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 39 

Abstract 40 

Current analyses of metacommunity data largely focus on global attributes across the entire 41 

metacommunity, such as mean alpha, beta, and gamma diversity, as well as the partitioning of 42 

compositional variation across all species and sites.  This view neglects that different species and 43 

sites in the landscape can vary widely in how they contribute to these metacommunity-wide 44 

attributes as a function of traits and site attributes.  We argue that the study of this internal 45 

structure can help define and describe the complex and interactive relations between process and 46 

pattern in metacommunities.  To illustrate this general idea, we create synthetic data using a 47 

simple colonization-extinction metacommunity model, and quantify variation between species 48 

and sites (what we call the ‘internal structure’ of metacommunities) using Joint Species 49 

Distribution Models.  We find that this perspective on internal structure of metacommuniites  50 
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provides useful information about the distinct ways that different species and different sites 51 

contribute to metacommunity attributes. We conclude with some discussion about how these 52 

realistic complexities regarding internal structure can be incorporated into a more cohesive 53 

metacommunity theory. 54 

 55 

Introduction 56 

Recent developments in community ecology indicate that the field is undergoing an important 57 

renaissance in both its concepts and tools.  One of the more exciting and important elements of 58 

this renaissance is in the use of the metacommunity concept, which recognizes the feedback 59 

between local communities and the broader-scale regional biota (Hanski and Gilpin 1991, 60 

Leibold et al. 2004 and reviewed in Leibold and Chase 2017).  Earlier work focused on specific 61 

scenarios where such feedbacks could occur (e.g., Levins and Culver 1971, Horn and MacArthur 62 

1974, Levin 1974, Sloan-Wilson 1992, Leibold 1998, Hubble 2001, Amarasekare and Nisbet 63 

2001), which was synthesized into a useful categorization of the different ways in which 64 

metacommunities could be structured (Leibold et al. 2004).  However, it is apparent that there is 65 

a much more complex and nuanced spectrum of possibilities regarding the mechanisms and 66 

processes underlying the structure of metacommunities (Leibold and Chase 2017).  Ongoing 67 

developments, including both more sophisticated theoretical (e.g., Shoemaker and Melbourne 68 

2016, Fournier et al. 2017, Ovaskainen et al. 2019, Thompson et al. 2020) and analytical (e.g., 69 

Legendre and DeCaceres 2013, Hui et al. 2013, Ovaskainen et al. 2017, Ohlman et al. 2018, 70 

Jabot et al. 2020) approaches, promise a new level of understanding and synthesis of the 71 

regional-local community-level feedbacks.  It seems increasingly apparent that understanding the 72 

feedbacks between local communities and the regional biota is a major challenge for community 73 
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ecology in general (see Leibold and Chase 2017) as well as for the application of these insights 74 

to applied issues of environmental and health concerns (e.g., Bengtsson 2009, Schiesari et al. 75 

2019, Miller et al. 2019, Brown and Barney 2020). 76 

 77 

While important progress has been made in the study of metacommunities, most work tends to 78 

assume that processes act similarly on all species and sites in a metacommunity. However, 79 

variation among species and among sites can strongly influence metacommunity-level properties 80 

of biotas.  This is particularly relevant to local-regional feedbacks because species and sites vary 81 

across metacommunities.  For instance, the spatial structure of environmental features among 82 

sites almost always changes different explicitly determined landscapes due to spatial contingency 83 

(Peres-Neto et al. 2012).  In contrast with many previous studies (e.g., Blanchard et al. 2020, 84 

Jabot 2020), we emphasize that different species can be heterogenous in how they contribute to 85 

metacommunity level properties and that different sites can also be heterogenous in how they 86 

contribute to these patterns (but see Pandit et al. 2009, Legendre and De Cáceres 2013).  Using 87 

this concept as a starting point, we highlight the importance of understanding the ‘internal 88 

structure’ of metacommunities, which can help resolve more complex dynamics that could not be 89 

resolved without taking this different perspective. Community assembly in metacommunities is a 90 

complex process that involves mechanisms related to environmental effects, species interactions, 91 

dispersal, and stochasticity as they act on a regionally-defined pool of species within a specific 92 

landscape (e.g. Vellend 2010, 2015, Weiher et al. 2011).  Current analytical tools for inferring 93 

the effects of these mechanisms from metacommunity patterns focus on global metrics that 94 

describe the entire metacommunity, such as diversity metrics and coexistence patterns and 95 

variation partitioning analysis (e.g., Borcard et al. 1992, Gotelli and McCabe 2002, Leibold and 96 
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Mikkelson 2002). Recent efforts have used several of these global metrics to separate 97 

metacommunity processes (Ovaskainen et al. 2019, Guzman et al. 2020).  While these 98 

approaches provide insights into the processes that drive species distributions and determine their 99 

levels of interaction within metacommunities, they only characterize them in very broad terms at 100 

the larger metacommunity scale, which we consider to be the ‘external’ structure of 101 

metacommunities.  Here, we focus on the ‘internal structure’ instead and thus on resolving how 102 

individual species and sites or patches contribute to such broad patterns by dissecting their 103 

individual contribution to the global metacommunity pattern (see also Fournier et al. 2017, 104 

Suzuki and Economo 2021).   105 

 106 

To illustrate the advantages of studying the internal structure of metacommunities, we create 107 

synthetic data from a process-based metacommunity model of competition-extinction dynamics.  108 

We evaluate species-level and site-level variation using joint species distribution models 109 

(JSDMs; see review in Warton et al. 2016).  We find that there can be tremendous heterogeneity 110 

between the contributions of individual species and sites to overall metacommunity structure; 111 

and that some of this heterogeneity can be identified by JSDMs and be related to attributes such 112 

as dispersal and species associations for species, or environmental uniqueness for sites.   113 

 114 

Previous work has shown that particular examples of such effects can occur but here we seek a 115 

more general approach.  For example, Pandit et al. (2009) showed that species can be 116 

heterogenous in their responses to environmental and stochastic factors depending on their 117 

degree of habitat specificity.  Others have argued that JSDMs can provide important insights into 118 

the drivers of such variation in species distributions ((Hui et al. 2013, 2016, Pollock et al. 2014, 119 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2020.07.04.187955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187955
http://creativecommons.org/licenses/by-nd/4.0/


Ovaskainen et al. 2017 see also Ovaskainen and Abrego 2020; but see Poggiato et al. 2021).  120 

Similarly, the heterogeneity among sites has long been identified as driving individual species 121 

distributions (see Guisan and Thulliers 2005, Soberon and Peterson 2005, Elith and Leathwick 122 

2006) as well as driving overall variation among sites in global metrics of community structure 123 

(e.g. diversity patterns, etc.) as characterized by the field of landscape ecology (Turner et al. 124 

2001).  Further suggestions that individual sites might vary in how they contribute to 125 

metacommunity dynamics include the concept of ‘keystone communities’ (Mouquet et al. 2012, 126 

Resetarits et al. 2017, Yang et al 2020) and metacommunity approaches to spatial networks.  127 

These disparate approaches (species vs sites) to metacommunities are likely closely related to 128 

each other and can be linked by the emerging methodologies of methods such as JSDMs to a 129 

more nuanced metacommunity ecology that recognizes a plurality of mechanisms and processes 130 

underlying community assembly.  Nevertheless, we discuss some remaining important 131 

challenges to resolve in making process-pattern linkages in metacommunities (see also Poggiato 132 

et al. 2021, Miele et al. 2021). 133 

 134 
 135 
Quantifying the link between process and pattern using a simple metacommunity 136 

simulation and refined statistical approach 137 

 To test and exemplify our ability to infer individual species and site contributions, we 138 

simulate data from a process-based model, which allows us to create observations with full 139 

knowledge about the underlying mechanisms. Our process-based model is based on a spatial 140 

implementation of spatially implicit site occupancy models (e.g., Levins and Culver 1971, Horn 141 

and MacArthur 1972, Levin 1974, Hastings 1980, Hanski 1991) to describe dynamics in 142 

heterogeneous metacommunities.  We focused here on a model for predicting presence-absence 143 
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(and not abundance; but see Supporting Information) because it is the most widely available type 144 

of empirical data for metacommunity analysis. For each species in each patch, we model 145 

occupancy using two key equations (details in the Supporting Information). The first of these 146 

describes the colonization of patch z by species i during a discrete time interval, ∆𝑡:  147 

 148 

𝑃$𝑋!,#,$%∆$ = 1|𝑋!,#,$ = 0* 	= 		 𝐼!,#,$𝑆!,#,$𝐶!,#,$ (1) 149 

 150 

where 𝑋!,#,$ is a stochastic variable representing the occurrence of species 𝑖 at location 𝑧 at time 151 

