survival in S4 and S3. In pan-cancer 

significant association of CD70 and LAG3 expression with poor survival was observed (p < 0.05). Some 

immune checkpoints show reverse pattern of survival with different subtypes as C10orf54 that associate 

with reverse favorable prognosis in S2, TNFRSF14 across S1 and S3 and TNFRSF4 across S2 and S6. 

These findings reflect the variation in prognosis of immune checkpoints expression within different tumor 

types. 

High expression of immune checkpoints was observed in the Leukocyte dominant subtype (S6) 

compared to other immune subtypes (Figure 4B). This could be explained by the exhaustion status 

seen in this immune subtype which displays the highest enrichment of lymphocytes (Figure 2E). 

 

Selected oncogenic pathways and the immune phenotypes 

We also examined tumor intrinsic differences between immune subtypes, by investigating the 

association between overall survival and the expression of tumor intrinsic pathways in pan-cancer and 

across the immune subtypes (Figure 5A, 5C), and comparing the enrichment of tumor intrinsic pathways 

between the 6 immune subtypes (Figure 5B). A wide variety of pathways were differentially enriched 

between immune subtypes. Myc targets, DNA repair and oxidative phosphorylation showed a uniquely 

high enrichment in S4 compared to other groups. However, Wnt beta catenin and TGF-B showed a 

similar enrichment pattern among immune subtypes with increased enrichment in S3 and S5 (Figure 

5B). Interestingly, most of the pathways show a mirrored expression level between S2 and S4; for 

example, S4 was significantly higher in the enrichment of TGF-B and Barrier genes compared to S2, 

while p38 MAPK Signaling, ErbB2 ErbB3 Signaling, NOS1 Signature and SHC1/pSTAT3 Signatures 

were significantly highly enriched in S4 vs. S2 (p < 0.05). Within the immune subtypes, significantly high 

association of some oncogenic pathways with worse prognosis seen exclusively in S4 as mTORC1, 

Myc targets, NOS1, ERK5, PI3K AKT. (Figure 5C). 
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Discussion  

 

Understanding the relationship between tumor cells and the host’s immune system has proven to be 

instrumental in advancing the treatment of adult cancers. It is self-evident that the role of the immune 

system in pediatric cancer can no longer be ignored. In this study we set out to transpose the knowledge 

gained in the transcriptomic analysis of the TARGET data. It is fundamental to gain a deeper 

understanding of the prognostic connotations of the immune phenotypes present in pediatric solid 

tumors, in order to evolve more effective therapeutic strategies and stratification systems. Here we use 

a range of transcriptional signatures to investigate the composition, proportion, activation, and functional 

orientation of immune infiltrates within the TME of pediatric tumors and the interaction of these immune 

infiltrates with the oncogenic pathways of these tumors. 

We performed a pan-cancer immunogenomic analysis and found that the disposition of an immune 

active phenotype characterized by T helper 1 immune infiltration was associated with favorable 

prognosis in Osteosarcoma and NBL-HR-MYCN_NA. The overall immune phenotype was determined 

by a gene signature we have used in the context of adult cancer on several occasion that has been 

shown to have strong association with prognosis and response to immunotherapy and that captures 

well the presence of active immune mediated tumor rejection. (Hendrickx et al. 2017),(Roelands et al. 

2020) The Immunologic Constant of Rejection showed a prognostic role in pediatric Osteosarcoma in 

which high immune infiltration, present in ICR High clustered samples, where it was associated with 

better prognosis. This finding is in agreement with results obtained from Zhang et al. (C. Zhang et al. 

2020) in which tumors with high immune score that estimate immune cell infiltration by analyzing a 

certain gene expression signature of TIICs, were associated with higher survival rate than tumors with 

low immune score in Osteosarcoma. 

