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Summary.

Bias from weak instruments may undermine the ability to estimate causal effects in instrumental variable

regression (IVR). We present here a simple solution for handling weak instrument bias by introducing a

new type of instrumental variable called ‘cross-fitted instrument’ (CFI). CFI splits the data at random and

estimates the impact of the instrument on the exposure in each partition. The estimates are then used to

perform an IVR on each partition. We adapt CFI to Mendelian randomization (MR) and term this adap-

tation ‘Cross-Fitting for Mendelian Randomization’ (CFMR). A major advantage of CFMR is its use of all

the available data to select genetic instruments, as opposed to traditional two-sample MR where a large

part of the data is only used for instrument selection. Consequently, CFMR has the potential to enhance

the power of MR in a meta-analysis setting by enabling an unbiased one-sample MR to be performed in

each cohort prior to meta-analyzing the results across all the cohorts. In a similar fashion, CFMR en-

ables a cross-ethnic MR analysis by accounting for ethnic heterogeneity, which is particularly important

in consortia-led meta-analyses where the participating cohorts might be of different ethnicities. To our

knowledge, there are currently no MR approach that can account for such heterogeneity. Finally, CFMR

enables the application of MR to exposures that are rare or difficult to measure, which would normally

preclude their analysis in the regular two-sample MR setting.

Key messages:

• We develop a new method to enable an unbiased one-sample Mendelian Randomization.

• The new method provides the same power as the standard two-sample Mendelian Randomization
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approach and does not require summary statistics from a genome-wide association study in an

independent cohort.

• Our approach enables a cross-ethnic instrumental variable regression to account for heterogeneity

in a sample consisting of multiple ethnicities.

Word count: 3639

1. Introduction

There are many successful applications of two-sample MR for inferring causal relationships, but its use

is limited when studying exposures not typically studied by large consortia. Performing a two-sample

MR using an exposure with no previously reported findings from genome-wide association studies

(GWASes) requires coordinating analysis between at least two large non-overlapping cohorts from a

similar population, which is time-consuming and often unfeasible. Furthermore, the requirement for

the two cohorts to stem from a similar population limits the application of two-sample MR to cohorts

comprising different ethnicities that have not yet been adequately genotyped.

To address these shortcomings, we present here a solution that relies on a simple modification of the

two-stage least square (2SLS) procedure (1) that satisfies the main assumptions of two-sample MR (the

samples must be non-overlapping and must stem from a similar population) while using only a single

dataset for instrument selection. This modification exploits the concept of cross-fitting (CF) from the

debiased machine-learning (DML) approach recently proposed by Chernozhukov and colleagues (2). In

essence, we construct a new type of instrument based on CF, which we termed ‘cross-fitted instrument’

(CFI), that allows a conservative estimation of the causal effect of an exposure on an outcome. Other

ideas analogous to CF can be found in the earlier works by Angrist and colleagues (3; 4). CFI differs

from these approaches by its use of a data-splitting procedure that allows all the available data to be

used in instrument selection, thus eliminating the need for sub-sampling (3). As a result, CFI is able

to reduce the computational burden compared to the jackknife procedure by Angrist et al. (4).

We call the adaption of CFI to MR ‘Cross-Fitting for Mendelian Randomization’ (CFMR) and

show that it uses more data than traditional two-sample MR when estimating the causal effect of

an exposure on an outcome. Other works on similar topics have recently appeared in the literature

(5; 6; 7); however, some of those investigations are not yet peer reviewed (archived), are limited by the

need for a large sample size (5), or are restricted to inverse-variance two-sample weighting MR (6; 7).