𝑡,	𝐼!,#,$ is the number of immigrants of species, 𝑆!,#,$ is the effect of environmental filtering on the 152 

probability of establishing a viable local population, and 𝐶!,#,$ is the effect of ecological 153 

interactions on the establishment probability. Second, we consider the alternative possibility: the 154 

extinction of species i in patch z during the time interval ∆𝑡: 155 

 156 

𝑃$𝑋!,#,$%∆$ = 1|𝑋!,#,$ = 0* 	= 		𝑀!,#,$𝐸!,#,$ (2) 157 

 158 

where 𝑀!,#,$ and 𝐸!,#,$ are the responses of the extinction probability to the local environment and 159 

to ecological interactions, respectively.  160 

 At steady state the solution to this model is: 161 
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 162 

log '(!,#

)*'(!,#
	= 	 log 𝐼!,# 	+ 	 log +!,#

,!,# 	+ 	 log
-!,#

.!,#
  (3) 163 

 164 

where 𝑃7!#		is the expected probability that site z is occupied by species i.  This formulation 165 

assumes that immigration(	𝐼!,#), ‘environmental selection’ (𝑆!,#	𝑎𝑛𝑑 𝑀!,#) and interactions 166 

(𝐶!,#	𝑎𝑛𝑑	𝐸!,#) can be separated into distinct effects that do not interact.  167 

 168 

Equation 3 can be analyzed by a JSDM to separate the contributions of these effects into spatial 169 

effects (driven by immigration), environmental filtering (driven by abiotic selection) and species 170 

co-distribution unrelated to either space or environment, with an additional fraction quantifying 171 

residuals resulting from stochasticity in the case of a finite number of patches (see also 172 

Shoemaker et al. 2020).  Furthermore, the likelihood of every observation can be marginalized 173 

over each species (by summing the likelihoods for a given species across all patches) to describe 174 

the variation among species. Alternatively, the likelihood can be marginalized by sites (by 175 

summing the likelihoods for a patch across all species) to describe the variation across the 176 

metacommunity landscape. Doing so, we can quantify the importance of environment, species 177 

co-distribution, and space for predicting metacommunity structure as a whole, as well as their 178 

importance for predicting the presence-absence (or, in theory, the abundance) of individual 179 

species or community composition at individual patches.   180 

 181 

Analyzing the inferred quantities, we can study the internal structureof the metacommunity. This 182 

can clarify how these key processes work together in a diverse and complex metacommunity to 183 

explain species distributions within the metacommunity (Figure 1).  We also emphasize that one 184 
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main advantage of the proposed framework is to allow ecologists to identify the contributions of 185 

individual communities and species which are often units of personal interest and knowledge 186 

(e.g., natural history of species, place-based ecological knowledge).   187 

 To illustrate the utility of this approach in a more realistic framework that includes 188 

stochasticity and spatially explicit landscapes, we implemented the key processes of drift, 189 

environmental filtering, dispersal, and species interactions (Vellend 2010, 2016) in a flexible 190 

simulation version of the model (described in more details in the Supporting Information).  The 191 

simulation model allows us to vary each process separately for each species in a heterogeneous 192 

spatially explicit landscape. It simulates the dynamics of a metacommunity across a set of 193 

patches and generates a spatial network that specifies the connectivity among patches. The state 194 

variables of the simulation are the occupancy of each species in every patch (i.e. 195 

presence/absence, though future implementations could also address abundance data, e.g. 196 

Rybicki et al. 2018, Ovaskainen et al. 2019, Thompson et al. 2020). Each patch can be colonized 197 

from nearby patches depending on their location in the landscape, dispersal rate of the species 198 

and proximity of extant populations in neighboring patches. Each species in each patch is subject 199 

to extinctions that reflect demographic and/or environmental stochasticity.  Patches can differ in 200 

local environmental conditions that differentially influence baseline colonization and extinction 201 

probabilities.  Species interactions are modeled in two ways.  First, the presence of other species 202 

in a patch can modify baseline colonization probability (a reduction in the case of competition).  203 

Second, co-occurring species can modify baseline extinction probability (an increase in the case 204 

of competition).  205 

 We next apply a JSDM to the resulting distribution of species among patches.  206 

Specifically, we use the HMSC R package (Ovaskainen et al. 2017, Ovaskainen and Nerea 2020) 207 
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that models species distributions as a function the environment, spatial autocorrelation and 208 

species co-distributions. After fitting the model using HMSC, we partition variation between the 209 

model processes into four components (or fractions) using an approach akin to classic variation 210 

partitioning (Borcard et al. 1992; Peres-Neto et al. 2006). Details about how this type of variation 211 

partitioning is computed through HMSC is given in the Supporting Information. Specifically, the 212 

variation was partitioned to quantify the effects of environment (labeled [E]), spatial patterning 213 

(labeled [S]), co-distribution among species (labeled [C]) and residual (unexplained) variation 214 

that cannot be attributed to any of the three previously mentioned fractions (i.e. sets of 215 

predictors). This is expressed as 1-R2, where R2 is the proportion of variation explained by the 216 

model and includes fractions [E], [S], and [C].  217 

 Compared to the classical method of variation partitioning (Borcard et al. 1992, Peres-218 

Neto et al. 2006), this approach provides two major advances. The first is that we can infer a 219 

third fraction that quantifies co-variation (or co-distribution) among species using latent 220 

variables (fraction [C]), which is distinct from either the environment effect (fraction [E]) or the 221 

spatial effects (fraction [S]). In our model this fraction reflects the consequences of species 222 

associations rather than biotic interactions, and we emphasize that this interpretation must be 223 

done with caution (see Dormann et al. 2018 and Blanchet et al. 2020 for critical reviews of this 224 

issue).  In nature, this latent fraction may also reflect other sources of variation such as those 225 

from unmeasured environmental variables.  Similar points have been raised in metacommunity 226 

analysis regarding the interpretation of model variation due to spatial autocorrelation as these 227 

could be related to spatialized environmental effects due to unmeasured environmental factors 228 

(Peres-Neto et al. 2012).  The second advance is that all fractions are calculated at the species 229 

level, where species-specific variation detail the internal structure of the metacommunity from 230 
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the perspective of each individual species. Fractions of the variation at the metacommunity level 231 

are then calculated by averaging across all species to obtain metacommunity (global) level 232 

descriptors as those obtained from variation partitioning.  This allows us to subsequently 233 

examine potential drivers (environment, space and joint co-distribution) underlying the variation 234 

in these different effects among species. In addition, we implemented a partitioning scheme to 235 

quantify how each site separately contributes to different drivers as described in the Supplement 236 

Information.  This way to partition variation among sites informs us about the individual 237 

contribution each site has to variation in the data for each set of drivers.  The ability to resolve 238 

species-specific and site-specific components means that we can study the 'internal structure' of 239 

the metacommunity in ways that were absent in classic variation partitioning. 240 

  Although the analytical model described in equations 1-3 suggests that making links 241 

between processes and patterns using JSDMs are possible, we wished to evaluate if this was also 242 

likely in less idealized situations such as those used in our metacommunity model.  To do this, 243 

we simulated a number of scenarios that vary the strength of environmental selection, dispersal 244 

and competition.  Comparing scenarios with varying niche breadth and competition (scenarios 245 

A-D, Fig. 2 and Fig 3), and a more complex case where species compete and vary in both 246 

dispersal and in their responses to the environment (scenario G, Figure 4, scenarios E and F in 247 

the SI) highlight how HMSC provides an avenue for distinguishing between underlying 248 

processes based on abundances of species across metacommunity patches.  Using our 249 

framework, our goal here is to illustrate how links between pattern and process might be made in 250 

metacommunities. In doing so, we leave a more extensive and systematic evaluation of the 251 

model’s components (e.g., performance of JSDMs under multiple complex scenarios) for future 252 

work (but see Ovaskainen and Nerea 2020).   253 
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   254 

Simulation experiments 255 

In a first set of simulations, we considered a situation where species had distinct 256 

environmental optima along an environmental gradient and had limited dispersal (Figure 2, 257 

Table 1).  We contrasted the case where the environmental niches were narrow (steep changes in 258 

baseline colonization success and extinction rates with small deviations in environment) with the 259 

case with identical optima, but with wide environmental niches (much weaker changes in 260 

colonization and extinction with environmental value).  As expected, we find that these 261 

differences in environmental niche breadth had strong effects on the relative importance of 262 

environmental filtering (fraction [E]) versus spatial patterning (fraction [S]). Specifically, we 263 

find stronger spatial patterning when niche breadths were broad and stronger environmental 264 

filtering when niches were narrower (Figure 2, Table 1).  We also found that the R2 values were 265 

higher for the case with narrow niches than with wide niches.  Finally, we found non-zero 266 

(though relatively weak) variance components for co-distributions (fraction [C]) in both cases, 267 

especially when niches were broad even though our analytical model would predict the absence 268 

of such variation components since colonization and extinctions were not affected by species 269 

interactions in these simulations.   270 

We next simulated metacommunities with identical parameters as above, except with added 271 

interspecific competition effects (Figure 3, Table 1).  As in the case without species interactions 272 

(compare with Figure 2), narrow niches enhanced the relative strength of environmental filtering 273 

(fraction [E]) and reduced spatial patterning (fraction [S]) when compared to wide niches.  In 274 

these simulations, however, the co-distribution components (fraction [C]) were much more 275 

substantial than without species interactions.  We also found that adding interspecific 276 
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competition substantially increased the total amount of variation explained (R2) by the model 277 