 

WNT/β-catenin signaling also showed a prognostic role in OS, we found an inverse correlation of Wnt 

beta catenin pathway enrichment with immune infiltration (ICR score) in OS, WNT/β-catenin signaling 

in melanoma is an essential tumor intrinsic oncogenic pathway associated with an immune inactive 

phenotype (Fu et al. 2015, 10),(Spranger and Gajewski 2015). A recent study by Luke etal. (Luke et al. 

2019) confirmed this finding in several adult tumors obtained from TCGA, they demonstrated the inverse 

correlation between β-catenin protein level and T-cell-inflamed gene expression. In addition to the 

association with low immune infiltration, WNT/β-catenin signaling enrichment was significantly 

associated with significant worse outcomes in Osteosarcoma. A meta -analysis performed by Xie et al. 

confirmed the association of over-expression of β-catenin with metastasis in Osteosarcoma. (Xie et al. 

2020) Several clinical trials are ongoing the combination of immunotherapy with WNT/β-catenin 

signaling inhibitors for the treatment of various tumors(Y. Zhang and Wang 2020).  

 

In High-risk Neuroblastoma, despite the introduction of anti–GD2 antibody-based immunotherapy, the 

cure rates remain low, and there is also significant morbidity in survivors (Kudva and Modak 2019),(Yust-
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Katz, Khagi, and Gilbert 2020). As seen in OS, we demonstrated that NBL-HR-MYCN_NA was 

associated with significantly higher immune infiltration, represented by ICR score compared to NBL-HR-

MYCN_NA tumors, confirming what published in 2018 by Jun S. Wei (Wei et al. 2018) who found that 

MYCN not-amplified (MYCN-NA) tumors had significant higher cytotoxic TIL signatures compared to 

MYCN amplified (MYCN-A) tumors, or previously in 2017 by Zhang et al. (P. Zhang et al. 2017) who 

demonstrated the association of MYCN amplification with repressed cellular immunity, in addition to 

Layer et al (Layer et al. 2017) that demonstrated the association of T cell poor microenvironment in 

primary metastatic neuroblastomas that exhibit lower interferon pathway activity and chemokine 

expression with genomic amplification of the MYCN (N-Myc) proto-oncogene. 

 

A strong association between the presence of T-cell-infiltration and/or a T-cell-inflamed gene expression 

signatures, and response to immune-checkpoint blockade has been previously observed (Chen et al. 

2016),(Tumeh et al. 2014),(Hellmann et al. 2019),(Hamid et al. 2011). Increased response to immune 

checkpoints therapy after T cell activation/functioning was extensively described and explained by the 

production of IFN by tumor-infiltrating CD8 (Bald et al. 2014),(Taube et al. 2014),(Grywalska et al. 2018), 

that in turn induce the expression of PD-L1 in tumor cells, which is a well-studied predictive biomarker 

for response to immune checkpoint inhibitors (Doroshow et al. 2021). 

 

In contrast to what was observed in OS, immune infiltration showed an association with worse prognosis 

in Wilms tumor. Interestingly, we previously reported clear cell renal cell carcinoma (ccRCC)(Roelands 

et al. 2020). This reverse association was also observed in a number of other adult tumors like Uveal 

Melanoma (UVM) and Low-Grade Glioma (LGG), in which a significant reverse association was 

observed between the ICR High patients and survival. The Tumor types in which this reverse association 

was observed are referred to as ICR Disabled tumor types and they are typified by low mean of ICR 

score, ICR high association with worse survival, low neoantigen load, down regulation of pathways 

involved in proliferation and low enrichment of TGF-B signature. (Roelands et al. 2020). 

