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Abstract  9 

One key feature of proteins that form liquid droplets by phase separation inside a cell is 10 

the presence of multiple sites – multivalency – that mediate interactions with other 11 

proteins. We know little about the variation of multivalency on evolutionary time scales. 12 

Here, we investigated the long-term evolution (~600 million years) of multivalency in 13 

fungal mRNA decapping subunit 2 protein (Dcp2), and in the FET protein family. We found 14 

that multivalency varies substantially among the orthologs of these proteins. However, 15 

evolution has maintained the length scale at which sequence motifs that enable protein-16 

protein interactions occur. That is, the total number of such motifs per hundred amino 17 

acids is higher and less variable than expected by neutral evolution. To help explain this 18 

evolutionary conservation, we developed a conformation classifier using machine-19 

learning algorithms. This classifier demonstrates that disordered segments in Dcp2 and 20 

FET proteins tend to adopt compact conformations, which is necessary for phase 21 

separation. Thus, the evolutionary conservation we detected may help proteins preserve 22 

the ability to undergo phase separation. Altogether, our study reveals that the length scale 23 

of multivalent interactions is an evolutionarily conserved feature of two classes of phase-24 

separating proteins in fungi and vertebrates.  25 

 26 
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 2 

Body  27 

Proteins that undergo liquid-liquid phase separation in a cell have various features that 28 

facilitate their condensation into liquid droplets. The presence of multiple interaction sites 29 

(multivalency) is one of these features. 1-3. Despite the pivotal role of multivalency, we 30 

know little about its evolution. The reason is that  multivalency can take different forms, 31 

including the presence of interacting patches on a protein surface, short linear amino acid 32 

motifs, and specific amino acids within the intrinsically disordered regions of phase-33 

separating proteins4.  34 

We investigated the evolution of multivalency in two well-known classes of 35 

multivalent phase-separating proteins during ~ 600 million years of evolution. The first 36 

class comprises orthologs of the fungal mRNA decapping subunit 2 protein (Dcp2). Dcp2 37 

is one of the scaffold proteins that help RNA processing bodies (P-bodies) self-assemble 38 

by liquid-liquid phase separation5-8. P-bodies are conserved membrane-less eukaryotic 39 

organelles that contribute to the regulation of gene expression by participating in RNA 40 

decay and degradation9. They also serve as mRNA storage depots when cells are 41 

stressed10. Dcp2 undergoes multivalent interactions using short helical leucine-rich motifs 42 

(HLMs) in its disordered C-terminal domain11. HLMs form eight out of 12 identified 43 

interactions between Dcp2 and other core proteins in P-bodies5.  44 

The second class of proteins comprises orthologs of six members of the FET family 45 

of RNA-binding proteins, including FUS, EWS, HNRNPA1, HNRNPA3, HNRNPR, and 46 

TAF15. These proteins have a common domain architecture that consists of a prion-like 47 

domain (PLD), and other domains with RNA/DNA binding affinities10,12-14. They contribute 48 
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 3 

to DNA damage repair, transcriptional control, and the regulation of the life-time of RNAs 49 

in metazoan species13. The prion-like domain of these proteins has low sequence 50 

complexity, and is enriched in few amino acids, such as asparagine, glutamine, tyrosine, 51 

and glycine15,16. The aromatic residues within the prion-like domain, particularly tyrosine, 52 

and arginine in RNA binding domains, are responsible for the multivalency of these 53 

proteins17-19. Interactions between these residues drive the phase-separation of FET 54 

proteins20.  55 

We use the stickers-and-spacers representation21 of phase-separating proteins 56 

throughout this work. Stickers are specific amino acids, motifs or protein domains whose 57 

interactions derive phase separation. Spacers are the sequences that separate the 58 

stickers. The helical leucine-rich motifs in Dcp2 and the aromatic residues in FET proteins 59 

are such stickers. For the FET proteins, we particularly focus on tyrosine residues, 60 

because their number and patterning in the sequence modulates the phase-separation 61 

propensity of these proteins20,22,23.  62 

We first investigated the evolution of helical leucine-rich motifs in 48 Dcp2 proteins 63 

of the phylum Ascomycota (Dataset S1). HLMs lie within the disordered C-terminal 64 

domain of Dcp2 (Figure 1A, residues 229 - 930 in S. cerevisiae), and take the form LL-65 

xφ-L, where L stands for leucine, φ is a hydrophobic residue, and x represents any amino 66 