(i.e. due to the joint component of co-distribution).   278 

 We conducted a number of other simulations to explore if that describe interspecific 279 

variation on environment (fraction [E]), space (fraction [S]), and co-distributions (fraction [C]) 280 

depend on the dispersal, niches breadth, and interactions. Illustrative examples are shown in the 281 

supplemental information and summary statistics are shown in Table 1.  In Figure 4, we present 282 

the results from one of these examples that includes heterogenous dispersal to show how the 283 

internal structure can reveal how dispersal variation affects species distributions.  We found that 284 

one could distinguish species by the degree to which their distributions are related to 285 

environment (fraction [E]), space (fraction [S]) and co-distributions (fraction [C]) (Figure 5a) 286 

and we found that this could be related to their traits (i.e., species optima in our simulation 287 

framework). Species with higher dispersal ability and more specialized environmental niche 288 

positions had distributions better predicted by the environment than those that were dispersal 289 

limited and had distributions that presented a higher level of spatial autocorrelation (fraction [S]).  290 

Species with optima closer to the middle of the environmental gradient also had a larger fraction 291 

[C] than those with more extreme optima. 292 

 Sites also differed in how their species composition was related to environmental 293 

(fraction [E]) and spatial effects (fraction [S]) as well as co-distributions (fraction [C] - Figure 294 

4b).  Some sites tended to be occupied by locally dominant species (in the lower left of the 295 

ternary plot, nearer to fraction [E]), while others were occupied by species found in nearby sites 296 

(lower right of the ternary plot, nearer to fraction [S]). Some sites were also occupied by 297 

combinations of species that were differentially associated with each other regardless of 298 

environment or dispersal (upper apex of the ternary plot, nearer to fraction [C]). As can be seen 299 
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in Figure 4b, there were also a wide range of intermediate conditions.  A major driver of this 300 

variation is the local environmental condition, especially in relation to how distinct the local 301 

environment is from the overall mean environment of the metacommunity (Figure 5b).   302 

 We further investigated the structure of the species co-distribution (fraction [C]).  This 303 

covariation can be directly attributable to species interactions because we explicitly model the 304 

processes underlying metacommunity dynamics. However, even in our model, species co-305 

distribution may not directly link to pairwise interaction coefficients, but rather may emerge as a 306 

complex relationship between species interactions and environmental conditions (Cazelles et al. 307 

2015, Blanchet et al. 2020).  To illustrate this, we show the co-distribution among species as a 308 

heat map separately for each of the five individual simulations presented in Figure 4 and 309 

compared them to the actual interaction matrix that describes interspecific competition in our 310 

model (Figure 6; similar heat maps obtained with the other scenarios are shown in the 311 

Supplement Information).  Despite the fact that the same interaction matrix was used for all five 312 

of these simulations, the resulting co-distribution patterns are inconsistent in their details.  313 

However, these matrices show that there is consistency in several features of the co-distribution 314 

pattern.  For example, they all share the predominance of strong negative correlations along the 315 

main diagonal that match the interaction matrix we used.  They also share a strong 316 

‘checkerboard’ pattern with alternating negative and positive co-distributions between species 317 

when these are ranked against their environmental optima.  Given the simple scheme of species 318 

interactions we used (Fig. 5 and SI), these results are consistent with the predictions that direct 319 

interactions are stronger than indirect ones and tend to weaken with the number of links in 320 

indirect chains even if the details of these effects are less predictable.   321 

 322 
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Discussion  323 

While metacommunity ecology has made great progress in the past decades, the 324 

assumptions that species and sites were relatively homogeneous in their underlying processes 325 

(reviewed in Leibold and Chase 2017) have limited the applicability of metacommunity theory to 326 

more realistic species pools within complex landscapes.  Here, by combining a tractable process-327 

based model with emerging analytical methods, we provide a general quantitative approach that 328 

accounts for multiple interacting processes that may operate differently among species or in 329 

different parts of landscapes.   330 

 Although there are some important challenges to consider, our study illustrates important 331 

insights about the internal structure of metacommunities, including:  332 

1) Variation partitioning using JSDMs (here implemented using HMSC) can be linked to basic 333 

processes of community assembly at the species and sites levels (e.g. environmental selection, 334 

dispersal, biotic selection, and drift). 335 

2)  Quantifying co-distributions of species in metacommunities can improve predictive ability 336 

even when the processes that generate these distributions are complex (stochasticity, complex 337 

spatial landscapes, and species interactions).  338 

3) Species can have distributions that vary in the degree to which they are determined by 339 

combinations of the basic community assembly processes depending on features of their ecology 340 

(e.g. dispersal and environmental preferences); and 341 

4) The predominant assembly processes that determine local communities can differ among 342 

adjacent sites in a metacommunity (e.g. sites that are occupied by species most fit for 343 

environmental conditions vs sites occupied by species in nearby sites that may differ in 344 

environmental conditions). 345 
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It is important to emphasize that there remain some substantial challenges in moving 346 

forward with the overall approach we advocate in this paper.  This includes some technical 347 

issues, such as the estimation of parameters and interpretation of results in more complex 348 

metacommunity models in JSDMs, as well as conceptual ones, such as accounting for other 349 

processes such as speciation, local adaptation, historical biogeography.  Nevertheless, we see that 350 

such endeavor will be fruitful, allowing a deeper understanding of ecological dynamics in more 351 

realistic, but necessarily complex, spatial landscapes. 352 

 Our analytical framework simplifies several potentially complex processes (e.g. non-353 

linearities and interactive effects of mechanisms) into an approximation involving colonization-354 

extinction dynamics.  It is possible that more realistic and complex mechanisms driving these 355 

processes will weaken associations between pattern and process or create biases in the 356 

partitioning of the variation revealed by JSDMs.  However, the developments of JSDMs are still 357 

progressing, and we anticipate that future developments will solve some of these problems (see 358 

Wilkinson et al. 2020).  359 

 The co-distribution component of the JSDMs (fraction [C]) is particularly concerning.  360 

We find that this component can be biased, especially when species have broad environmental 361 

niches (Figure 2).  It is widely recognized that there are particular challenges in quantifying and 362 

interpreting species co-distributions (reviewed by Blanchet et al. 2020).  Perhaps the most 363 

obvious challenge is that this component can reflect any process that is inadequately quantified 364 

by the environmental (fraction [E]) and spatial components (fraction [S]).  In addition to species 365 

interactions, this would include, for example, unmeasured environmental factors (see Blanchet et 366 

al. 2020) or inadequately quantified landscape attributes.  Teasing apart the effects of species 367 

interactions from these confounding factors should thus be a major focus for future work.  368 
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Nevertheless, it is important to understand that including the co-distribution component in our 369 

analyses allows us to account for them, rather than lumping them with residual variation where 370 

they have likely given a greatly exaggerated impression of stochasticity. 371 

 The basic framework we used to address the process to pattern links is most transparent 372 

for mechanisms that focus on interspecific competition because of the analogies with 373 

evolutionary genetics (Vellend 2010, 2016).  However, species interactions in metacommunities 374 

are much more variable and include consumer-resource interactions, mutualisms, and facilitative 375 

interactions. Although such interactions can easily be incorporated in simulations, the 376 

interpretation that might link process to pattern in such cases are likely to become more complex. 377 

Likewise, future work could include local (co-)evolutionary dynamics (see Urban et al. 2020) 378 

and historical effects of biogeography and speciation (e.g. Leibold and Chase 2018, Overcast et 379 

al. 2020).  Here, we have also retained a simple two-level perspective on spatial scale (local 380 

discrete sites in a broader regional landscape).  It is increasingly apparent that metacommunity 381 

dynamics occur over multiple nested scales and that habitats can be continuous and/or nested, 382 

rather than discretely patchy (e.g. Munkenmuller et al. 2012, Rybicki et al 2018, Ovaskainen et 383 

al. 2019, Viana and Chase 2019, König et al. 2021)Refining our approach to address multiple 384 

spatial scales is a logical next step.   385 

 Finally, it is increasingly clear that temporal dynamics of community change in 386 

metacommunities can provide critical insights about the mechanisms that drive metacommunity 387 

patterns (e.g. Jabot et al. 2020, Blanchard et al. 2020, Guzman et al. 2021).  We imagine future 388 

work on the internal structure of metacommunities as being very amenable to incorporating 389 

temporal changes (see for example, Ovaiskainen et al. 2017 for an initial step in this direction).  390 

Here we have focused on purely spatial approaches because there are still remarkably few studies 391 
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that might permit sufficiently structured data to permit temporal analyses and because the 392 

limitations and challenges of such analyses are not yet clear. 393 

 We have argued that a focus on the internal structure of metacommunities, by examining 394 

site-specific and species-specific variation components, can enhance our study of the links 395 

between process and pattern in the distributions of species and the occupancies of sites.  We also 396 

argue that continued work on this focus is essential if metacommunity ecology is to address the 397 

dynamics and structure of realistic metacommunities that have typically high biodiversity and 398 

occur in complex landscapes.  This focus on internal structure represents a shift from traditional 399 

approaches that used descriptors of overall variation components at the metacommunity scale 400 

that generalizes previous ad hoc approaches to similar internal variation in metacommunity 401 

patterns (e.g. Pandit et al. 2009, Legendre and De Cáceres 2013).  The dynamics and structure of 402 

distributions of realistically diverse species in a realistically structured landscape of sites likely 403 

involves the interaction of community assembly processes including environmental filtering, 404 

dispersal, and drift, and these are unlikely to be adequately described by simple metacommunity 405 

level metrics (see Ovaskainen et al. 2019).  Consequently, dissecting the internal structure of 406 

metacommunities on the basis of species and site contributions could provide key insights into 407 

the processes underlying metacommunity assembly.  Such insights might be particularly useful 408 

in the management of landscapes and metacommunities for conservation purposes since they 409 

focus on particular units (species or sties) that are often the focus of concern in such cases. 410 
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 606 