 

Since we established that the immune infiltrate does impact the pediatric cancer prognosis we deepened 

our analysis and demonstrated that solid pediatric cancer samples can be meaningfully immune 

subtyped, comparable to what was achieved in adult cancer (Thorsson et al. 2018). In the TARGET 

dataset, the same 5 representative signatures (INF-G, TGF-B, Macrophages, Lymphocytes and Wound 

healing) identified in Thorsson et al, were found to also be at the cores of  the 5 main co-clustering 

modules of immune signatures (Thorsson et al. 2018). When we then clustered the TARGET samples 

based on the enrichment scores of these 5 representative signatures, although the low number of tumor 

samples that we have, we obtained 6 robust immune subtypes. These displayed distinct immune 

characteristics and significant difference in overall survival rate even after adjusting for cancer type. 

Some of these immune subtypes share similar immune features with adult tumors, like the 

‘Immunologically quiet’ subtype that is characterized by overall low enrichment T cells and IFN-G 
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signature, or the ‘inflammatory subtype’, that is characterized by high Th1 enrichment and is associated 

with the best survival across all immune subtypes in pediatric and adult tumors. 

 

High enrichment of wound healing signatures was associated with worse outcomes in adult tumors (J. 

Liu et al. 2021),(Thorsson et al. 2018), we observed the same in pediatric tumors in which the wound 

healing dominant subtype (S4) showed the worst survival across the pediatric immune subtypes. Wound 

healing enrichment is accompanied by elevated expression of angiogenic genes, and high enrichment 

of proliferation signature. S4 also showed high proportions of Macrophages shown by the CIBERSORTx 

(Supplementary Figure 6), especially macrophages M2 (Supplementary Figure 5). 

 

Different clinical parameters contribute to the survival in Neuroblastoma (Brodeur and Nakagawara 

1992),(Campbell et al. 2020). In the TARGET dataset, the risk classification followed the Children 

Oncology Group (COG) that includes the age, histology, ploidy, MYCN status, and MKI as parameters 

for the stratification. 

 (“Https://Www.Cancer.Org/Cancer/Neuroblastoma/Detection-Diagnosis-Staging/Risk-Groups.Html,” 

n.d.),(Sokol and Desai 2019)  

 

Previous studies discussed the significant difference in immune characteristics across neuroblastoma 

subgroups and its impact on survival, Wei et al (Wei et al. 2018), showed that a cytolytic immune 

signature was associated with a favorable prognosis in NBL-HR-MYCN_NA and a high MYC expression 

signature was associated with worse prognosis in the same group. Similar data was obtained by 

Valentijn et al (Valentijn et al. 2012), Lee et al (J. W. Lee et al. 2018), who demonstrated the association 

of MYCN amplified NBL with relapse and progression. This analysis agreed with the previous findings, 

the prognostic value of immune phenotyping based on ICR and the 5 representative signatures showed 

prognostic value in the NBL-HR-MYCN_NA only. With the best prognosis in S2 that is characterized by 

high enrichment of inflammatory signatures and the lowest in S4 that is dominated by Wound healing, 

a similar survival pattern as observed pan-cancer.  

 

Recent studies described the immunosuppressive checkpoint molecules that downregulate immune cell 

function in the aftermath of infection. These immune checkpoints can contribute to immune evasion and 

tumor escape when found on malignant cells or in the tumor microenvironment. Targeting immune 

checkpoints particularly Programmed cell Death protein 1 (PD-1/CD279), Programmed Death Ligand 1 

(PD-L1/CD274) and Cytotoxic T-lymphocyte antigen-4 (CTLA-4/CD28) has made a breakthrough in 

treating advanced adult malignancies. However, there is limited investigations performed on immune 

checkpoint molecules and inhibitors in solid pediatric tumors (Kabir et al. 2018). 

