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During embryonic development, translation is proposed to be uniquely specialized at the exit of 

pluripotency to rapidly reprogram the proteome and enable lineage commitment1-5. Yet, the 

fundamental role of translational specialization in programming developmental cell-fate decisions, its 

mediators and their mode-of-action remain elusive2,3. Here, using human embryonic stem cell-based 

models, we report that mesoderm commitment from pluripotency is controlled by the translational 

specialization factor RBPMS. RBPMS-driven translational specialization balances the abundance of cell-

fate regulators to authorize accurate lineage decisions upon receiving differentiation signals. 

Consequently, RBPMS loss, without affecting pluripotency, selectively and severely impedes mesoderm 

specification and subsequent cardiogenesis. Mechanistically, direct binding of RBPMS to 3’UTRs allows 

selective translation of developmental cell-fate regulators including integral morphogen signaling 

components specifying mesoderm. RBPMS loss disrupts the canonical composition of translation 

initiation complexes resulting in the aberrant retention of initiation factors on ribosomal complexes. 

Our data unveil how emerging lineage choices from pluripotency are controlled by translational 

specialization via ribosomal platforms acting as a regulatory nexus for developmental cell fate 

decisions. 
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Embryonic development relies on precise and coordinated cell-fate decisions, a complex process that 

sculpts an entire organism from a single totipotent cell6-10. A central question in developmental biology is 

how genetic information is differentially interpreted to generate the multitude of cell-fates that constitute 

an organism. Cell fate transitions and the conferring of cellular identity are dictated by spatiotemporal 

control of the communication of genetic information6,8,11. In this regard, morphogen-mediated signal 

transduction, epigenetic, and transcriptional mechanisms have been the focus of research over the last 

decades12-14. However, in mammals, translational control is the primary determinant of protein 

abundance1 ,15,16. Therefore, success of developmental cell fate decisions relies on the efficient rewiring 

of the proteome to support rapid cellular identity changes, indicative of a vital role for regulation at the 

translation level2,3. Translational control is achieved by rapid and dynamic regulation of global translation 

rates and by selective translation of specific mRNA subsets, termed “translational specialization”17-20. 

Translational specialization is highly context-specific, and proposed to be vital for regulating cell fate 

decisions during development21-25. Studies using mouse ES cells (mESCs) revealed an immediate and 

substantial increase in protein synthesis upon induction of differentiation; this indicates a poorly 

understood, systems-wide, reprogramming of the translatome4. Elegant in vivo studies suggested that at 

the exit of pluripotency, mesoderm lineage is particularly dependent on translational control26. 

Translational control was also shown to be of paramount importance during maternal-zygotic transition 

and in the regulation of Hox mRNAs22,27-29. These reports, along with mass spectrometry-based studies 

analyzing ribosome composition in mESCs, indicated the importance of translational control during early 

embryonic development30. Translational specialization is thought to be conferred by translation 

specialization factors (TSFs) that dynamically sequester on ribosomal complexes to program the selective 

and privileged translation of their target mRNAs3,31,32. However, to date, there is no systems-wide 

understanding of such regulators, of the molecular mechanism(s) or of the principles by which the 

developmental transcriptome is differentially translated in time and space to allow cell fate specification, 

especially in humans32.  

Unprecedented diversity of proteins residing on ribosomal complexes in hESCs  

We hypothesized that the translatome at the state of pluripotency is poised for rapidly responding to 

differentiation stimuli to reprogram the proteome to orchestrate lineage commitment5. Then, such 

translational reprogramming could be achieved by a crosstalk between TSFs that sequester on ribosomal 

complexes and as-yet-unknown RNA elements built into the transcripts of developmental regulators, 

together controlling ribosomal output. To identify TSFs that control cell fate decisions from pluripotency, 

we first systematically characterized the proteome of ribosomal complexes in human embryonic stem 
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cells (hESCs). To achieve this, we isolated ribosomal fractions from hESCs corresponding to 40S, 80S 

(monosome), and polysomes (light polysome fraction and heavy polysome fractions) under steady state 

conditions by polysome fractionation followed by liquid chromatography coupled mass spectrometry (LC-

MS) to identify their protein composition (translation state mass spectrometry, TS-MS) (Fig. 1a, detailed 

protocol in Methods). We filtered out all ribosomal proteins and known translation factors and identified 

1380 proteins sequestering on ribosomal complexes at steady-state. Of these, 450 proteins were 

significantly enriched (fold change ≥2, p-value ≤0.05) on at least one of the ribosomal complexes, with a 

strong bias for the 40S fraction, which harbors approximately half of all differentially-enriched proteins 

(Fig. 1b, Source Data Fig. 1). RNA binding proteins (RBPs) were the largest class of proteins (30-50% of the 

proteins differentially associating with ribosomal complexes) in each ribosomal complex (Fig. 1b, Source 

Data Fig. 1). Next, we performed pathway enrichment analysis to evaluate the representative functional 

features of the candidate TSFs and grouped them based on their common functional features (Fig. 1c, 

Source Data Fig. 1). Proteins in each fraction exhibited discrete functional signatures, and overlapped with 

signatures in adjacent fractions, suggesting functional specialization and cooperativity. Candidate TSFs in 

the steady state included regulators of protein and nucleic acid metabolism, ribosome biogenesis, 

translation, cellular metabolism including electron transport chain, translation and translation regulation 

as well as RNA transport, suggesting a potential crosstalk amongst these fundamental processes on 

ribosomes.  

Notably, our data indicate that ribosomal complexes are frequented by numerous functionally 

diverse protein groups, in line with previous reports from murine models30. This makes identification of 

functional TSFs highly challenging. Therefore, we reasoned that functional TSFs could differentially enrich 

on ribosomal complexes upon challenging translation to enable a selective, specialized translational state. 

As challenging translation by transient stress is known to rapidly bring the translatome into “survival 

mode” (where the majority of translation is significantly downregulated while proteins aiding survival and 

maintenance are selectively translated33-36), we exploited this using a 2-h treatment with 0.05M NaAsO2. 