 607 

Table 1: Summary of metacommunity level variation components for the seven different 608 

scenarios modeled in this study.   609 

  Fractions 
Scenario Corresponding 

Figure 
E (SD) S (SD) C (SD) Residuals 

1-R2 (SD) 
A 2, upper panels 0.75 (0.11) 0.026 (0.019) 0.044 (0.062) 0.18 (0.11) 

B 2, lower panels 0.019 (0.015) 0.15 (0.037) 0.019 (0.036) 0.81 (0.04) 

C 3, upper panels 0.42 (0.31) 0.21 (0.2) 0.14 (0.16) 0.23 (0.12) 

D 3, lower panels 0.018 (0.026) 0.35 (0.3) 0.28 (0.33) 0.35 (0.33) 

E Supplement 0.63 (0.21) 0.067 (0.069) 0.13 (0.15) 0.18 (0.089) 

F Supplement 0.74 (0.097) 0.035 (0.025) 0.047 (0.057) 0.18 (0.097) 

G 4 0.5 (0.17) 0.08 (0.072) 0.2 (0.16) 0.22 (0.12) 

 610 

  611 
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 612 

Figure 1: A summary of the metacommunity problem. Species distributions, denoted by the 613 

species-by-sites L matrix, are the outcome of drift, selection, dispersal, and speciation. These 614 

basic processes can be influenced by species interactions, food web structure, biogeography, 615 

phylogeny and micro-evolution. Metacommunity theory mainly focuses on drift, selection and 616 

dispersal.  We view previous approaches based on the four archetypes of Leibold et al. (2004) as 617 

being much more indirect and idealized.  Instead, we call for a more direct evaluation of how the 618 

basic processes affect the L matrix, and how to dissect the consequences to the distributions of 619 

different species and the occupancy of different sites, for example by using a JSDM to identify 620 

main effects and interspecific variability in the importance of unstructured, biotic, 621 

environmental, and spatial effects on L.  This approach allows us to recognize and address the 622 

effects of heterogeneities among species and among patches on the overall structure of the 623 

metacommunity. 624 

 625 
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 626 

Figure 2: Ternary plots describing the three components of metacommunity internal structure for 627 

two different simulation scenarios with no species interactions (independent metapopulations): 628 

The upper panels correspond to narrow environmental niches whereas lower panels correspond 629 

to wide environmental niches. Each dot represents a species (left panels) or a site (right panels). 630 

The size of the symbol is proportional to the R2 of the model (note the different scales used for 631 

species and sites) and the location indicates the proportion of explained variation attributed to 632 

environmental factors (E - lower left), spatial effects (S - lower right) and remaining co-633 

distributions (C - upper apex) (see SI for details).  In the species panels (left side) different 634 

symbols indicate different replicate simulations; generally, these indicate that the distribution of 635 

species responses are variable within replicates but that the overall variation among replicates are 636 
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repeatable.   In the site panels (right side), the shading indicates how central (lighter) or extreme 637 

(darker) the local environmental conditions are on the gradient; these also show substantial 638 

variation but indicate that more extreme environmental conditions increase the effects of local 639 

environment on occupancy patterns than more central conditions. 640 

 641 

 642 

 643 

Figure 3: Ternary plots describing the three components of metacommunity internal structure for 644 

different simulation scenarios with competition among the species.  Notation is the same as in 645 
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Figure 2.  The upper panels correspond to narrow environmental niches whereas the lower panels 646 

correspond to wide environmental niches.  Left-hand panels show variation components for 647 

different species whereas panels on the right-hand side of the figure correspond to variation 648 

components for different sites. 649 

 650 

Figure 4: Ternary plots for species (left panel) and sites (right panel) for simulations with species 651 

that differ in environmental position along the gradient and dispersal ability.  The size of the 652 

symbol indicates the R2 of the model for each species or site).  In the left panel (species) the 653 

color indicates the preferred local environmental conditions for species (yellow for species that 654 

prefer centrally located environmental conditions, purple or magenta for species with more 655 

extreme environmental optima).  The symbol indicates the dispersal rate of the species (circles 656 

are more dispersal limited, squares are least dispersal limited and triangles are intermediate).  In 657 

the right-hand panel the color indicates the degree of deviation from centrality along the 658 

environmental gradient (as in Figure 2). 659 

 660 

 661 
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 662 

Figure 5:  Effects of species traits (i.e. species optima; left panel) and site attributes (right panel) 663 

on the environmental fraction of variation in species distributions and site occupancy.  A) Higher 664 

dispersal ability and lower niche centrality (i.e. greater deviation from mean niche value) 665 

enhance the degree to which different species (individual symbols) have distributions that 666 

correlate with environmental variation. B) Sites that differ more from the mean environmental 667 

value (environmental deviation) are more likely to be occupied by species with niche traits that 668 

are locally favored. 669 

 670 

 671 

 672 

 673 

 674 

 675 
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Figure 6: Comparisons of the interaction matrix (Simulation) with the co-distribution of species 676 

in five replicate runs (Iteration 1-5) of the scenario with interspecific variation in dispersal and 677 

competition among species.  In each panel, species are ranked by the position of their 678 

environmental optima along the environmental gradient. The co-distributions are shown as heat 679 

maps with the strength of the covariation proportional to the intensity of color and the color 680 

indicating negative (green) or positive (gray) covariation among pairs of species.  These can be 681 

compared to the pattern of direct species interactions (left panel called Simulations).  The Xs 682 

denote no significant association although the color indicates the trend. 683 

  684 
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Description	of	Model		696 

Patch	locations	and	environmental	variables	697 

In our model, the metacommunity consists of 𝑁 patches distributed over a spatially 698 
heterogeneous landscape, with multiple environmental variables (although, the current 699 
simulations only have one environmental variable 𝐷 across 1000 patches) that could either be 700 
randomly distributed or spatially autocorrelated. Each patch has a set of coordinates in a two-701 
dimensional space, and all possible coordinates are feasible such that this is a continuous space 702 
model that is not restricted to a lattice or some other kind of regular spatial arrangement of 703 
spatial units. A patch may be empty or be occupied by a single or by several species. We define 704 
𝑋!,#,$ as a stochastic variable representing the occurrence of species 𝑖 at location 𝑧 and time 𝑡. 705 
Occurrence, 𝑋!,#,$, takes a value of 1 when species 𝑖 is present and a value of 0 when it is 706 
absent. Similarly, we define 𝐘#,$ = 𝑋),#,$ , 𝑋/,#,$ , … , 𝑋0,#,$ as a vector containing the presence-707 
absence of each species from the regional pool 𝑅. 708 

 709 
The model only tracks patch occupancy (not population densities). Spatial dynamics occurs 710 
because of colonization events, in both empty patches and patches that are occupied by other 711 
species, and because of extinction events. The emerging species co-distributions are a result of 712 
a dynamic balance between these events. Ecological interactions can impact either or both the 713 
colonization and the extinction probabilities. For instance, the presence of a competitor pre-714 
empting a patch can reduce the colonization probability by another competitor. Alternatively, 715 
the presence of a competitor in a patch could increase the extinction probability of another 716 
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species. Similarly, the environment could influence both the colonization and the extinction 717 
probabilities. 718 

Patch	Colonization	719 

We consider a discrete-time Markovian process to represent the dynamics of presence- 720 
absence of all species and we incorporate the effect of dispersal, environmental filtering and 721 
ecological interactions in such a way that we could cover all possible scenarios wherein species 722 
differ in any combination of these mechanisms and processes. We can include interspecific 723 
competition along with other types of spatial dynamics such as predator-prey interactions 724 
(Gravel et al. 2011), priority effects (Shurin et al. 2004), or mutualistic interactions 725 
(e.g. Gilarranz et al. 2015).  In this paper, we focused on competition only though.  Following a 726 
colonization event from time 𝑡 to 𝑡 + 𝛥 corresponds to:   727 

𝑃(𝑋!,#,$%1$ = 1│𝑋!,#,$ = 0) = 𝐼!,#,$𝑆!,#,$𝐶!,#,$	728 

where 𝐼!,#,$ is the number of immigrants of species 𝑖 reaching patch 𝑧 at time 𝑡, 𝑆!,#,$ is the 729 
effect of environmental filtering on the probability of establishing a viable local population and 730 
𝐶!,#,$ is the effect of ecological interactions on the establishment probability. We note that 731 
because we represent a stochastic process, the product of these three functions has to be 732 
bounded between 0 and 1. We consequently define these quantities: 733 