 

It was previously demonstrated that IDO1 has an anti-inflammatory effect that counters the effect of 

activated T-cells in inflammatory bowel disease (Wolf 2004) and expression of IDO1 was associated 
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with recruitment and activation of myeloid-derived suppressor cells through a Treg-dependent 

mechanism that contributed to aggressive tumor growth and poor response to T-cell targeted therapy 

(Holmgaard et al. 2015),(Uyttenhove et al. 2003). Lymphocyte Activation Gene-3 (LAG3) has shown an 

immunomodulatory role through suppressing T-cell activation and cytokine secretion, and as a result, it 

maintains immune homeostasis. It was also found to drive a differential lymphocyte inhibitory effect and 

showed a synergetic effect with PD-1 to suppress immune responses in cancer. Targeting LAG-3 as 

immunotherapy is in clinical trial, and in combination immunotherapy, anti-LAG-3 and anti-PD-1 has 

demonstrated powerful efficacy in overcoming PD-1 resistance (Gestermann et al. 2020). In our 

analysis, we observed high expression of IDO1 and LAG3 in the wound healing immune subtype (S4) 

which may both explain the poorer prognosis associated with this subtype and also and should be the 

first in line to be further explored in the pediatric setting.  

 

Other immune checkpoints of note are Cluster of Differentiation 70 (CD70) and TNF Superfamily 

Member 9 (TNFSF9), they are co-stimulatory immune checkpoints and are members of the tumor 

necrosis factor (TNF) family (O’Neill et al. 2017),(Fröhlich et al. 2020). We found that they are highly 

expressed in S4 compared to other immune subtypes, these checkpoints are associated with NK cells 

innate immunity (Takeda et al. 2000). CD70 has been shown to correlate with worse relapse-free 

survival rates in breast cancer patients, that could be due to the unfavorable negative feedback function 

to downregulate inflammatory T cell responses obtained by T cell-derived CD70 (O’Neill et al. 2017).  

Significant differences in the expression of immune checkpoints across the immune subtypes, and the 

different association of immune checkpoints with survival highlight the value of stratifying pediatric solid 

tumors into different immune phenotypes and allow us to understand why the response to immune 

treatments varies across patients even within the same tumor type. Further investigation will be needed 

to address the importance of these findings towards the possible implementation of check point inhibition 

studies in pediatric cancer. 

 

Next to the expression of checkpoints we noted a significantly higher enrichment of DNA repair signature 

pathways compared to other immune subtypes in S4 (Figure 5B). DNA mismatch and DNA repair 

mechanisms in addition to microsatellite instability are well known biomarkers for response to immune 

checkpoints (Teo et al. 2018),(Jiang et al. 2021),(Le et al. 2017). Defects in DNA damage response can 

radically influence the equilibrium between immune surveillance and tumor progression. On one hand, 

erroneous DNA damage repair results in the buildup of mutations or chromosomal rearrangements, that 

promote genomic instability, oncogene activation and initiation of tumorigenesis. On the other hand, it 

can trigger anti-tumor immune response through neo-antigens production that are later presented on 

the cell surface in the context of major histocompatibility complex class I and detected by the immune 

cells and the increase of cytosolic DNA that in turn stimulates the innate immune response (J. Zhang, 

Shih, and Lin 2020),(Cerniglia et al. 2019).  
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In addition, DNA repair pathways defects in different cancers also provide therapeutic opportunities to 

kill cancer cells without affecting normal cells as with the use of poly(ADP ribose) polymerase (PARP) 

inhibitors for the treatment of homology-dependent recombination defective cancers (Farmer et al. 

2005)(Bryant et al. 2005)(Rouleau et al. 2010) 

 

In this paper, we demonstrated that extracranial solid pediatric tumor can be classified according to their 

immune disposition, unveiling unexpected similarity with adults’ tumors. Immunological parameters can 

be further explored to refine diagnostic and prognostic biomarkers and to identify potential immune 

responsive tumors. This is the first pan-cancer immunogenomic analysis in children. 