Of note, hESCs recover back to steady state from such a challenge within 4 hours. Evaluation of polysome 

profile traces of hESCs grown under steady state in comparison to translational stress showed a 

pronounced decrease of the 80S and polysome peaks, denoting general translational inhibition (Extended 

Data Fig. 1a, b). Therefore, we reasoned that translation stress-induced enrichment of a given protein on 

ribosomal fractions could be used as a prioritization feature for putative, currently unknown, regulators 

of translation. We thus also performed TS-MS after challenging hESCs with NaAsO2 and analyzed the 
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differential enrichment of robustly-identified proteins between steady state and translation challenge at 

each ribosomal fraction. 

The reproducibility of such an approach is reflected by the low variance of the entire proteome in 

each biological replicate of ribosomal fraction upon principal component analysis (Extended data Fig. 1c). 

Importantly while all independent ribosomal complexes clustered together, the corresponding complexes 

upon stress showed marked separation to that of steady state level. These findings indicate that a 

transient translational challenge remodels the ribosome-associated proteome (Source Data Fig. 1). 

Nevertheless, the occurrence of ribosomal proteins in expected fractions across all samples further 

indicated that the isolated fractions indeed represent the indicated ribosomal complexes (Extended Data 

Fig. 1d). As we predicted, candidate TSF signatures were notably different upon translational challenge. 

Mainly the proteostasis machinery (on the 40S) and the RNA degradation machinery (on polysomes) were 

enriched, while proteins involved in metabolism were depleted (from 80S and polysomes) (Extended Data 

Fig. 1e, f). Importantly, substantially more RBPs sequestered on ribosomal complexes (most on 

polysomes) upon translational challenge (Extended Data Fig. 1f). Thus, ribosomal complexes in hESCs are 

bound by an array of candidate TSFs involved in a host of primary cellular processes, including energy 

metabolism, protein homeostasis, and RNA metabolism, substantial fraction of which are uncharacterized 

RBPs 

 

RBPMS is a candidate TSF in hESCs 

We focused on RBPs enriched on ribosomal complexes for investigating their role as TSFs considering their 

ability to directly interact with ribosomal complexes, as well as a broad network of mRNAs. In total, we 

identified 600 RBPs (excluding ribosomal proteins and known translation factors) as significantly enriched 

on translational complexes when all conditions were (Fig. 1d, Source Data Fig. 1). Interestingly, these 

constitute ~24% of all known RBPs and ~38% of the RBPs reported in the proteome of stress granules34,37-

39. In line with our initial aim to identify factors that could play a central role in regulating translation, we 

reasoned that a functional TSF would show preferential, dynamic association with ribosomal complexes 

upon transient translational stress. We statistically evaluated the dynamic enrichment of these 600 RBPs 

with each of the ribosomal complexes in steady state and upon translational challenge and ranked them 

based on preferential enrichment upon stress (Hoteling’s Two-Sample T2) (Fig. 1e, Source Data Fig. 1). 

The top-ranking candidate TSF, RNA binding protein RBPMS (RNA-Binding Protein with Multiple Splicing) 

was selected for further analysis. Notably, the top five enriched RBPs were BZW140, AARS41, HMGB242, 

RBPMS, and KNOP1, of which all except RBPMS and KNOP1 (KNOP1 has been reported to be in the 
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nucleolus43) are known regulators of translation, consolidating that our prioritization criteria do identify 

translational regulators. RBPMS is an evolutionarily conserved, but poorly characterized RBP suggested as 

a regulator of embryogenesis44-46. It is predominantly a cytosolic protein in hESCs (Fig. 1h), enriched in 40S 

complexes in steady state, and moving into polysomal fractions upon translational challenge, suggesting 

a role in translational regulation (Fig. 1f, 1g). 

 Because our method relies on density gradient separation of protein complexes followed by mass 

spectrometry, the protein complexes with similar sedimentation profiles as those of the translational 

machinery could be present in our dataset. Previous reports using mESCs reported membrane proteins, 

centrosomes, clathrin complexes, as well as the vault complex to be present in TS-MS data30. However, 

components of these complexes were scarce in our data and duly filtered out, although we cannot 

completely rule out transient interactions or shuttling of factors between these complexes and the 

translational platforms, which might be relevant (Extended Data Fig. 1g, Source Data Fig 1).  

 Thus, to confirm a direct association of RBPMS with ribosomal complexes, we used an orthogonal 

approach. We reasoned that if RBPMS associates with translational machinery in hESCs, then upon 

treatment with specific translation inhibitors, it would show a characteristic shift in its sedimentation 

profile corresponding to the step of translation that is inhibited. First, we used the specific translation 

initiation inhibitor harringtonine5. Following 2 µg/ml harringtonine treatment for 30 min, RBPMS was 

depleted from polysomes and concomitantly enriched in initiation fractions; changes in the enrichment 

of bona fide components of the translation machinery, EIF4G, PABP, and RPL13 serve as a control (Fig. 1i, 

top two panels). We next treated hESCs with the inhibitor of elongation, puromycin (1 µg/ml for 1h), to 

induce translational arrest. This led to a depletion of RBPMS across fractions (Fig. 1i, third panel). Next, 

RNase I (5U, 30 min) treatment which disrupts ribosomal complexes, resulted in the accumulation of 

RBPMS in the 40S fraction (Fig. 1i, last panels). To our knowledge, there are no other complexes that 

would show a similar sedimentation profile as ribosomal complexes and would simultaneously show the 

characteristic changes in the profile upon treatment with specific translation inhibitors. Considering its 

enrichment on the 40S complex in steady state and upon various treatments with translation inhibitors, 

notably upon RNase I, we can rule out contamination with nascent RBPMS as highly unlikely. Taken 

together, also using an orthogonal approach, we identify RBPMS as a candidate TSF in hESCs.  

 

RBPMS loss impedes translation in hESCs 

To investigate the molecular and functional role of RBPMS, we targeted the exon-intron boundary of exon 

1, using two gRNAs employing CRISPR/Cas9-mediated genome engineering to generate a complete 
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knockout in hESCs (hereafter RBPMS-KO) (Fig. 2a, Extended Data Fig. 2a). The homozygous deletion of 

the exon-intron boundary disrupted the natural open reading frame of RBPMS resulting in a complete loss 

of function, confirmed both at the RNA and protein levels in comparison to the isogenic wild type hESCs 

(WT) (Fig. 2b, Extended Data Fig. 2b).  