The	effect	of	immigration	is	given	by:	734 
		735 

𝐼!,#,$ =
∑𝑘(𝑧, 𝜔)𝑋!,2,$
∑𝑘(𝑧, 𝜔) 	736 

 737 

which	is	a	weighted	average	of	the	occurrence	probability	of	species	𝑖	in	the	neighborhood	738 
of	𝑧.	The	function	𝑘(𝑧, 𝜔)	is	a	dispersal	kernel	that	depends	on	the	location	of	patch	𝑧	and	739 
the	neighborhood	𝜔.	For	convenience,	we	considered	an	exponential	function	of	the	740 
Euclidean	distance	between	localities.	We	added	to	the	kernel	a	low	distance	and	741 
neighborhood-independent	constant	𝑚	to	account	from	immigration	from	outside	the	742 
simulated	metacommunity.	This	assumption	is	required	to	prevent	total	extinction	by	drift	743 
under	pure	neutral	dynamics.	744 

The	effect	of	the	environment	is	given	by	a	product	of	the	establishment	performance	over	745 
all	environmental	variables	𝐸3:			746 

𝑆!,#,$ = ∏𝑓(𝐸3,#  𝜇!,3  𝜎!,3)	747 
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In our simulations, for convenience, we considered that the function 𝑓 has a quadratic form for 748 
all species and all environmental variables, though the model is flexible and general enough to 749 
consider other (non-linear) responses that could  also differ among species. 750 

Ecological	interactions	on	establishment	probability	751 

To incorporate all possible ecological interactions, we started by representing the interaction 752 
network by a community matrix 𝐀 of 𝑅 species. The elements 𝛼!4  of 𝐀 quantify the effect of 753 
species 𝑗 on the dynamics of species 𝑖. When 𝛼!4  is negative, the colonization probability of 754 
species 𝑖 decreases and/or its extinction probability increases when 𝑗 is found locally. Inversely, 755 
when 𝛼!4  is positive, the colonization probability increases and/or the extinction probability 756 
decreases. To account for the cumulative effects of local interactions on transition probabilities, 757 
we made colonization and extinction probabilities community dependent. As explained above, 758 
at a time 𝑡, the 𝐘#,$ vector gives the local assemblages. We calculated the sum of interactions at 759 
any time and for each species as 𝜈 = 𝐀#,$𝐘#,$. Our approach can be interpreted as a spatial 760 
analogue to the generalized Lotka–Volterra model because it takes into account the impact of 761 
the whole network of interactions on each species dynamics and can deal with any type of 762 
interaction. We now define the function: 763 

𝐶!,#,$ = 𝑔(𝜈! , 𝑧, 𝑡)	764 

representing the total effect of ecological interactions on the colonization probability. For 765 
convenience, we will use a sigmoid function, with 𝑔 ranging between 𝑐5!3 at high negative 766 
interactions and 𝑐567 at high positive interactions, where 𝑐567 should be interpreted as the 767 
maximal colonization probability when the environmental conditions are optimal and there are 768 
no dispersal limitations. 769 

Patch	Extinction	770 

The definition of the extinction probability follows exactly the same rules as for colonization, 771 
except that extinction is independent of the neighborhood composition. We follow the same 772 
logic to define the effect of ecological interactions and of variation in the environment. 773 
Consequently, we get the Markovian process:   774 

𝑃$𝑋!,#,$%1$ = 1│𝑋!,#,$ = 0* = 𝑀!,#,$𝐸!,#,$	775 

 776 

where	𝑀!,#,$	and	𝐸!,#,$	are	the	responses	of	the	extinction	probability	to	the	local	777 
environment	and	to	ecological	interactions,	respectively.	The	difference	with	the	778 
colonization	functions	defined	in	the	previous	section	is	that	the	extinction	probability	779 
must	be	larger	when	interactions	are	negative	and	smaller	when	they	are	positive.	In	780 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2020.07.04.187955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187955
http://creativecommons.org/licenses/by-nd/4.0/


addition,	the	extinction	rate	should	be	minimal	(instead	of	maximal)	at	environmental	781 
optimum.	782 

Interpretation	783 

To interpret the model, note that, at steady state, for each species, we obtain the expected 784 
occurrence probability (𝑃7) at each site as:   785 

𝑃7!#

1 − 𝑃7!#
=
𝐼!# ⋅ 𝑆!# ⋅ 𝐶!#

𝑀!# ⋅ 𝐸!# 	786 

 After a log transformation, this yields: 787 

log V
𝑃7!#

1 − 𝑃7!#
W = log$𝐼!#* + log V

𝑆!#

𝑀!#W + log V
𝐶!#

𝐸!#W	788 

 789 

This	last	equation	can	be	interpreted	as	a	macroscopic	description	of	the	expected	species	790 
distributions	pattern	(Thuiller	et	al.	2013).	In	this	formulation,	log(𝐼)	describes	the	791 
tendency	of	a	patch	to	resemble	other	nearby	patches	due	to	the	spatial	contagion	by	792 

dispersal,	log X+
,
Y	describes	the	tendency	of	sites	to	be	occupied	by	species	with	similar	793 

fitness	responses	to	environmental	gradients,	and	log X-
.
Y	describes	the	remaining	794 

influence	of	other	species	on	co-occurrence	due	to	interactions	among	species.	The	values	795 
for	these	indices	will	depend	on	what	choices	are	made	for	the	components	of	eq.	1	(see	796 
Supporting	Information	for	details	on	how	we	implemented	this	simulations	model).	797 

This	modeling	framework	can	represent	the	classical	archetypes	but	also	permits	more	798 
intricate	(and	likely	far	more	realistic)	metacommunity	scenarios	and	predictions.	For	799 
example,	we	could	use	the	model	to	examine	how	species	traits	(and	environmental	800 
context)	link	to	metacommunity	dynamics.	Moreover,	continuous	mixtures	of	different	801 
metacommunity	extremes	(archetypes)	can	be	represented	by	appropriate	parameter	802 
choices	for	dispersal,	competitive	abilities,	and	environmental	preferences.	For	instance,	803 
species	sorting	would	require	a	relatively	large	colonization	to	extinction	ratio	along	with	804 
species-specific	environmental	requirements	and	regional	similarity	(sensu	Mouquet	and	805 
Loreau,	2002).	Alternatively,	coexistence	within	competition-colonization	trade-offs	806 
requires	species	to	have	similar	responses	to	the	environment	and	appropriate	807 
heterogeneities	in	the	𝐼,	𝐶	and	𝐸	functions,	but	no	environmental	preferences.	808 

The	implemented	mechanisms	in	the	simulation	model	can	be	partially	mapped	onto	809 
variation	partitioning	components.	For	instance,	at	equilibrium,	we	could	expect	dispersal	810 
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limitation	(the	log(𝐼)	term	in	equation	3)	to	create	positive	spatial	autocorrelation	at	the	811 
dispersal	scale	(the	[S/E]	fraction	in	variation	partitioning,	i.e.,	spatial	variation	812 

independent	of	environmental	selection).	Environmental	selection	(the	log X +
,
Y	term	in	the	813 

last	equation)	should	lead	to	a	correlation	between	composition	and	environment	(the	814 
[E/S]	fraction	in	variation	partitioning).	The	last	term	in	equation	3,	however,	describing	815 

the	effect	of	interactions	on	distribution	(the	log X-
.
Y),	is	novel	and	has	no	equivalent	in	the	816 

context	of	classical	variation	partitioning.			817 

There	are	some	interesting	properties	to	point	out	regarding	our	proposed	variation	818 
partitioning	scheme.		First,	by	considering	the	combined	effects	of	environmental	selection,	819 
dispersal	and	interactions,	the	final	residuals	(unexplained	sources	of	variation)	in	the	820 
model	leading	to	this	new	partition	variation	scheme	is	(in	principle)	solely	related	to	non-821 
spatialized	independent	species	variation.		Second,	in	our	variation	partitioning,	the	822 
interaction	component	is	due	to	species	co-variation	(i.e.,	a	joint	component	among	species	823 
distributions).		In	empirical	community	data,	however,	this	interpretation	can	only	be	made	824 
if	all	the	environmental	variation	(predictors)	underlying	environmental	selection	in	825 
empirical	community	data	has	been	incorporated	(as	pointed	out	in	the	main	manuscript).		826 
If	not,	then	the	spatial	and	species	interaction	components	could	be	measuring	variation	827 
related	to	unmeasured	environmental	variables	that	are	either	spatialized	(i.e.	828 
characterized	by	the	spatial	component	in	variation	partitioning)	or	shared	among	species	829 
(i.e.	joint	component).			830 

Description	of	the	Statistical	Framework	831 

Hierarchical	Community	Models	832 

In their simplest form, Hierarchical Community Models (HCMs) resemble standard species 833 
distribution models that regress species presences/absences against environmental predictors 834 
(i.e., logit link). However, to reduce model complexity, HCMs assume that all species in a 835 
metacommunity will react to environmental heterogeneity following a similar response 836 
function (e.g., linear vs quadratic or Gaussian). The same assumption is made in common 837 
variation partitioning (see Peres-Neto et al. 2006).  To model the spatial component (i.e., due to 838 
spatialized dispersal), either spatial variables such as Moran’s eigenvectors maps (MEM, Dray et 839 
al. 2006) or spatially auto-correlated latent variables (Ovaskainen et al. 2016b) can be 840 
incorporated to the model. To account for biotic interactions, non-spatially auto-correlated 841 
latent variables are used. If we use a linear specification approach (here, this can also include 842 
quadratic terms that capture Gaussian responses to environment as imposed in our model), we 843 
can write: 844 