 

Limitations of the study 

In our study we used 408 tumors for stratifying the cohort into immune subtypes, which is considered 

low in comparison to TCGA, this issue was prominent in some small cohorts that affects the significance 

of the results, however; In spite of this small cohort we could see many significant differences across 

the phenotypes that we have, so validation of the analysis on different cohorts is important. In addition 

to that, the absence of mutation data that obscure the genes expression of the tumor or the host immune 

cells. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442503doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442503
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abbreviations  

CCSK = Clear Cell Sarcoma of Kidney 

COG = Children's Oncology Group 

ES = Enrichment score  

ICR = immunologic constant of rejection 

mDC = Macrophage-derived chemokine 

MKI = Mitosis-Karyorrhexis Index 

NBL = Neuroblastoma  

NBL-HR-MYCN_A = High risk MYCN amplified Neuroblastoma 

NBL-HR-MYCN_NA= High-risk MYCN not-amplified Neuroblastoma 

NBL-ILR = Intermediate and low risk MYCN not amplified Neuroblastoma 

OS = Osteosarcoma  

RT = Rhabdoid tumor 

WT = Wilms tumor  
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Figure Legends 

 

Figure 1: Prognostic role of immune signatures in pediatric tumors. (A) tSNE plot of filtered normalized 

expression values annotated by pediatric cancer types. (B) tSNE plot of filtered normalized expression 

values annotated by ICR clusters.  (C) Boxplot of the ICR score across pediatric tumor types. (D) Forest 

plot of the association of continuous ICR scores with survival across tumors (E) Kaplan-Meier overall 

survival curve for ICR High + medium (orange) versus ICR low (blue) in Osteosarcoma. (F) Kaplan-

Meier overall survival curve for ICR High versus ICR low in NBL-HR-MYCN_NA. (G) Forest plot of 

Hazards ratio of immune subpopulations across different pediatric tumors. (H) Heatmap of enrichment 

scores of immune cells signatures. (I) Hazards ratio heatmap of these signatures, the color of the circle 

representing the HR; HR below 1 is red and above 1 is blue, the radius size representing the -log10 p 

value; Larger size has higher -log10 p value and more significant association with survival, the color of 

the background corresponding to the p value; if pink; p value is less that 0.05, if yellow; p value between 

0.05 and 0.1 and the white means p value above 0.1.  

 

Figure 2: Immune subtypes of pediatric tumors. (A) Spearman’s correlation of 105 cancer immune 

signatures. Highly correlated signatures are clustered into 5 modules (black rectangles). (B) Heatmap 

showing the enrichment of immune signatures for each patient. Tumors are clustered into 6 subtypes 

based on the enrichment patterns. (C) Distribution of immune subtypes within TARGET pediatric tumors. 

Colors represent immune subtypes. (D) Distribution of cancer types within immune subtypes. Colors 

represent cancer types. (E) Distributions of signature scores within the six immune subtypes (rows), 

with dashed line indicating the median.  

 

Figure 3: Overall survival across Immune subtypes. (A) Kaplan-Meier overall survival curve for immune 

subtypes. (B) Forest plot showing HRs (overall survival) of immune subtypes; S1, S2, S3, S5, S6 versus 

S4, and p value corrected for cancer types. (C) Kaplan-Meier overall survival curves for immune 

subtypes within tumor types for NBL-HR-MYCN_NA. (D) Forest plot showing HRs (overall survival) of 

immune subtypes within high-risk NBL-HR-MYCN_NA; S1, S2, S5, S6 versus S4. (E) Kaplan-Meier 

overall survival curves for immune subtypes within Osteosarcoma.  

 

Figure 4: Immune checkpoints expression across Immune subtypes. (A) Pan-cancer forest plot showing 

HRs (overall survival) and p-values of immune checkpoint expression. (B) Heatmap of log2 transformed 

expression of immune checkpoints aggregated by the median for each immune subtype, split into 

activator and inhibitor and annotated by immune subtypes. (C) Hazard ratio heatmap of these immune 
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checkpoints, the color of the circle representing the HR; HR below 1 is red and above 1 is blue, the 

radius size representing the -log10 p value; Larger size has higher -log10 p value and more significant 

association with survival, the color of the background corresponding to the p value; if pink; p value is 

less than 0.05, if yellow; p value between 0.05 and 0.1 and the white means p value above 0.1. (D) 

Violin plots illustrating the difference in expression of selected immune checkpoints across S2 and S4 

immune subtypes. 