 RBPMS-KO hESCs display significant polysome depletion, indicative of severe translational 

inhibition (Fig. 2c). This leads to ~50% reduction in overall protein synthesis in hESCs, indicated by the 

strong reduction of newly synthesized proteins detected by short-term (10 min) puromycin labeling 

evaluated either using an anti-puromycin antibody or fluorescent azide conjugated O-propargyl-

puromycin, to avoid any detection dependent biases (Fig. 2d, e, Extended Data Fig. 2h). 

 Nevertheless, translation inhibition due to the loss of RBPMS did not affect hESC self-renewal or 

cell cycle (Extended Data Fig. 2c), their overall mitochondrial integrity or metabolism (Extended Data Fig. 

2d-f), while global transcriptional output was marginally affected (EU incorporation, Extended Data Fig. 

2g). Importantly, loss of RBPMS did not alter the level of pluripotency markers or hESC homeostasis (Fig. 

2f, g, Extended Data Fig. 2m) over a period of >10 passages. Together, the dramatic reduction in polysome 

occupancy and protein synthesis reveal a central role of RBPMS in regulating translation in hESCs. 

 

RBPMS is essential for mesoderm commitment and subsequent cardiogenesis  

The blueprint of the body plan is established during lineage commitment of pluripotent stem cells, a 

process that relies on the efficient rewiring of the proteome to support rapid cell identity changes upon 

instructive morphogen signaling. Because RBPMS loss abrogated protein synthesis in hESCs, we reasoned 

that its loss would hamper cell-fate decisions enabling lineage commitment. To investigate the role of 

RBPMS in this process, we used a defined and directed differentiation method towards the three primary 

germ layers: ectoderm, mesoderm, and endoderm, recapitulating molecularly the early embryonic cell 

fate decisions, as reported previously (Fig. 2h)11. 

 Loss of RBPMS severely and specifically inhibited mesoderm commitment without affecting 

endoderm and ectoderm differentiation (Fig. 2i, Extended Data Fig. 2i-l). RBPMS loss abolished the ability 

of hESCs to effectively activate the key mesoderm, as well as cardiac mesoderm, commitment factors 

BRACHYURY (TBX-T) and MESP1 (Fig. 2i-k)47-49. In addiiton, upon mesoderm induction, RBPMS-KO cells still 

expressed pluripotency factors aberrantly (Extended Data Fig. 2p). Comparative transcriptome analyses 

of RBPMS-KO and WT cells at the state of pluripotency and upon mesoderm induction further confirmed 

their inability to effectively induce the mesoderm gene expression program (Fig. 2l, Extended Data Fig. 

2n, Source Data Fig. 2). Of note, as we previously observed at the state of pluripotency, the transcriptional 
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signature of core pluripotency factors was comparable between RBPMS-KO and WT cells (Extended Data 

Fig. 2m, Source Data Fig. 2). Strikingly, functional annotation of differentially-expressed genes revealed 

that morphogen signaling central to mesoderm commitment, including WNT and key pathways involved 

in mesoderm differentiation, failed to be activated in RBPMS-KO cells upon mesoderm induction, whereas 

genes involved in pluripotency and ectoderm differentiation were aberrantly upregulated (Fig. 2m, 

Extended Data Fig. 2o, p, Source Data Fig. 2). Expression of lineage marker undergoes rapid dynamics 

during early stages of germ layer commitment. To confirm that mesoderm commitment defects due to 

RBPMS loss were not a result of disrupted timing, we analyzed the expression dynamics of key mesoderm 

markers at close intervals. In agreement with our previous observations, mesodermal markers as well as 

WNT signaling mediators failed to activate in RBPMS-KO cells over the course of 24 h of mesoderm 

induction (Extended Data Fig. 3a). This goes hand in hand with substantially reduced TBX-T (a master 

regulator of mesoderm commitment) in RBPMS-KO hESCs upon mesoderm induction (Fig. 2k). 

 Last, we tested whether the impaired differentiation of RBPMS-KO hESCs to mesodermal lineage 

has functional consequences, detrimentally affecting terminal fate choices. In this regard, we chose 

defined differentiation to cardiomyocytes since it is a robust, high-efficiency method allowing near-

synchronous differentiation to a functional terminal fate50. Strikingly, RBPMS-KO cells failed to produce 

cardiomyocytes in contrast to WT cells that constantly yielded homogenous populations of 

cardiomyocytes (Fig. 2n). Additionally, RBPMS-KO cells failed to produce cardiomyocytes across the 

“cardiac corridor” (Extended Data Fig. 2q), which is a BMP/WNT concentration grid for testing the ability 

of pluripotent stem cells to give rise to cardiomyocytes50. Thus, we conclude that RBPMS is essential for 

accurate cell-fate decisions allowing mesoderm commitment and cardiac differentiation. 

 

RBPMS targets central regulators of mesoderm-specification and morphogenesis 

To comprehensively identify the network of mRNAs regulated by RBPMS in hESCs, we employed enhanced 

UV cross-linking and immunoprecipitation of ribonucleoprotein complex followed by massively parallel 

sequencing (eCLIP-seq) (Fig. 3a, Extended Data Fig. 4a, b)51. Following removal of PCR duplicates and 

normalization relative to size-matched input controls from four independent replicates, we compiled 

transcriptome-wide, nucleotide-resolution and high confidence binding maps displaying >80% overlap of 

target mRNAs between replicates (Fig. 3b, Extended Data Fig. 4c-e, Source Data Fig. 3). Only statistically 

significantly-enriched targets represented in all replicates were considered for further analysis. RBPMS 

was predominantly found bound to 3’UTRs of mRNAs (Fig. 3c, d, Source Data Fig 3) on a bipartite CAC 
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motif (Fig. 3e, Extended Data Fig. 4f) in hESCs. Off note, RBPMS displayed substantially higher affinity for 

3’ UTR binding in comparison to other parts of the opern reading frame (Fig. 3c, d, Source Data Fig 3).  