By contrast, CFMR can be applied to small sample sizes and is easily adaptable to a polygenic risk

score (PRS) setting. Finally, our work is also closely related to the recently proposed ‘causal gradient
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Fig. 1. Schematic overview of two-sample MR and two-fold CFMR. Panel (a) shows the two-sample MR set-up
in which the first sample is used to build the instrument while the second sample is used to estimate the causal
effect. Panel (b) shows the two-fold CFMR set-up. Step 1 in panel b) describes the random splitting of the
dataset. In step 2, two separate GWASes are performed: the first using sub-sample 1 and the exposure; the
second using sub-sample 2 and the exposure. The predictors of the exposure are subsequently built based on
sub-sample 1 (IV1) and sub-sample 2 (IV2). Step 3 refers to the 2SLS using IV1 on sub-sample 2 and IV2 on
sub-sample 1. Finally, in step 4, the two 2SLS from step 3 are simply averaged.

boosting’ approach by Bakhitov and Singh (8), which is also at the preprint stage. Bakhitov and Singh

(8) also use CF in the context of non-linear instrumental variable regression involving a small number

of instruments. CFMR differs from that approach in that it is restricted to linear instrumental variable

regression and can handle a larger number of instruments.

2. Methods

In their pioneering work, Chernozhukov and colleagues (2) proposed two causal estimators, DML1

and DML2, that are asymptotically equivalent. We present here their MR counterparts, CFMR1

and CFMR2, that are also asymptotically equivalent. For extensive details regarding the optimal

selection of genetic instruments, readers are referred to the work by Hemani and colleagues (9). To

simplify further, we have only considered here the case where the genetic instrument does not exhibit

pleiotropic effects (10). This is because CFMR can easily be adapted to recently developed MR

methods that allow the use of pleiotropic genetic instruments, such as MR-PRESSO (11) and IVs

based on penalized regression (12; 13; 14), which enable valid inference even when 50% of the SNPs

are not valid instruments.

In the subsections below, we explain the concept of K-fold CFI and define the estimators CFMR1

and CFMR2. To ease comprehension, we also provide a simple example of the 2-fold CFMR in the

Supplementary Material, in the subsection called ‘2-fold CFMR’.
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2.1. CFMR

Let Y be a continuous outcome, X a continuous exposure, and Z a vector of size ≥ 1 containing

the instruments. We assume that Y , X and Z are connected through the following linear regression

models:

Y = θ0X + U, E[U |Π, X] = 0 (1)

X = ZΠ + V, E[V |X] = 0 (2)

The parameter of interest is θ0 is the causal effect of X on Y, Π is the vector of regression coefficients

for the instruments, U and V are two correlated error terms, and E is the expectation operator.

2.1.1. K-fold CFI

A CFI based on K ≥ 2 splits is referred to as a K-fold CFI, which can be described as follows. Let us

consider K-fold random partitions of the observation indices [N ] = (1, ..., N), where the size of each fold

is N
K . We refer to these partitions as (Ik)

K
1 . For each k ∈ (1, ...,K), we define the complementary of the

partition Ik as Ick = 1, ...., N /∈ Ik. For each k, we select nk independent variants Z̃k = (Z1,k, ..., Znk,k)

by performing a GWAS of X using the data in Ik. In our application to a real dataset (see the

subsection ‘Application of CFMR to a real dataset’ further below), Z̃k is the output of the clumped

GWAS result of X using data with an index in Ik.

We then use these nk variants to build predk (a predictor of X) and use the data with an index

in Ik as a training set. The predictor predk can be based on any machine learning/statistical method

suitable for building instrumental variables, such as the least absolute shrinkage and selection operator

(LASSO) (12) or PRS (15), but non-linear methods such as the generalized random forest (16) can

also be applied. For each k, we define the CFI of X on Ick as:

X̂k = predk((Zi,1,k, ..., Zi,nk,k)i∈Ick) (3)

Where Zi,l,k is the variant Zl,k of individual i. A CFI on Ick is the prediction of X on Ick using a

predictor of X trained using data with an index in Ik. For i ∈ Ick, we denote the predicted exposure of

individual i using predk as X̂i,k. Finally, the K-fold CFI, X̂, is defined as:
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X̂i = X̂i,k for i ∈ Ick (4)