 

Figure 5: Intrinsic selected oncogenic pathways across immune subtypes. (A) Pan-cancer forest plot 

showing HRs (overall survival) and p-values of selected oncogenic pathway enrichment scores. (B) 

Heatmap of the enrichment scores of selected oncogenic pathways, blue colors corresponding to lower 

enrichment and the red for the high enrichment scores, annotated by the 6 immune subtypes and pan-

cancer. (C) Hazards ratio heatmap of these pathway enrichment scores, the color of the circle 

representing the HR; HR below 1 is red and above 1 is blue, the radius size representing the -log10 p 

value; Larger size has higher -log10 p value and more significant association with survival, the color of 

the background corresponding to the p value; if pink; p value is less than 0.05, if yellow; p value between 

0.05 and 0.1 and the white means p value above 0.1. 

 

 

Supplementary Figures 

Supplementary Figure 1: Correlation of ICR genes in pediatric tumors. (A) Pearson correlation 

heatmap of ICR genes in different pediatric tumors, immune regulator genes were colored in blue and 

immune active genes in red, positive correlation between genes represented by blue and negative 

correlation represented by red.  

 

Supplementary Figure 2: The Immunologic constant of rejection. (A) Pan-cancer heatmap of ICR gene 

expression annotated by cancer types, and per-cancer clustering ICR High, medium and low. (B) 

Boxplot showing the distribution of ICR scores in NBL-HR-MYCN_A, NBL-HR-MYCN_NA, and NBL-ILR 

(the p value was calculated by two-tailed t-test). (C) Kaplan-Meier of overall survival for ICR High versus 

ICR low in Wilms tumor. (D) Kaplan-Meier event free survival curve for ICR High + medium (orange) 

versus ICR low (blue) in Osteosarcoma. (E) Kaplan-Meier of overall survival for ICR High versus ICR 

low in Rhabdoid tumor. 

 

Supplementary Figure 3: Intrinsic oncogenic pathways and immune infiltration. (A) Heatmap of 

pearson correlation between enrichment score (ES) of oncogenic pathways and ICR in pan-cancer, 

Osteosarcoma and NBL-HR-MYCN_NA. (B) Forest plot of HR of oncogenic pathways enrichment in 

Osteosarcoma (C) Forest plot of HR of oncogenic pathways enrichment in NBL-HR-MYCN_NA. 
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Supplementary Figure 4: Overall survival across Immune subtypes. (A) Kaplan-Meier overall survival 

curve for immune subtypes within Wilms tumor. (B) Kaplan-Meier overall survival curve for immune 

subtypes within Rhabdoid tumor. (C) Kaplan-Meier overall survival curve for immune subtypes within 

NBL-HR-MYCN_A tumors. (D) Forest plot showing HRs (overall survival) of immune subtypes within 

MYCN amplified NBL tumors; S1, S2, S3, S5 versus S6 (E) Kaplan-Meier overall survival curve for 

immune subtypes within NBL-ILR tumors. 

 

Supplementary Figure 5: CIBERSORTx immune cells proportions across Immune subtypes. (A) 

Barplot of the median of proportions of CIBERSORTx immune cells in the 6 immune subtypes. (B) 

Boxplots of means of CIBERSORTx immune cells across the immune subtypes. 

 

Supplementary Figure 6: CIBERSORTx immune cells proportions (Aggregate) across Immune 

subtypes. (A) Barplot of the median of proportions of aggregate CIBERSORTx immune cells in the 6 

immune subtypes. 
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Pancancer

Figure 4. Immune checkpoints expression and prognostic value across Immunesubtypes 
and in Pancancer
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