 Functional annotation of 3’UTR-bound targets revealed that RBPMS binds mRNAs regulating 

gastrulation, tissue morphogenesis, as well as signal transduction – particularly WNT signaling, which are 

all essential for successful cell fate commitment during gastrulation8,52,53 (Fig. 3f, Source Data Fig. 3). 

3’UTR targets of RBPMS are factors operating in a variety of cellular compartments (Extended Data Fig. 

4g). A curated set of such 3’UTR targets, selected for high signal-over-input enrichment and grouped on 

the basis of their molecular and developmental functions illustrates how RBPMS targets a broad network 

of mRNAs encoding crucial regulators of morphogen signal transduction and cell fate commitment that 

enables mesoderm development (Fig. 4g, h).  

 

Mesoderm specification is translationally specialized by RBPMS 

The sequestration of RBPMS on ribosomal complexes in hESCs, the severe inhibition of translation along 

with the specific mesoderm commitment defect in RBPMS-KO, and the direct binding of RBPMS to the 

3’UTR of transcripts encoding key mesoderm-instructive developmental regulators led us to hypothesize 

that, in hESCs, RBPMS is a vital TSF essential for mesoderm specification. To test this hypothesis, we 

systematically evaluated the transcriptome-wide occupancy of ribosomal complexes in RBPMS-KOs 

compared to isogenic WTs by employing translation state RNA sequencing (TS-Seq). To this end, 

transcripts associated with ribosomal complexes (the 40S, 80S, light, and heavy polysomes) were isolated 

after ribosome fractionation, enriched for poly-adenylated transcripts and subjected to transcriptome 

sequencing, in parallel with total RNA from RBPMS-KO hESCs and corresponding isogenic WT (Extended 

Data Fig. 5a). To correct for technical variability and allow data normalization, two different sets of spike-

ins were added to each fraction of our three biological replicates, one after lysis and the other after 

polysome fractionation 

 The loss of RBPMS resulted in severe systems-wide translational inhibition, rendering the 

evaluation of changes in ribosome occupancy on specific mRNAs cumbersome (Fig. 2c-e). Therefore, to 

identify meaningful changes in ribosome occupancy, after normalization with dual spike-in controls, a 

two-step regression-based clustering approach was used. This approach allowed the identification of 

statistically significant transcript clusters that were substantially different in their ribosome occupancy 

pattern across the translational platforms in RBPMS-KO in comparison to isogenic WT hESCs. 

 We identified 8 mRNA clusters, harboring >5500 mRNAs, exhibiting significant differences in the 

pattern of ribosome occupancy between RBPMS-KO and WT hESCs. Importantly, six clusters harboring 
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>3800 mRNAs were severely depleted from ribosomal complexes upon loss of RBPMS, while two clusters 

showed enrichment (Fig. 3i, Source Data Fig. 3). Translationally repressed genes were crucial for 

developmental cell fate commitment and embryogenesis, while translationally activated genes were 

involved in unrelated processes (Fig. 3j, Extended Data Fig. 5d, Source Data Fig. 3). Critically, integrative 

analysis of transcriptomics and TS-Seq data revealed that the transcripts only changing transcriptionally 

in the absence of RBPMS are not directly implicated in morphogen signaling or mesoderm/cardiac-

mesoderm development, the major processes regulated by RBPMS (Extended Data Fig. 5b, Source Data 

Fig. 3).  

 Our eCLIP-Seq data revealed that RBPMS predominately binds 3’UTRs of its target mRNAs. To 

investigate the direct connection between RBPMS binding and the translational status of its target mRNAs, 

we next investigated the ribosome occupancy on direct RBPMS targets. The majority of the RBPMS targets 

where it binds to the 3’UTR, were strongly depleted from ribosomal fractions in RBPMS-KOs, as illustrated 

by metagene analysis integrating eCLIP-peaks with ribosome occupancy of the respective transcripts (Fig. 

3k, Source Data Fig. 3). These data reveal that RBPMS binding to the 3’UTR of its target mRNAs determines 

their ribosome occupancy and by extension their translational status.  

 The translationally inhibited 3’UTR targets of RBPMS are central regulators of mesoderm 

specification, cell-fate commitment during development, and importantly, morphogen signaling including 

WNT signaling (Fig.  3l). Since morphogen signaling, particularly by WNT, BMP/NODAL, and FGF defines 

mesoderm commitment from pluripotency, we then investigated the ribosome occupancy on genes 

known to be regulating these processes6,12. Strikingly, a majority of the components of WNT signal 

transduction along with those of BMP/NODAL and FGF signaling were severely depleted from active 

translational compartments upon RBPMS-KO, revealing the direct role for RBPMS-mediated translational 

specialization in embryonic cell fate decisions (Fig. 3m, Extended Data Fig. 5c, Source Data Fig. 3). The 

levels of active beta-catenin, a central WNT signaling component, were substantially low upon RBPMS loss 

(Fig. 3n), further confirming its direct role in controlling mesoderm specification. However, RBPMS does 

not affect transcript stability in general (assessed for a selection of pluripotency factors and direct RBPMS 

3’UTR targets involved in WNT signaling, following actinomycin-D treatment to inhibit transcription) 

(Extended Data Fig. 5i). RBPMS was recently suggested to regulate splicing in smooth muscle cells54, 

extrapolated from targets identified by overexpression of RBPMS in HEK293T cells which naturally do not 

express RBPMS55. A cursory analysis revealed minimal overlap between the reported targets in HEK293-T 

cells and the targets we identified in hESCs, indicating cell type specificity of its endogenous target. 

Additionally, we find no evidence for splicing being the primary RBPMS function in hESCs. The loss of 
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RBPMS severely impairs the ribosome occupancy of crucial developmental genes involved in the control 

of early embryonic fate determination at the state of pluripotency (illustrated by the translational status 

of the curated list of key developmental genes affected by its loss, including key 3’UTR targets; Extended 

Data Fig. 5e), revealing a central role for RBPMS in the translational specialization of cell fate commitment 

from pluripotency. Importantly, the depletion of ribosomal complexes globally as well as from RBPMS 

3’UTR targets results in significant reduction in the abundance of corresponding proteins, confirmed by 

total proteome analysis using LC-MS comparing WT and RBPMS-KO hESCs (Extended Data Fig. 5f-h). 