2.2. CFMR

The CFMR1 estimate of θ0 is defined as:

θ̂CFRM1
0 =

1

K

K∑
k=1

2SLS(XIck , YIck , X̂k) (5)

Where 2SLS is the 2SLS estimator (17):

2SLS(X,Y, Z) = [XtZ(ZtZ)−1ZtX]−1XtZ(ZtZ)−1ZtY (6)

This estimate corresponds to step 4 in panel b in Figure 1. CFMR1 consists of performing an IVR

on the complementary partition Ick using X̂k as instrument. We then average the estimates of these

IVRs to obtain the final estimate.

The CFMR2 estimate of θ0 is simply defined as:

θ̂CFRM2
0 = 2SLS(X,Y, X̂) (7)

In essence, CFMR2 consists of performing a single IVR on the entire dataset using X̂ as instrument.

In both CFMR1 and CFMR2, θ̂0 is asymptotically normally distributed around θ0 (see (3; 4)).

Finite sample unbiased estimation of 2SLS

As pointed out by Nagar (18), the expected bias of a 2SLS estimate is given by the expectation of

UZΠ̂, which is the following when using standard 2SLS:

E[UZΠ̂] = E[E[UZΠ̂|Z]] = E[Z(ZtZ)−1 · ZtE[UV t|Z]] = E[Z(ZtZ)−1Zt · σU,V ] =
K

N
σU,V (8)

where σU,V = E[UV t|Z] is the covariance of the error terms in the first and second-stage regression.

Similar to the argument set forth by Angrist et al. (4), given that we use a CF procedure, X̂ = ZΠ̂ is

by design independent of U and the error terms are independent. Hence, E[UZΠ̂|Z] = 0.

The CFMR1 and CFMR2 estimates converge to their true value at a rate of σ2√
(n)

, regardless of

the strength of the instrument and the number of splits (4). The convergence speed of CFMR is the
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same as that of the standard two-sample MR (19), which implies that the two approaches have the

same asymptotic power. We show via simulations (see Supplementary section 3.1) that CFMR and

two-sample MR have equal power (Supplementary Figure S1 and Supplementary Table 1). To further

assess the behavior of CFMR, in terms of its handling of bias, type I error and power, we performed

a set of additional simulations and provide the results in the Supplementary Material. Specifically,

we demonstrate that CFMR is conservative even under extreme scenarios in which one-sample MR is

heavily biased (see Supplementary section 3.2).

3. Application of CFMR to a real dataset

We applied CFMR2 to a dataset comprising mother-child duos from the Norwegian Mother, father, and

Child Cohort Study (MoBa) (20) to re-examine the well-established effect of maternal pre-pregnancy

BMI on offspring’s birth weight (21). We chose CFMR2 over CFMR1 because, similarly to DML1

and DML2, CFMR2 exhibits a better finite sample size performance than CFMR1 (see (2)). After

applying the quality control criteria outlined in the section ‘Study description’ in the Supplementary

Material, 26, 896 complete mother-child duos with genotype and phenotype data remained for the

current analyses. The maternal genotype was used to build the instrument for pre-pregnancy BMI. As

additional criteria, we assumed random mating between parents and independence between mothers

(i.e., no sibships) (22). CFMR was run on the 26, 896 mother-child duos using 10 random splits. Thus,

10 separate GWASes of pre-pregnancy BMI were performed, with each GWAS encompassing 24, 210

randomly selected mothers (24, 210 is about 90% of the original 26, 896 mothers). As our sample

is relatively modest in size, we only used the first three principal components (PCs) to adjust for

population stratification in each GWAS.