acid. We identified 347 motifs in these sequences that exactly matched the LL-xφ-L 67 

pattern (Figure S1). As shown in Figure 1B, HLMs are the most conserved sequence 68 

segments within the intrinsically disordered C-terminal domain of Dcp2. However, their 69 

number substantially varies from a minimum of three in L. elongisporus to a maximum of 70 
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16 in K. capsulata (Table S1). Importantly, the number of HLMs increases with the length 71 

of the disordered C-terminal domain of a Dcp2 sequence (Figure 1C; Spearman 72 

correlation, R=0.44, p=0.0017). The average and median length of the spacer segments 73 

that separate HLMs are ~70 and ~51 amino acids. Based on these observations, we 74 

hypothesized that the scaling between the number of HLMs and the length of the 75 

disordered domain (1 HLM in ~70 residues) reflects a requirement for a characteristic 76 

sequence length that separates sticker motifs. We tested this hypothesis by asking 77 

whether this characteristic sequence length may be subject to natural selection. 78 

To understand the evolutionary forces that shape the scaling between the number 79 

of HLMs and the length of the C-terminal domain in Dcp2, we determined the likelihood 80 

that HLMs arise by chance through neutral evolution. To this end, we simulated neutral 81 

protein sequence evolution, using realistic divergence times of real Dcp2 sequences (see 82 

Method for details). We found that neutral evolution can indeed create motifs that exactly 83 

match known HLMs (Figure S2; Dataset S2), but the fraction of these neutrally-evolved 84 

HLMs per unit sequence length was much lower than that of HLMs in real sequences. 85 

Specifically, neutral evolution creates only one HLM per ~1500 amino acids.  In other 86 

words, HLMs in neutrally evolving sequences are ~35 times less frequent than in real 87 

Dcp2 sequences (Figure 1D). We recalculated the fraction of HLMs per unit of sequence 88 

length for various codon frequencies, nonsynonymous substitution rates, and values of 89 

transition/transversion bias (Dataset S2). In all these calculations, we found a 90 

substantially higher incidence of HLMs per unit of sequence length in biological 91 

sequences compared to sequences evolved by neutral evolution (Table S2).  92 
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We also compared the distribution of spacer lengths (segments that separate 93 

HLMs) in the C-terminal domain of Dcp2 orthologs with that of neutrally evolved 94 

sequences. The median length of spacers is 81 amino acids in neutrally evolved 95 

sequences, significantly higher than the 51 amino acids in biological Dcp2 sequences (p 96 

~ 10-6; Wilcoxon ran-sum test; Figure 1E).  In addition, spacer lengths are significantly 97 

more variable in neutrally evolved sequences compared to the biological Dcp2 proteins 98 

(p ~ 10-7, one-sided F-test for the equality of variances), and the length distributions are 99 

significantly different (p ~ 10-8; Kolmogorov-Smirnov test). Altogether, these results show 100 

that evolution has not only increased the incident of HLMs in Dcp2 sequences, but also 101 

has stabilized the lengths of sequences that separate HLMs.  102 

 To find out whether the scaling of sticker number with the length of a disordered 103 

region is a more general property, we next studied the FET family of proteins in 104 

vertebrates. We identified ~200-300 orthologs for each of the six FET proteins, and 105 

compiled a set of 1480 sequences of these proteins (Dataset S3). Analogous to Dcp2 106 

and its HLMs, we observed that longer FET proteins have more arginine (R) and tyrosine 107 

(Y) sticker residues in their prion like domain (Figure 2A, Spearman correlation, R=0.8, 108 

p<10-16). Importantly, among all 20 amino acids, the number of Rs and Ys showed the 109 

highest correlation with sequence length (Figure 2B; adjusted R2 ~ 0.81, and 0.70 in a 110 

linear model with 5-fold cross-validation and 10 replicates). In sum, the scaling of 111 

multivalency with the lengths of disordered domains is not unique to Dcp2 in fungi. It also 112 

exists in the FET protein family of vertebrates.  113 
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We further examined the spacer lengths that separate Ys and Rs in the sequence 114 

of FET proteins to find out whether natural selection has influenced the number of stickers 115 

per unit sequence length. We compared the distance distribution of both R and Y residues 116 

in FET proteins with that of neutrally-evolved sequences (see Methods for details). For 117 

both amino acids, the distribution of distances between tyrosine residues in FET proteins 118 

is significantly less variable than that of neutrally evolved sequences (See Figure 2C for 119 

spacers between tyrosine residues; p < 10-16; Kolmogorov-Smirnov test, and Figure S3 120 

for spacers between arginine residues). The median distance between tyrosine residues 121 

is seven amino acids for FET proteins, which is significantly less than the corresponding 122 

distance of 11 amino acids in neutrally evolving proteins (p ~ 10-6; Wilcoxon rank-sum 123 

test). In addition, the distance distribution of FET proteins is much more sharply peaked 124 