𝐋#! = 𝐗#8𝐁8! + 𝛜#! 	845 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2020.07.04.187955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187955
http://creativecommons.org/licenses/by-nd/4.0/


 846 

with	847 

𝐁8!�̃�(𝛍, 𝚺)	848 

 849 

where	𝐋#! 	is	the	presence	(or	absence)	of	species	𝑖	(out	of	𝑚	species)	at	patch	𝑧	(out	of	𝑛	850 
patches),	𝐗#8 	is	the	value	of	the	environmental	variable	𝑘	(out	of	𝑝	variables)	at	site	𝑧,	𝐁	is	851 
a	matrix	of	regression	parameters,	𝛍	is	a	vector	of	length	𝑝	that	describes	the	mean	852 
environmental	response	of	all	species,	𝛴	is	a	𝑝 × 𝑝	covariance	matrix	that	describes	how	853 
species	vary	(diagonal)	and	co-vary	(off-diagonal)	around	the	mean	environmental	854 
response	(Ovaskainen	and	Soininen	2011),	and	𝛜#! 	is	a	residual	value.	Estimating	species	855 
parameters	hierarchically	around	a	community	mean	reduces	the	degrees	of	freedom	and	856 
makes	the	model	easier	to	fit	with	limited	data.	Note	that	both	𝛍	and	𝛴	can	be	further	857 
informed	or	constrained	by	species	traits	or	phylogeny	if	desired	(Ovaskainen	et	al.	2017).	858 
To	account	for	biotic	interactions,	we	consider	latent	variables	𝐇#9 	(where	𝑙	refers	to	a	859 
latent	variable	measured	at	site	𝑧)	and	their	associated	parameters	𝚲9! 	(Ovaskainen	et	860 
al.	2016a).	This	yields:	861 

𝐋#! = 𝐗#8𝐁8! +𝐇#9𝚲9! + 𝛜#! 	862 

 863 

Note	that	it	is	not	necessary	to	always	include	all	of	these	components	in	one	model;	they	864 
can	be	considered	in	any	combination	deemed	relevant	for	a	particular	question.	In	this	865 
paper,	we	used	Moran’s	Eigenvector	Maps	(MEMs;	Dray	et	al.	2006),	a	powerful	and	866 
commonly	used	method	to	model	spatial	autocorrelation	in	statistical	models	involving	867 
species	distributions.		868 

Calculating	Variation	Partitioning	for	the	HCM		869 

As	in	any	generalized	linear	mixed	effect	model,	we	can	now	partition	the	explained	870 
variation	into	different	components,	notably	environmental	heterogeneity,	space,	co-871 
distribution	(biotic	interactions),	and	unexplained	variation	(Figure	S1).	To	estimate	the	872 
contributions	of	each	of	these	four	fractions	for	each	species,	we	calculated	semi-partial	873 
coefficients	of	determination	(i.e.,	based	on	Type	III	sum-of-squares	as	specified	in	Peres-874 
Neto	et	al.	2006)	using	the	implementation	suggested	by	Tjur	(2009)	as	being	more	875 
appropriate	for	presence-absence	data	(i.e.,	logit	link)	than	the	traditional	variation	876 
partitioning	based	on	an	identity	link.	To	adjust	for	the	number	of	variables	used	to	877 
quantify	each	fraction	of	the	variation	partitioning	analysis,	we	applied	the	adjustment	to	878 
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the	coefficient	of	determination	proposed	by	Gelman	and	Pardoe	(2006)	in	the	variation	879 
partitioning	analysis,	which	is	designed	for	hierarchical	models.	As	shown	in	Figure	S1,	the	880 
different	fractions	were	combined	so	that	a	unique	value	was	associated	to	environment	881 
(fractions	[a],	[d]/2,	[f]	and	[g]/2),	co-distribution	(fraction	[c]),	space	(fractions	[b],	[d]/2,	882 
[e]	and	[g]/2)	and	the	unexplained	portion	of	the	variation	(fraction	[h]).	Latent	variables	883 
are	quite	powerful	to	isolate	structure	in	the	data.	As	such,	in	the	calculation	of	the	884 
variation	partitioning,	latent	variables	will	capture	almost	all	(if	not	all)	variation	885 
associated	to	the	environment	and	space,	giving	an	artificial	inflation	of	the	overlapping	886 
partitions	between	co-distribution	and	environment	and	co-distribution	and	space.	For	this	887 
reason,	all	partitions	overlapping	with	co-distribution	(fractions	[e],	[f]	and	[g])	were	888 
assigned	to	either	environment	(fractions	[f]	and	[g])	or	space	(factions	[e]	and	[g]).	In	this	889 
calculation,	a	unique	measure	of	explained	variation	(akin	to	adjusted	R2)	is	associated	to	890 
co-distribution	(fraction	[c])	but	this	is	not	the	case	for	environment	and	space.	To	891 
associate	a	unique	value	to	environment	and	space,	and	represent	the	results	as	we	did	in	892 
Figure	2	and	3	(main	manuscript),	we	divided	the	fractions	overlapping	environment	and	893 
space	between	these	two	components.	As	such,	the	sum	of	fractions	[a],	[f],	half	of	fraction	894 
[d]	and	half	of	fraction	[g]	were	used	to	measure	the	effect	of	the	environment	while	895 
fractions	was	considered	[b],	[e],	half	of	fraction	[d]	and	half	of	fraction	[g]	were	used	to	896 
measure	the	effect	of	space.	This	scheme	in	which	half	of	common	variation	is	assigned	to	897 
two	or	more	common	components	is	commonly	used	in	hierarchical	partitioning	(Chevan	&	898 
Sutherland	1991).			899 

	900 

	901 

	902 

	903 

.	 	904 
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Supplementary Figure 1 – variation partitioning scheme used to estimate the importance of 905 
each matrix of predictors. 906 

Calculation	of	the	coefficient	of	determination	907 

1)	Classic	coefficient	of	determination	908 

The coefficient of determination, 𝑅/, that was partitioned in the variation partitioning analysis 909 
(Appendix XX) is calculated for any given species 𝑗 as: 910 

𝑅4/ = 1 −
∑ (3
!:) 𝑦!4 − 𝑦h!4)/

∑ (3
!:) 𝑦!4 − 𝑦!4)

/	911 

where 𝑦!4  is the data (presence-absence) associated with species 𝑗 (out of 𝑝 species) at site 𝑖 912 
(out of 𝑛 sites), 𝑦h!4  is the model (predicted value) associated to species 𝑗 at site 𝑖 and 𝑦4  is the 913 
average of the data (i.e., sum of presences divided by n) for species 𝑗 across all sites. 914 

2)	Community-level	coefficient	of	determination	915 

Although having an 𝑅4/ for each species 𝑗 can be highly informative and is part of our framework 916 
on the internal structure of metacommunities, it can be also useful to estimate the contribution 917 
of single communities 𝑅/ to the entire metacommunity. This is obtained by averaging all 𝑅4/: 918 

-𝑅/ =
∑ 𝑅4/
'
4:)

𝑝 	919 

 where the -𝑅/ is the community-level 𝑅/. 920 

3)	Site	contribution	to	the	coefficient	of	determination	921 

In the paper, we use the contribution of each site to 𝑅4/ to present how each site contributes 922 
differently to the environment, space and co-distribution for the community. The calculation of 923 
the site 𝑖 contribution to the 𝑅4/, is calculated as:   924 

𝑅!4/ =
1
𝑛 −

(𝑦!4 − 𝑦h!4)/

∑ (𝑦!4 − 𝑦!4)/
'
4:)

 925 

The first part of the equation where the 1 of the classic 𝑅4/ is divided by 𝑛 is included to make 926 
sure that if we sum all 𝑅!4/  across all sites for species 𝑗, the resulting value equals to 𝑅4/. 927 

More	importantly,	what	can	be	noticed	is	that	by	calculating	𝑅!4/ ,	the	contribution	of	sites	to	928 

each	species	𝑅4/,	we	obtain	a	matrix	that	has	the	same	dimension	as	the	site	by	species	929 

matrix	(an	𝑛 × 𝑝	matrix).	Using	this	matrix,	if	we	sum	across	all	sites,	we	obtain	the	𝑅4/.	930 
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However,	if	we	average	across	the	species	for	site	𝑖	we	obtain	the	site’s	contribution	to	the	931 
community-level	-𝑅/	or	-𝑅!/.	932 

The	amount	of	variation	expressed	by	the	𝑅4/,	the	-𝑅/	,	the	𝑅!4/ 	or	the	-𝑅!/	can	all	be	933 
partitioned	in	its	environmental,	spatial	and	co-distribution	component	following	the	934 
procedure	presented	in	the	section	“Calculating	Variation	Partitioning	for	the	HCM”	above.		935 