Together, our data confirm that the abundance of the regulators of cell-fate decisions, including 

components of morphogen signal transduction crucial for mesoderm commitment (Extended Data Fig. 

5g, h) are balanced in the state of pluripotency by RBPMS-mediated translation specialization, thereby 

poising future lineage choices. 

 

RBPMS is essential for the canonical composition of translation initiation complexes in hESCs 

RBPMS loss caused a systems-wide inhibition of translation, as well as specific depletion of ribosomes 

from its direct targets. This suggested that the role of RBPMS in translation could be two pronged (i) as a 

general regulator of translation in hESCs, and (ii) as a regulator of selective translation of mesoderm 

instructive cell-fate regulators. For an unbiased investigation of its associated factors , we performed 

direct immunoprecipitation of RBPMS followed by mass spectrometry from hESCs after prolonged RNase 

I treatment to avoid indirect RNA-mediated associations (Extended Data Fig. 6a, 6b). RBPMS specifically 

co-purified with canonical regulators of translation initiation including eIF3 complex components, eIF5A, 

as well as eIF4G, along with multiple ribosomal subunits, suggesting a role for RBPMS in canonical 

organization of translation initiation complexes in hESCs (Fig. 4a, Extended Data Fig. 6c). Accordingly, we 

interrogated the dynamics of key factors influencing translation initiation on ribosomal platforms upon 

RBPMS loss. First, we specifically interrogated the enrichment of key initiation factor eIF4G (involved in 

cross-talk between 43S preinitiation complex and eIF4F complex), and poly(A)-binding protein PABP. Both 

displayed comparable levels indicating that RBPMS loss does not influence the predisposition of mRNAs 

to be translated (Fig. 4b, c). The slight reduction of eIF4G from polysomal fractions in RBPMS-KO is 

indicative of translation inhibition. However, a key component of the 43S preinitiation complex and a 

regulatory hub for global translation, eIF2A56, showed aberrant retention across ribosomal fractions 

following RBPMS loss (Fig. 4b, c). Additionally, two vital eIF3 complex components, eIF3E (involved in 

selective translation)57,58 and eIF3H (previously reported to be involved in selective translation during 

embryonic development)59 were aberrantly retained in polysomal fractions and substantially depleted 
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from the 40S complex in RBPMS-KO cells, respectively (Fig. 4b, c). Strikingly, eIF5A, essential for proper 

elongation, for error resolution at ribosomal pause sites and for termination60, was sequestered into the 

40S ribosomal fraction in the absence of RBPMS (Fig. 4b, c). Notably, the total levels of these factors do 

not reflect the change in their pattern of distribution in ribosomal fractions in RBPMS-KO hESCs (Extended 

Data Fig. 6d). Together our data reveal that RBPMS loss results in aberrant retention of translation 

initiation factors on ribosomal complexes in hESCs.  

 Next, we asked whether binding by RBPMS to the 3’UTR of model mRNAs suffices for controlling 

their translation in hESCs. To this end, we generated a set of dual luciferase-based reporter constructs 

with RBPMS binding sites in the 3’UTR of SFRP1 or ACTB mRNAs. Loss of RBPMS lead to a significant 

decrease in luciferase activity only in SFRP1- 3’UTR fusions (with chicken ACTB and luciferase-only controls 

remaining unaffected compared to WT cells; Fig. 4d). Since luciferase-based reporter assays are end-state 

readouts, we used time-lapse microscopy of fluorescent reporters harboring RBPMS binding sites at the 

3’UTR along with indicated controls to independently measure the linear influence of RBPMS on reporter 

levels (and by end read out at 24 h post-transfection). We observed significant increase in the translation 

efficiency in the presence of RBPMS only when its binding sites were present in the 3’UTR (Extended Data 

Fig. 6f, g). Together, our data confirm the direct role of RBPMS as a TSF in hESCs. 

 Finally, to confirm the role of RBPMS as a translation specialization factor central to mesoderm 

specification and to rule out discrepancies in our findings caused by genome engineering “off target” 

effects in RBPMS-KO hESCs, we knocked-in an inducible copy of RBPMS using PiggyBac transposon-based 

genomic insertion (Fig. 4e). Timely re-expression of the most prominent cytosolic isoform (the lowest 

band in RBPMS immunoblot; Fig. 1I) of RBPMS in RBPMS-KO cells fully restored both ribosome occupancy 

defects and protein synthesis, including the protein levels of SFRP1, one of the RBPMS 3’UTR targets, and 

a component of WNT signaling (Fig. 4g, h, Extended Data Fig. 6e)61. Importantly, re-expression of RBPMS 

restored mesoderm commitment capacity, reinstating the ability of RBPMS-KO cells to generate 

terminally differentiated cardiomyocytes (Fig. 4i). Taken together, our data reveal that the competence 

of hESCs for mesoderm specification is translationally specialized by RBPMS through the selective 

translation of developmental factors such as central morphogen signaling components, thereby poising 

future lineage choices.  

 In summary, we propose a model by which the state of pluripotency is translationally poised for 

differentiation into future lineages via the selective translation of the regulators of embryonic cell-fate. 