(leptokurtic, Figure 2C) and significantly differed from neutrally-evolved sequences (p ~ 125 

10-8; Kolmogorov-Smirnov test). This suggests that natural selection has likely stabilized 126 

this distance distribution in FET proteins.  127 

Next we asked why the scaling of the number of stickers may be conserved, 128 

focusing on the hypothesis that it helps maintain a network of protein interactions that is 129 

necessary for condensation and phase separation24. To maintain this interaction network, 130 

disordered sequences should be able to adopt compact conformations. The reason is 131 

that only this type of conformation substantially increases the chance of interactions 132 

between stickers24. We thus wanted to find out whether this ability exists in our proteins. 133 

First, we calculated the fraction of charged residues in the spacers that separate HLMs 134 

in Dcp2 and aromatic residues in the prion-like domain of FET proteins. This fraction of 135 
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charged residues is a proxy for the effective solvation and hence the conformation of 136 

disordered spacers24. Previous studies have suggested that spacers whose fraction of 137 

charged residues is less than 0.5 can self-associate and drive the formation of a 138 

condensation-promoting network of interactions (Figure 3A). As shown in Figures 3B-C, 139 

we found that almost all spacers in Dcp2 and FET proteins have a fraction of charged 140 

residues between 0.2 and 0.4, indicating that they can adopt compact conformations.  141 

Second, we predicted a structural feature of disordered sequences known as the 142 

∆-parameter. This parameter is the average difference between inter-residue distances 143 

of a disordered sequence and the corresponding distances of a typical Flory random 144 

coil24. Flory random coils are an idealized kind of disordered sequences in which the 145 

attractive and repulsive forces between residues and solvent molecules are at balance. 146 

Spacers that self-associate and promote phase-separation are characterized by ∆ ≤ 0.1 147 

nm. As ∆ increases beyond 0.1 nm, spacers adopt more extended conformations, 148 

resembling another type of idealized sequence known as a self-avoiding random coil 149 

(Figure 3A). 150 

 We developed a sequence-based classifier of ∆ using a random forest algorithm 151 

(Figure 3D), which classifies spacers based on their amino acid properties into two 152 

classes, those with ∆ > 0.1, and those with ∆ ≤ 0.1 nm (see Methods for details). We 153 

trained this classifier on a dataset of 256 naturally occurring disordered sequences whose 154 

∆ values had been previously calculated by molecular dynamics simulations24. This 155 

classifier achieved an accuracy of ~ 0.88 in 100 independent runs with the data split into 156 

a training set (80% of the data) and a testing set (20%) (Figure S4 see Methods for 157 
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details). Using this classifier, we found that ~94.8% of all spacers in Dcp2 have a 158 

predicted value of ∆ below 0.1 nm. We repeated this analysis for the spacers in the prion-159 

like domain of the FET proteins and found that in these proteins too, most spacers 160 

(~99.3%) have predicted ∆ ≤ 0.1 nm. Altogether, these results indicate that both fungal 161 

Dcp2 sequences and vertebrate FET proteins have spacers that can self-associate and 162 

promote phase-separation in these proteins.  163 

In summary, our work reveals that evolution has maintained a characteristic length 164 

scale of multivalent sticker sequences in two classes of multivalent proteins during ~600 165 

million years. Our results extend the previous observation by Martin et al. 22  that a uniform 166 

patterning of tyrosine residues in few members of FET proteins promotes phase-167 

separation and inhibits the aggregation of these proteins. This scaling not only promotes 168 

phase-separation, but may also increase the robustness of proteins to DNA mutations 169 

such as indels and truncations. Dcp2 plays an important role in the assembly of RNA 170 

processing bodies, and FET proteins play such a role in the assembly of stress granules. 171 