Parameterization	and	Simulation	Scenarios	936 

We simulated metacommunity dynamics with a landscape of 1000 patches over 200 time steps 937 
and an initial occupancy of 0.8. Patches were placed randomly in a two-dimensional plane with 938 
coordinates drawn from a uniform distribution with a minimum of 0 and a maximum of 1. The 939 
environment varied spatially, with values drawn from a random distribution between 0 and 1. 940 
In the specific simulations we studied in the paper, colonization was the only component of the 941 
species that were affected by the environment (i.e. 𝐸!,#,$ = 1). Specifically, colonization reacted 942 
to the environment following a quadratic curve. 943 

For	all	scenarios	considered,	we	simulated	12	species.	Niche	optimums	for	the	species	were	944 
evenly	distributed	between	0.1	and	0.9	while	niche	breadth	was	set	to	0.8	for	simulations	945 
with	narrow	niches	(scenarios	A,	B,	E,	F,	G),	and	to	2	for	simulations	where	niche	was	946 
assumed	to	be	broad	(scenarios	C	and	D).	For	dispersal,	we	considered	an	exponential	947 
dispersal	kernel,	with	a	distance-independent	immigration	probability	of	0.001	and	an	𝛼	948 
parameter	of	0.05.	For	scenario	G,	where	we	have	variable	dispersal	kernels	(Figure	3),	𝛼	949 
was	0.01	for	1/3	of	species,	0.05	for	1/3	of	species,	and	0.1	for	the	other	1/3	of	species.	We	950 
used	a	sigmoid	function	to	relate	the	total	number	of	interactions	with	colonization	and	951 
extinction	coefficients	following	the	implementation	by	Cazelles	et	al.	(2016).	Colonization	952 
probability	in	the	absence	of	interactions	was	set	at	0.4,	which	tends	to	zero	as	negative	953 
interactions	tend	to	infinity,	while	it	asymptotes	at	a	1	with	infinite	positive	interactions.	954 
All	other	aspects	of	the	colonization-interaction	curve	were	the	same	for	all	scenarios.	955 
Similarly,	extinction	in	the	absence	of	interactions	was	set	at	0.025,	and	tended	to	1	with	956 
infinite	negative	interactions,	while	its	asymptote	tended	to	0	with	infinite	positive	957 
interactions.	In	both	cases,	the	parameter	setting	the	shape	of	the	sigmoid	function	was	set	958 
to	0	for	the	scenarios	without	competition	(scenarios	A,	B,	and	F),	and	1.5	in	the	presence	959 
of	competition	(scenarios	C,	D,	E,	G)	.	If	there	were	interactions,	then	a	focal	species	only	960 
interacted	with	the	two	species	that	had	the	closest	niches.	For	all	scenarios,	five	sets	of	961 
metacommunities	were	simulated	and	analyzed	to	obtain	the	results	found	in	Figures	2,	3,	962 
and	4	in	the	main	text,	and	supplementary	figures.	963 

All	scenarios	have	been	implemented	in	R	and	the	project’s	repository	can	be	found	here:	964 
github.com/javirudolph/testingHMSC	965 
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Supplementary	Figure	2.	Species	interactions	for	all	scenarios.	966 

	967 

Supplementary	Figure	3.	In	which	we	have	half	of	the	species	with	interactions	and	the	968 
other	without.	969 

	970 

Supplementary	Figure	4.	In	which	we	change	dispersal	only,	𝛼	was	0.01	for	1/3	of	species,	971 
0.05	for	1/3	of	species,	and	0.1	for	the	other	1/3	of	species.	972 
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	973 

Example	of	metacommunity	simulation	functions	and	974 

analyses	975 

The following example of code shows the overall processes involved in the metacommunity 976 
simulation for our model. This example shows the scenario for 20 patches and one 977 
environmental variable. The model gives the option for a random or spatially aggregated 978 
structure for the patches. In the aggregated case, we determined four clusters, denoted by 979 
Nclusters in the code below. The value of the environmental variable for each patch is shown 980 
with the color hue. In this case, the environmental variable is randomly distributed. 981 

set.seed(227) 982 
# Random XY coordinates 983 
# Each coordinate is drawn from a random uniform distribution 984 
get_XY = function(N) cbind(runif(N),runif(N)) 985 
 986 
# Aggregation of XY coordinates 987 
get_XY_agg = function(N, Nclusters, sd_xy) { 988 
   989 
  Xclust = runif(Nclusters) 990 
  Yclust = runif(Nclusters) 991 
   992 
  X = rnorm(N, rep(Xclust,N/Nclusters), sd_xy) 993 
  Y = rnorm(N, rep(Yclust,N/Nclusters), sd_xy) 994 
   995 
  cbind(X,Y) 996 
} 997 
 998 
# Random uniform environmental values 999 
get_E = function(D, N) matrix(runif(D*N), nr = N, nc = D) 1000 

Here, we set N, the number of patches to 20, and D, the number of environmental variables to 1001 
one. 1002 

N <- 20 1003 
D <- 1 1004 
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 1005 
rXY <- get_XY(N) 1006 
agXY <- get_XY_agg(N, 4, 0.02) 1007 
E <- get_E(D = D, N = N) 1008 

The following figure shows a side by side comparisson between random and aggregated 1009 
patches obtained from our functions. 1010 

 1011 

Initial	Occupancy	1012 

The toy model allows for setitng the initial occupancy in the metacommunity. For example, to 1013 
create the initial conditions, 𝑡 = 0, of presence absence, species occupancy is drawn from a 1014 
random uniform distribution, and values smaller than 0.8 are considered as species presence. 1015 
Patches or locations 𝑧 are represented by rows in the matrix, whereas each species is a column. 1016 
Each cell in the matrix is 𝑋!,#,$ and each row is 𝐘#,$ for 𝑡 = 0. The following figure shows three 1017 
different iterations of this process, where areas in black represent occupancy = 1, and white 1018 
denotes an absence. 1019 

#Get your initial conditions: 1020 
R <- 8 1021 
Y0 = matrix(0, nrow = N, ncol = R) 1022 
rand = matrix(runif(N*R), nr = N, nc = R) 1023 
Y0[rand < 0.8] = 1 1024 
 1025 
ggplot(melt(Y0), aes(x = Var1, y = Var2, fill = value)) + 1026 
  geom_tile() + 1027 
  scale_fill_gradient(low = "white", high = "black")+ 1028 
  labs(x = "Plot number", y = "Species", subtitle = "Iteration 1") + 1029 
  theme_bw() -> A 1030 
 1031 
# Second iteration for the same initial conditions 1032 
Y0 = matrix(0, nrow = N, ncol = R) 1033 
rand = matrix(runif(N*R), nr = N, nc = R) 1034 
Y0[rand < 0.8] = 1 1035 
 1036 
ggplot(melt(Y0), aes(x = Var1, y = Var2, fill = value)) + 1037 
  geom_tile() + 1038 
  scale_fill_gradient(low = "white", high = "black")+ 1039 
  labs(x = "Plot number", y = "" , subtitle = "Iteration 2") + 1040 
  theme_bw() -> B 1041 
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 1042 
# Third iteration 1043 
Y0 = matrix(0, nrow = N, ncol = R) 1044 
rand = matrix(runif(N*R), nr = N, nc = R) 1045 
Y0[rand < 0.8] = 1 1046 
 1047 
ggplot(melt(Y0), aes(x = Var1, y = Var2, fill = value)) + 1048 
  geom_tile() + 1049 
  scale_fill_gradient(low = "white", high = "black")+ 1050 
  labs(x = "Plot number", y = "", subtitle = "Iteration 3") + 1051 
  theme_bw() -> C 1052 
 1053 
# Set the three iterations to be displayed side by side 1054 
ggarrange(A, B, C, ncol = 3, common.legend = TRUE, legend = "none") 1055 

 1056 

When	we	consider	the	immigration	component,	we	need	to	also	consider	the	connectivity	1057 
matrix.	In	the	code	below,	I_f	calculates	the	probabilty	of	immigration	for	each	species,	1058 
based	on	the	occupancy	matrix	and	the	dispersal	kernel,	K.	The	argument	K	is	the	1059 
connectivity	matrix.	The	argument	XY	corresponds	to	the	patch	coordinates,	whereas	alpha	1060 
is	the	dispersal	parameter	associated	to	the	exponential	distribution	used	for	dispersal.	It	1061 
can	be	computed	with	the	following	function:	1062 

# Compute the propagule pressure 1063 
I_f = function(Y, K, m) I = (1-m)*(K%*%Y)/(K%*%matrix(1,nr=N,nc=R)) + m 1064 

The arguments for this function are: Y, K, m. We calculated 𝕐, species presence or absence, in 1065 
the previous section with the case for initial conditions. Argument m is set in the parameters as 1066 
a value m = 0.001 and the connectivity matrix K is calculated below. 1067 

# Compute the connectivity matrix 1068 
get_K = function(XY, alpha) { 1069 
    N = nrow(XY) 1070 
    distMat = as.matrix(dist(XY, method = "euclidean", upper = T, diag = T)) 1071 
    ConMat = exp(-1/alpha*distMat) 1072 
    diag(ConMat) = 0 1073 
    return(ConMat) 1074 
} 1075 
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As an example, using the aggregated XY coordinates for 20 patches and our initial occupancy 1076 
matrix with 8 species ,we can see the connectivity between patches, and can calculate the 1077 
contribution of immigration from each species to each patch. 1078 