This is exemplified by translational specialization by RBPMS, which unlocks the mesoderm commitment 

potential of hESCs via selective translation of key developmental regulators, including morphogen and 
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signal transduction components. The combination of BMP/WNT signaling faced by hESCs at the state of 

pluripotency predetermines their mesodermal and cardiac fate commitment potential in vitro6,62,63, while 

cells exiting the primitive streak in vivo are exposed to a specific ratio of WNT to BMP signaling gradient, 

which defines the mesodermal lineages they will differentiate into8,52,53. The regulation of this unique 

predisposition to terminal fate is currently unknown. Our work identified RBPMS as a translation 

specialization factor enabling mesoderm specification, based on which we propose an RBPMS-centric 

translational module specialized for mesoderm development. This is well supported by the ribosome foot 

printing studies from mesodermal cells in vivo26. Regulation of gene expression is paramount to 

developmental cell-fate transitions. In this regard, traditionally the focus has been mainly on delineating 

signaling pathways, transcriptional and epigenetic mechanisms contributing to developmental cell-fate 

decisions. We propose that TSFs associate with ribosomal platforms to regulate translation of cell-fate 

regulatory mRNAs in time and space, akin to how transcription factors program the transcriptional output 

of RNA Pol II, allowing embryonic cell fate decisions. Our catalog of translation machinery-associated 

proteins provides a rich resource for investigating additional translational specialization paradigms, and 

reveals a new regulatory space to be explored in the future. Collectively, we propose a pivotal role for 

translational specialization in sculpting cellular identity during early developmental lineage decisions. 
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Figure legends 

Fig. 1: Systematic analysis of proteins residing on ribosomal complexes identifies RBPMS as candidate 

translation specialization factor in hESCs  

(a) A schematic outline of the underlying strategy employed for translation state mass spectrometry (TS-

MS).  

(b) RNA binding proteins are the largest class of protein on ribosomal platforms in hESCs. n= total 

number for proteins/ribosomal complex, (only proteins detected in all three biological replicates above 

log2 LFQ ≥ 25, FDR ≤ 0.1 were considered). (LFQ: label-free quantification; LC-MS: liquid chromatography 

mass-spectrometry) 

(c) Gene Ontology-based functional enrichment analysis for differentially enriched proteins on 

ribosomal complexes grouped under overarching functional categories (p-value ≤ 0.001). (FC: fold 

change) 

(d) Dynamics of RNA binding proteins residing on ribosomal complexes in steady state conditions and 

upon transient translational challenge (n=600).  

(e) Differential enrichment-based ranking of RBPs on ribosomal complexes between steady state and 

upon translational challenge computed by Hotelling’s two-tailed T2, top 5 enriched RBPs in the inlet 

(Hotelling's T2 values for ranking translation machinery-associated proteins using MEBA implemented 

using MetaboAnalyst).  

(f), (g) RBPMS resides predominantly on 40S complex in hESCs in steady state conditions and migrates to 

polysomal complexes upon translational challenge, evaluated by mass spectrometry (line graph) and by 

western blotting. RPL7A, RPS6, and G3BP1 serve as controls.  

(h)  RBPMS is a predominantly cytosolic protein, evaluated by Western blot analysis upon 

nuclear/cytosolic fractionation, G3BP1, and TUBA1B cytosolic control, LAMINB1 nuclear control.  

(i) Residence of RBPMS on ribosomal complexes evaluated and confirmed by its characteristic 

association with the indicated complexes upon treatment with respective translation inhibitors, 

evaluated by polysome fractionation. Protein levels of RBPMS and the indicated controls on ribosomal 

fractions were detected by Western blotting.  

Error bars represent ±SEM; p-values calculated using Student’s t-test, *≤0.05) 

See also Extended Data Fig. 1. 
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Fig. 2: RBPMS is essential for translational homeostasis in hESCs and its loss abrogates mesoderm 

specification  

(a) Schematic representation of RBPMS locus in humans and the CRISPR/Cas9-based targeting strategy 

used to generate homozygous RBPMS-KO, confirmed at the (b) at the protein level. 

(c) Loss of RBPMS impedes translation in hESCs, indicated by representative polysome profiles from 

sucrose gradient fractionation of RBPMS-KO hESCs compared to isogenic WTs along with quantification 

of the area under the indicated ribosomal fractions on the right.  

Protein synthesis is inhibited in RBPMS-KO hESCs. De novo protein synthesis is evaluated by measuring 

puromycin incorporation on nascent proteins using (d) anti-puromycin antibody by western blotting and 

(e) by measuring uptake of O-Propargyl-puromycin (OPP) quantifications on the right.  

(f) RBPMS-loss does not affect pluripotency. Representative images of WT and RBPMS-KO hESCs stained 

for OCT4, SOX2 and NANOG: Bar graph shows normalized expression levels of indicated pluripotency 

markers.  

(g) RT-qPCR for pluripotency markers OCT4, NANOG, and SOX2. Bar graphs show relative fold change to 

WT hESCs normalized to RPL37A. 

(h) Schematic of lineage differentiation approaches used to determine the competence of RBPMS-KO 

hESCs to undergo germline commitment.  

RBPMS loss abrogates the ability of hESCs to commit to mesoderm, evaluated by (i) 

immunofluorescence imaging for MESP1 (central mesoderm specifier), (j) RT-qPCR for MESP1 and TBX-T 

(master regulator for mesoderm specification and (k) by western blot analysis for TBX-T.  

(i) Representative images of MESP1 staining upon mesoderm induction of RBPMS-KOs hESCs for 

indicated mesodermal markers, quantification on the right. Impaired mesoderm commitment was 

confirmed by RT-qPCR (j) highlighting reduced activation of mesoderm markers TBX-T and MESP1 RT-

qPCR for mesoderm markers TBX-T and MESP1, (k) as well as by western blotting for TBX-T.  

(l) Heatmap shows normalized expression levels of indicated mesoderm markers  

(m) Gene Ontology-based functional enrichment analysis for differentially expressed genes in WT 

mesoderm and RBPMS-KO mesoderm (significance level indicated by color code). 

 (n) Loss of RBPMS detrimentally affects terminal fate choices of hESCs indicated by defined 

differentiation to cardiomyocytes. Representative images of indicated markers upon cardiac 

differentiation of WT hESCs compared to RBPMS-KO hESCs.  

Error bars represent ±SEM; p-values calculated using Student’s t-test (p-values : n.s.>0.05, *≤0.05, 

**≤0.01, ***≤0.001, ****≤0.0001, n = 3). 
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See also Extended Data Fig. 2, 3 

 

Fig. 3: Translational specialization of the regulators of mesoderm specification requires direct binding 

of RBPMS  

 (a) Schematic of the eCLIP-seq approach employed to faithfully generate an unbiased transcriptome-

wide direct binding map for RBPMS at single-nucleotide resolution in hESCs.  