Biomolecular condensates like these are sensitive to environmental stressors such as 172 

heat shock and energy depletion16,25-27. Our results thus also raise the intriguing 173 

possibility that evolution may have modulated the multivalency of proteins in membrane-174 

less organelles to help organisms cope with new environments. To provide experimental 175 

support for this possibility is an exciting question for future work.  176 

 177 

 178 

 179 
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Methods: 180 

Data compilation and the generation of neutrally-evolved sequences 181 

In this study, we used 48 orthologous coding sequences of fungal Dcp2, and ~200-300 182 

orthologs of six members of the FET family of proteins (FUS, EWS, HNRNPA1, 183 

HNRNPA3, HNRNPR, and TAF15; overall 1480 sequenced).  We downloaded these 184 

sequences from the NCBI28, ENSEMBL29 , and KEGG30 databases. Throughout, we 185 

worked with the amino acid sequences of these proteins, except for the simulation of 186 

neutral evolution, where we represented protein sequences on the level of DNA. 187 

 188 

Simulation of neutrally evolved sequences 189 

We simulated protein evolution using the Evolver package within the PAML suite31. In 190 

brief, Evolver uses Monte Carlo simulations to generate codon sequences using a 191 

specified phylogenetic tree with given branch lengths, nucleotide frequencies, 192 

transition/transversion bias ("), and the ratio of the rate of nonsynonymous to 193 

synonymous substitutions (dN/dS)31. To simulate neutral sequence evolution, we used 194 

the standard genetic code with codon frequencies from our study proteins sequences. 195 

Specifically, we used codon frequencies from the set of 48 Dcp2 sequences to model 196 

neutral evolution in fungal Dcp2, and codon frequencies from FUS orthologs for neutral 197 

evolution in vertebrate proteins. We used a consensus phylogenetic tree for the fungal 198 

species from the yeast genome browser32 and for the vertebrate species from the 199 

TimeTree database 33. To model neutral evolution, we set dN/dS to 1 and used a 200 

transition/transversion rate ratio of 2.3, and 2.9 for fungal and mammalian sequences. 201 
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We estimated these values by fitting the codon model M1 to the phylogenetic tree and 202 

the sequences of these proteins. This model assumes that all branches of the 203 

phylogenetic tree have the same rate of evolution. We evaluated the number of neutrally-204 

evolved HLMs for various values of dN/dS and the transition/transversion rate ratio to 205 

ensure that our results do not depend on the choice of these parameters (Table S1). 206 

Overall, we generated 104 evolved sequences using this sequence evolution model. 207 

 208 

Detection of HLM motifs and their distinct flanking regions 209 

We used regular expression matching to search for HLM motifs that matched the LL-xφ-210 

L pattern, where φ is a hydrophobic residue (one of the amino acids L, I, V, A, P, and F), 211 

and x represents any amino acid. To distinguish HLMs from HLM-like patterns we used 212 

the classification approaches of logistic regression and random forests implemented in 213 

the Python package scikit-learn. In these classifications, positive and the negative sets 214 

correspond to the flanking regions of HLMs and HLM-like motifs, respectively. The size 215 

of the training and the test set was 80%, and 20% of the whole dataset.  216 

 217 
 218 

Random forest classification of spacers 219 

We used the random forest algorithm to develop a classifier of spacer conformation from 220 

the protein sequence. To this end, we used the average deviation of inter-residue 221 

distances of a spacer sequence from the same distances in a Flory Random Coil as the 222 

measure for the prediction of spacer types24. This deviation, known as the ∆ parameter, 223 

can take positive and negative values. Disordered sequences with ∆ ≤ 0.1 have the 224 
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propensity to form compact conformations. We used a binary classification and classified 225 

proteins into a positive set (∆ ≤ 0.1) and a negative set (∆ > 0.1).  To train our classifier 226 

we used a dataset of 256 disordered sequences for which we had calculated ∆ by all-227 

atom molecular dynamic simulations.  228 

To build features for the classification, we calculated the average value of 500 229 

physicochemical properties for each sequence in the positive and the negative sets. This 230 

yielded two feature matrices, one for sequences with ∆ ≤ 0.1, and another for sequences 231 

with ∆ > 0.1. To apply random forest classification, we used the randomForest package 232 

of R34, and evaluated the best number of trees (nTree) and the number of variables 233 

randomly sampled at each split (mtry) in the random forest algorithm. To do so, we 234 

systematically varied nTree and mtry, and calculated the accuracy of classification with 235 