# We can use the aggregated XY coordinates for this example: 1079 
XY <- agXY 1080 
 1081 
# Connectivity matrix 1082 
alpha <- 0.005 1083 
K <- get_K(XY, alpha) 1084 
plot_K <- cbind(rownames(K), stack(as.data.frame(K))) 1085 
names(plot_K) <- c("X", "Fill", "Y") 1086 
plot_K %>%  1087 
  as_data_frame() %>%  1088 
  mutate(X = factor(X, levels = c(1:20)), 1089 
         Y = factor(Y, levels = c(1:20))) -> plot_K 1090 
ggplot(plot_K, aes(x = X, y = Y, fill = Fill)) + 1091 
  geom_raster() + 1092 
  scale_fill_gradient(low = "black", high = "white") + 1093 
  #scale_fill_viridis_c() +  1094 
  labs(title = "Connectivity among patches") + 1095 
  theme(legend.title = element_blank(), 1096 
        axis.text.x = element_text(angle = 90)) -> A 1097 
# Immigration 1098 
m <- 0.001 1099 
Y <- Y0 1100 
I <- I_f(Y, K, m) 1101 
rastPlot(I, title = "I - Immigration to each plot", x = "Patches", y = "Species") + 1102 
  theme(legend.title = element_blank()) -> plot_I 1103 
ggarrange(A, plot_I, ncol = 2) 1104 

 1105 

The	effect	of	the	environment	on	each	species,	depending	on	each	species	niche	optima,	is	1106 
computed	in	the	following	code	section.	The	argument	E	corresponds	to	the	vector	of	values	1107 
for	the	environmental	variable	in	each	patch.	The	other	two	arguments	in	this	function	are	1108 
the	niche	optima	(u_s)	for	each	species	and	niche	breadth(s_c).	1109 

# Compute the local performance of propagules 1110 
S_f_quadratic <- function(E, u_c, s_c) { 1111 
  R <- ncol(u_c) 1112 
  N <- nrow(E) 1113 
  D <- ncol(E) 1114 
  S <- matrix(1, nr = N, nc = R) 1115 
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  for(i in 1:D){ 1116 
    optima <- matrix(u_c[i,],nrow = N,ncol = R,byrow = TRUE) 1117 
    breadth <- matrix(s_c[i,],nrow = N,ncol = R,byrow = TRUE) 1118 
    S <- S * ((-1 / (breadth/2)^2) * (E[,i] - optima)^2 + 1) 1119 
    S <- ifelse(S < 0, 0 , S) 1120 
     1121 
  } 1122 
  return(S) 1123 
} 1124 
 1125 
# Understood as niche optima for each species, for each environmental variable 1126 
  u_c = matrix(nr = D, nc = R) 1127 
  u_c[1,] = seq(0.1,0.9, length=R) 1128 
# Understood as niche breadth 1129 
  s_c = matrix(0.2, nr = D, nc = R) 1130 
 1131 
# Local performance, colonization 1132 
S <- S_f_quadratic(E, u_c, s_c) 1133 
plot_S <- rastPlot(S, title = "S - Local performance colonization", x = "Patches", y = "Specie1134 
s") + 1135 
  guides(fill = guide_colorbar(title = "")) 1136 
plot_S 1137 

 1138 

When	incorporating	species	interactions	into	the	toy	model,	we	use	the	following	1139 
interaction	matrix	𝐀,	where	the	colored	black	sections	show	species	with	potential	of	1140 
interacting:	1141 

  # # Interaction matrix 1142 
  A = matrix(0,nr=R,nc=R) 1143 
  d = as.matrix(dist(c(1:R),upper=TRUE,diag=T)) 1144 
  A[d<=1] = -1 1145 
  diag(A) = 0 1146 
   1147 
  plot_A <- rastPlot(A, title = "A - Interaction matrix", x = "species", y = "species") + 1148 
    scale_fill_gradient(low = "black", high = "grey") + 1149 
  theme(legend.position = "none") 1150 
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# Compute the sum of ecological interactions for every location and every species 1151 
sum_interactions = function (A, Y) t(A%*%t(Y)) 1152 
# this is considered to be "v" 1153 
v <- sum_interactions(A, Y) 1154 
 1155 
plot_v <- rastPlot(v, title = "v - Sum of interactions", x = "patches", y = "species") + 1156 
  guides(fill = guide_colorbar(title = "")) + 1157 
  scale_fill_gradient() 1158 
 1159 
ggarrange(plot_A, plot_v, ncol = 2) 1160 

 1161 

We	compute	the	effect	of	ecological	interactions	on	colonization	probability	with	the	1162 
function	below.The	arguments	for	this	function	are	v	as	the	resulting	matrix	from	the	sum	1163 
of	interactions,	d_c	as	the	sensitivity	to	interactions,	c_0	and	c_max	as	the	colonization	1164 
parameters:	1165 

C_f = function(v, d_c, c_0, c_max) c_max*(1 +(1/c_0 - 1)*exp(-v*d_c))^-1 1166 
 1167 
  # # Colonization function 1168 
  c_0 = rep(0.4, R) # Colonization at 0 interactions 1169 
  c_max = rep(1, R) # Colonization at max interactions 1170 
 1171 
  # # Sensitivity to interactions 1172 
  d_c = 0.2 1173 
 1174 
C <- C_f(v, d_c, c_0, c_max) 1175 
plot_C <- rastPlot(C, title = "C - Interactions on colonization", x = "Patches", y = "Species1176 
") + 1177 
  guides(fill = guide_colorbar(title = "")) + 1178 
  scale_fill_gradient() 1179 
plot_C 1180 
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 1181 

With	all	the	components	calculated,	we	can	now	compute	the	colonization	probability	1182 

𝑃$𝑋!,#,$%1$ = 1│𝑋!,#,$ = 0* = 𝐼!,#,$𝑆!,#,$𝐶!,#,$	1183 

	1184 

The	following	function	calculates	the	effect	of	the	environment	on	the	extinction,	with	E	1185 
being	the	environmental	variable,	and	u_e	and	u_s	being	species	level	effect	and	the	1186 
assymptote.	1187 
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M_f = function(E, u_e, s_e) { 1188 
    R = ncol(u_e) 1189 
    N = nrow(E) 1190 
    D = ncol(E) 1191 
    M = matrix(1, nr = N, nc = R) 1192 
    for(i in 1:D){ 1193 
      M = M*(1-exp(-(E[,i]-matrix(u_e[i,],nr=N,nc=R,byrow=TRUE))^2 / matrix(s_e[i,],nr=N,nc=R,1194 
byrow=TRUE)^2)) 1195 
      } 1196 
    return(M)    1197 
} 1198 
 1199 
# Set the function arguments 1200 
  # # Effect of the environment on extinction 1201 
  u_e = matrix(nr = D, nc = R) 1202 
  u_e[1,] = c(rep(0.5, R-1), 0.05) # One species having a lower level of extinction from envir1203 
onmental effect 1204 
  s_e = matrix(Inf, nr = D, nc = R) 1205 
   1206 
  #u_e 1207 
  #head(s_e) 1208 

The following shows the effect of ecological interactions on extinction, using the same v matrix 1209 
calculated above. 1210 

E_f = function(v, d_e, e_0, e_min) { 1211 
 1212 
    e_min_mat = matrix(e_min, nr = N, nc = R, byrow=TRUE) 1213 
 1214 
    e_min_mat+(1/(1-e_min_mat)+(1/(e_0-e_min_mat)-1/(1-e_min_mat))*exp(d_e*v))^-1 1215 
 1216 
} 1217 
 1218 
 1219 
#With the arguments computed as: 1220 
 1221 
 1222 
# # Extinction function 1223 
  #e_0 = c(rep(0.025, R-1), 0.5) # Extinction at 0 interactions, with one species having a hig1224 
her value. 1225 
e_0 = rep(0.025, R)   1226 
e_min = rep(0, R) # Exinction at max interactions 1227 
 1228 
  # # Sensitivity to interactions 1229 
 1230 
  d_e = 0 1231 

We can now compute the probability of extinction 𝑃$𝑋!,#,$%1$ = 1│𝑋!,#,$ = 0* = 𝑀!,#,$𝐸!,#,$ 1232 

The	figure	shows	these	as	identical	graphs,	since	we	have	made	all	species	have	the	same	1233 
probability	of	extinction	and	the	environment	not	having	an	effect	on	extinction.	1234 
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	The	way	1235 
parameters	are	set,	the	extinction	component	is	the	same	for	all	species	in	every	patch.	1236 

Testing	and	changes	1237 
# Perform the test 1238 
delta <- matrix(0, nr = N, nc = R) 1239 
rand <- matrix(runif(N*R), nr = N, nc = R) 1240 
delta[Y == 0 & rand < P_col] <- 1 1241 
 1242 
# Perform the test 1243 
rand = matrix(runif(N*R), nr = N, nc = R) 1244 
delta[Y == 1 & rand < P_ext] = - 1 1245 

 1246 
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