(b) Biological quadruplicates of eCLIP show at least 80% overlap between each other, pie charts show 

the correlation of statistically significant uniquely mapped reads for each replicate over SMInput.  

(c) RBPMS binds predominantly the 3’UTR of its direct target transcripts, demonstrated here by the 

distribution of the significantly enriched eCLIP peaks against the paired SMInput (fold change ≥ 2; p-

value ≤ 0.05 in all 4 replicates).  

(d) Metagene plot visualizing the peak distribution of RBPMS over SMInput illustrating prominent 3’UTR 

binding.  

(e) Top sequence motif significantly bound by RBPMS.  

(f) 3’UTR targets of RBPMS regulate molecular processes central to mesoderm commitment including 

components of morphogen signal transduction network, depicted by significantly enriched GO terms.  

(g) A curated set of RBPMS 3’UTR targets grouped based on their proven role in the indicated cellular, 

developmental and functional process, depicted as a heatmap of enrichment over SMInput.  

(h) Representative read density tracks show read density for RBPMS across the gene body of SFRP1, a 

representative target. 

(i) Global impact of the loss of RBPMS on ribosome occupancy in hESCs, revealed by two-step regression 

analysis of the mRNAs enriching on ribosomal fractions.  

(j) Functional analysis of translationally repressed transcripts in RBPMS-KOs versus isogenic WT hESCs 

illustrated as a significantly enriched curated list of GO terms (significance levels indicated in the key on 

the right). 

 (k) Metagene plot indicating a 3’UTR binding bias for translationally repressed targets of RBPMS.  

(l) Functional analysis of translationally repressed 3’UTR targets of RBPMS in RBPMS-KO hESCs 

compared to corresponding WT cells illustrated as a curated list of significantly enriched  GO terms.  

(m) Loss of RBPMS severely impairs ribosome occupancy on mRNAs encoding components of WNT, 

BMP, NODAL, and FGF signaling, vital mesoderm specifying signal transduction networks.  

(n) Loss of RBPMS reduces active BETA CATENIN levels in hESCs as detected by Western blotting. 
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Error bars represent ±SEM; p-values calculated using Student’s t-test p-values : n.s.>0.05, *≤0.05, 

**≤0.01, ***≤0.001, ****≤0.0001, n = 3 ).  

See also Extended Data Fig. 4, 5 

 

Fig. 4: RBPMS-loss results in aberrant retention of translation initiation factors on ribosomal 

complexes  

(a) Circos plot depicting the enrichment of indicated proteins upon immunoprecipitation of RBPMS after 

extended treatment with RNAse I over the IgG control. Log2 LFQ ≥25 in all three biological replicates and 

log2 fold change over IgG ≥2, p-value ≤0.05). (n=3 unless otherwise indicated).  

Error bars represent ±SEM; p-values calculated using Student’s t-test, *≤0.05) 

(b), (c) Loss of RBPMS in hESCs results in impaired retention of translational initiation factors, involved in 

translational specialization, depicted by the distribution of the occupancy of indicated factors in 

ribosomal complexes, isolated by polysome fractionation. (n=2).  

 (d) RBPMS enhances the translation of dual luciferase-based reporters specifically upon in the presence 

of its RNA binding motif. Indicated 3’UTRs were fused to firefly luciferase open reading frame, while 

renilla luciferase encoded by the same plasmid serves as control.  

(e) Timely reconstitution of RBPMS in RBPMS-KO hESCs rescues (f) ribosome occupancy, (g) general 

protein synthesis, (h) translation defect of 3’UTR targets of RBPMS as well as (i) lineage commitment 

defects. 

Error bars represent ±SEM; p-values calculated using Student’s t-test p-values : n.s.>0.05, *≤0.05, 

**≤0.01, ***≤0.001, ****≤0.0001, n = 3 ).  

See also Extended Data Fig. 6 
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SUPPLEMENTARY FIGURE LEGENDS 

 

Extended Data Fig. 1: Translational challenge rewires the proteome of ribosomal complexes in hESCs 

(a) Polysome traces from sucrose gradient fractionation of hESCs in steady state and upon transient 

translational challenge by NaAsO2.  

(b) Transient translational challenge leads to significant depletion of polysomal fractions, shown by bar 

plots of the area under the indicated fractions from polysome traces.  

(c) Transient translation challenge causes a substantial change in the total proteome of ribosomal 

complexes, indicated by the principal component analysis of the indicated fractions from TS-MS.  

(d) Heatmap depicting the abundance of ribosomal proteins constituting small and large ribosomal 

subunits.  

(e) The abundance of RNA binding proteins on polysomal fractions show a substantial increase upon 

transient translational stress. n= total number for protein/ribosomal complex, (only proteins detected in 

all three biological replicates above log2 LFQ ≥ 25, FDR ≤ 0.1 were considered).  

(f) Gene Ontology-based functional enrichment analysis for differentially enriched proteins on ribosomal 

platforms upon transient translational challenge (p-value ≤ 0.001). 

(g) The overlap between identified translation-associated factors with components of the indicated multi-

protein complexes.  

 

Extended Data Fig. 2: RBPMS loss does not affect cell cycle, energy metabolism, neuroectorderm or 

endoderm differentiation 

(a) Sanger sequencing-based confirmation of genome editing in the generated RBPMS-KO hESCs.  

(b) RBPMS mRNA levels in WT hESCs compared to RBPMS-KOs evaluated by qPCR. (c) Evaluation of the 

effect of cell cycle upon RBPMS loss in hESCs.  

 (d) Evaluation of mitochondrial distribution (mitofusin and Mitotracker staining) and (e) mitochondrial 

integrity (live Mitotracker intake) in RBPMS-KO and wildtype hESCs.  

(f) Mitochondrial oxygen consumption rates (OCR; pmol O2/min) in WT and RBPMS-deficient hESCs. 

Specific inhibitors used in the analysis are indicated.  

(g) Representative micrographs depicting the nascent transcription in WT and RBPMS-KO hESCs, 

measured by EU (5-Ethynyl Uridine) labeling assay.  