10-fold cross-validation in 3 replicates. We defined accuracy as the percentage of 236 

correctly identified classes of spacers (∆ ≤ 0.1 and ∆ > 0.1) out of all spacers. The 237 

combination of nTree=5000 trees and mtry=10 variables achieved the highest accuracy 238 

of ~ 88%. Here, we define accuracy as the ratio of the number of true positives to the sum 239 

of true positives and false negatives. We then used these parameters to perform 100 240 

random forest clusterings, in which we randomly assigned proteins to the training and the 241 

testing datasets. To quantify the accuracy of classification we counted the number of true 242 

positive and false positive predictions and calculated the area under the curve (AUC). We 243 

represented these values by receiver operating characteristic curves (ROC) in Figure S2. 244 

We performed all statistical analyses using R. Scripts and input files for classification, as 245 
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well as for evolutionary simulations are available at: 246 

https://github.com/dasmeh/multivalency_evolution 247 
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Figure legends: 334 

 335 

Figure 1. The length scale of multivalent interactions is evolutionary conserved in 336 

fungi species Dcp2. A) Architecture of Dcp2 in S. cerevisiae with the regulatory domain 337 

(in red), the NUDIX catalytic domain (in orange), and the disordered C-terminal domain 338 

(in white). Within the disordered C-terminal domain helical leucine-rich short linear motifs 339 

are responsible for the multivalency of Dcp2.  B) Multiple sequence alignment of the C-340 

terminal domain of Dcp2 in 48 fungal species within the phylum of Ascomycota spanning 341 

~ 600 million years of evolution. HLMs, shown as blue columns, are highly conserved 342 

within the C-terminal domain of Dcp2. C) The number of HLMs positively correlates with 343 

the length of the C-terminal domain of Dcp2 in fungi (Spearman correlation; R=0.44, 344 

p=0.0017). D) The incidence of HMLs in biological sequences (shown in red) is ~ 35 times 345 

higher than that of neutrally evolved sequences (shown in blue). E) The distribution of 346 

spacer lengths (sequences that separate HLMs) in real Dcp2 sequences (shown in red), 347 

and in neutrally evolved sequences (shown in blue). We compared the two distributions 348 

and calculated the p-value for rejecting the null hypothesis that these distributions are 349 

indistinguishable by Kolmogorov-Smirnov (KS) test. 350 

 351 

 352 

 353 

 354 

 355 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442641doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442641


 16 

Figure 2. The length scale of multivalent interactions is evolutionary conserved in 356 

the FET family of vertebrate proteins. A) The number of arginine (R) and tyrosine (Y) 357 

residues of six different FET family members and their orthologs in vertebrate species 358 

(1180 proteins overall) versus their sequence length. B) The coefficient of determination 359 

(R2) between the number of different amino acids and the length of FET proteins and their 360 

orthologs. For a robust estimation of R2, we used a linear regression model with 5-fold 361 

cross-validation that we repeated 10 times. C) The distribution of distances between 362 

tyrosine residues in FET proteins (shown in red), and in neutrally-evolved sequences 363 

(shown in blue). We compared the two distributions and calculated the p-value for 364 

rejecting the null hypothesis that these distributions are indistinguishable by Kolmogorov-365 

Smirnov (KS) test. 366 

 367 

Figure 3. The disordered spacers in fungal Dcp2 and vertebrates FET proteins 368 

adopt conformations that promote phase-separation. A) The fraction of charged 369 

residues (FCR) can distinguish the conformation of spacer segments in multivalent 370 

proteins. Proteins with FCR > 0.5 preferentially adopt extended conformations like 371 

idealized self-avoiding random coils. Proteins with FCR < 0.3 can form compact globules. 372 

Sequences with intermediate values of FCR form conformations similar to Flory random 373 

coils where the net attractive and repulsive forces between residues and solvent 374 

molecules are in balance. The fraction of charged residues for B) fungal Dcp2 sequences, 375 

and C) vertebrate HNRNPA1a, a member of the FET family. D) Schematic for machine-376 

learning random-forest classification to classify spacer types from their amino acid 377 
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sequence. In brief, we used the sequences of naturally occurring disordered sequences 378 

that connect different domains, calculated the average of 500 amino acid properties for 379 

each sequence, and used this dataset to classify these sequences into the two categories 380 

of self-avoiding random coils, and Flory-random coils and compact globules. E) The 381 

fraction of spacers that adopt compact conformations (Flory random coils, and compact 382 

globules) and those that adopt extended conformations (self-avoiding random coils) in 383 

fungal Dcp2 and vertebrate FET proteins.  384 

 385 
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