(h) De novo protein synthesis evaluated by measuring puromycin incorporation of nascent proteins using 

anti-puromycin antibody between WT and RBPMS-KO hESCs, evaluated by fluorescence microscopy.  
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Loss of RBPMS does not affect (i) & (j) neuroectoderm and (k) & (l) endoderm commitment potential of 

hESCs, evaluated by immune fluorescence microscopy and qPCR of the indicated markers.   

(m) Loss of RBPMS does not affect the expression of pluripotency markers in hESCs. 

(n) Induction of mesoderm markers is affected upon RBPMS-KO. 

(o) RBPMS-KO hESCs show aberrant expression of indicated endodermal and ectodermal markers upon 

mesoderm induction.  

(p) Loss of RBPMS results in residual expression of indicated pluripotency markers upon mesoderm 

induction, evaluated by RT-qPCR analysis 

(q) RBPMS-KO fail to differentiate to cardiomyocytes across the WNT-BMP gradient permissive for cardiac 

commitment, “cardiac corridor” as compared to WT hESCs. 

Error bars represent ±SEM; p-values calculated using Student’s t-test (p-values: n.s.>0.5, *≤0.05, **≤0.01, 

***≤0.001, ****≤0.0001, n = 3). 

 

Extended Data Fig. 3: RBPMS is essential for the timely activation of mesoderm specifiers 

(a) Kinetics of induction of mesodermal markers measured by qPCR at indicated intervals during 

mesoderm induction confirms mesoderm commitment defects upon RBPMS-KO in hESCs. Bar graphs 

represent gene expression kinetics of indicated markers.  

Error bars represent ±SEM; p-values calculated using Student’s t-test (p-values: n.s.>0.5, *≤0.05, **≤0.01, 

***≤0.001, ****≤0.0001, n = 3). 

 

 

Extended Data Fig. 4: eCLIP-seq maps direct RBPMS targets in hESCs 

(a) Representative Western blot-based validation of immunoprecipitation performed during eCLIP of 

RBPMS, TUBA1B serves as the control.  

(b) Representative eCLIP libraries, illustrated as tape-station readouts.  

(c) Uniquely mapped reads for all eCLIP samples. 

(d) Read density of eCLIP-Seq data indicating fold enrichment over respective SMIinputs.  

(e) Correlation of enriched eCLIP-peaks over SMInput between each replicate.  

(f) Top sequence motif significantly bound by RBPMS along with peak distribution categorized based on 

binding of RBPMS on the mRNA coordinates for each replicate.  

(g) Enriched GO terms (cellular component) found in RBPMS 3’UTR targets. 
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Error bars represent ±SEM; p-values calculated using Student’s t-test (p-values: n.s.>0.5, *≤0.05, **≤0.01, 

***≤0.001, ****≤0.0001, n = 3). 

 

 

Extended Data Fig. 5: The molecular and developmental function of RBPMS is primarily through its 

direct regulation of translation  

(a) Schematic of the TS-Seq employed to evaluate the role of RBPMS globally as well as specifically on its 

direct targets.  

(b) Functional annotation of genes affected transcriptionally alone upon loss of RBPMS does not suffice 

for the molecular and developmental defects due to the absence of RBPMS in hESCs.  

(c) Dynamics of indicated mRNAs on the indicated ribosomal platforms, bound by RBPMS on the 3’UTR.  

(d) Gene Ontology-based functional enrichment analysis for 3’UTR targets translationally activated in 

RBPMS-KO hESCs (significance level indicated by color code).  

(e) Translational status of the curated list of key developmental genes upon loss of RBPMS, illustrated as 

heatmap depicting the ratio of occupancy of the indicated ribosomal complexes on transcripts between 

RBPMS-KO and WT hESCs.  

(f) RBPMS loss results in systems wide reduction in protein abundance. Protein abundance evaluated by 

unbiased whole proteome analysis between WT hESCs and RBPMS-KOs (n=3, biological replicates).  

(g) Reduction in ribosome occupancy on RBPMS 3’UTR targets results in substantial reduction in their 

protein abundance. Heat map depicting the protein levels of RBPMS 3’UTR targets evaluated by whole 

proteome analysis. Curated list of RBPMS 3’UTR targets are marked. 

(h) Gene Ontology-based functional enrichment analysis RBPMS 3’UTR targets depleted at the protein 

level in RBPMS-KOs with respect to WT hESCs. 

(i) Loss of RBPMS does not change the stability of indicated mRNAs, including RBPMS 3’UTR targets, 

revealed by time-course experiment upon Actinomycin B treatment. 

Error bars represent ±SEM; p-values calculated using Student’s t-test (n=3). 

 

Extended Data Fig. 5: Translational specialization of RBPMS-targets requires the presence of its binding 

motif in the 3’UTR 

(a) Coomassie blue-stained gels depicting the indicated eluates from RBPMS and IgG (control) pull-downs, 

respectively. Size separated proteins were pooled independently, isotope-labeled, and quantified by LC-

MS.  
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(b) Volcano plot showing specific enrichment of proteins upon RBPMS pull-down w.r.t IgG control, in 

triplicates.  

(c) Enrichment of ribosomal proteins and translation factors upon RBPMS pull down. 

Error bars represent ±SEM; p-values calculated using Student’s t-test (n = 3).  

(d) Total levels of the indicated proteins in RBPMS-KO hESCs compared to the corresponding WT.  

(e) Levels of SFRP1 evaluated by western blot analysis in RBPMS-KO and WT hESCs, quantifications on the 

right.  

(f) Schematic depicting the fluorescence-based translation reporter constructs used. Bar graphs depicting 

GFP mean fluorescence intensity (MFI) of the translation reporters in indicated conditions measured 24 

hours post transfection shown in lower panel. 

(g) RBPMS enhances the translation of fluorescence-based dual reporters specifically upon in the 

presence of its RNA binding motif. Indicated 3’UTRs were fused to GFP open reading frame, co-transfected 

with plasmids expressing RBPMS or mCherry in WT or RBPMS-KO hESCs and fluorescence was recorded 

continuously for 48h by live microscopy. 

Error bars represent ±SEM; p-values calculated using Student’s t-test (n.s.>0.5, *≤0.05, **≤0.01, 

***≤0.001, ****≤0.0001, n = 3). 
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