The Manhattan plots of the 10 GWASes are provided in Supplementary Figures 9-18. The results

across the GWASes are similar and show a systematic replication of the top hits previously identified

in two large GWAMAs of BMI (23; 24), which included SNPs in the genes FTO, TMEM18, and MC4R

(8). Furthermore, we clumped the results of each GWAS and selected SNPs with a P-value below 10−6

to build a predictor of maternal pre-pregnancy BMI using LASSO. We then built the CFI by predicting

each mother’s pre-pregnancy BMI using a predictor trained on a dataset that does not contain the

data to be predicted. We repeated this procedure using different P-value thresholds ranging from 10−3

to 10−8 to build a CFI for each of these thresholds.

In addition, to compare CFMR with one-sample MR, we also performed a GWAS of pre-pregnancy

BMI using the entire dataset of 26, 896 mother-child duos. Again, we clumped the results of the GWAS
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and selected SNPs with a P-value below 10−6 to build a predictor of maternal pre-pregnancy BMI by

applying LASSO to the entire dataset. We then used the prediction of the predictor of maternal pre-

pregnancy BMI as instrument. We refer to the estimation of the effect of maternal pre-pregnancy BMI

on birth weight as one-sample MR estimation. Similar to the analyses above for the truncated dataset,

we used different P-value thresholds ranging from 10−3 to 10−8 and estimated the effect of maternal

pre-pregnancy BMI for each of these thresholds.

3.1. Application results

Except for the CFI constructed using SNPs with a P-value below 10−8, CFIs of maternal pre-pregnancy

BMI explained about 1% of the variance in pre-pregnancy BMI (Table 1). When testing the CFIs for

association with potential confounders, such as maternal age and pre-pregnancy maternal smoking (21),

we found no evidence of an association between these variables and the CFIs constructed using SNPs

with a P-value below 10−6. By contrast, for CFIs constructed using SNPs with a P-value threshold

larger than 10−6, we observed moderate to strong associations with these variables. The results are

summarized in Supplementary Table S6.

For each CFI, we performed 2SLS to estimate the causal effect of maternal pre-pregnancy BMI

on offspring birth weight. To follow the approach of Tyrrell and colleagues (21), we also adjusted for

maternal age and fetal sex in each of these 2SLS. The CFMR estimates remained similar across the

different CFIs (Table 1, Supplementary Figure S31, and Supplementary Table S5). Table 1 summarizes

the CFMR estimates generated by using the CFI based on SNPs with a P-value below 10−7. We used

this CFI because it showed no association with the potential confounders and explained a relatively

large fraction of maternal pre-pregnancy BMI (0.91%).

Our CMR results indicated that a genetically-predicted increase of 1 SD of maternal pre-pregnancy

BMI (4.2 kg
m2 ) was associated with an increase in offspring birth weight of 73.35 g (95% CI: 20.46−126.24,

P = 6.56 × 10−6), which corresponds to an increase in offspring birth weight of 17.42 g (95% CI:

4.86− 29.98, P = 6.56× 10−6) per unit increase of genetically-predicted maternal pre-pregnancy BMI.

These CFMR estimates are similar to the observational associations in our data set of 81.90 g (95% CI:

75.93 − 87.88, P < 10−16) increase in offspring birth weight per 1 SD higher maternal pre-pregnancy

BMI (19.44 g, 95% CI: 18.03− 20.87, P < 10−16).
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−log10 SNP 1SMR 1SMR CFI variance CFMR CFMR P-value 95% CI SNPs
P-value estimate Std. error explained (%) estimate Std. error per split

-3 84.4 4.4 1.112 101.6 25.0 0.00005 52.6-150.6 1798
-4 88.6 5.8 1.102 113.8 26.3 0.00002 62.2-165.5 624
-5 88.1 8.4 1.101 94.3 26.6 0.00038 42.3-146.4 198
-6 94.5 12.3 1.112 82.4 24.9 0.00093 33.6-131.2 52
-7 85.6 16.3 0.951 73.4 27.0 0.00657 20.5-126.2 22
-8 108.1 19.2 0.044 87.0 38.4 0.02351 11.7-162.3 6

Table 1: CFMR estimates of maternal pre-pregnancy BMI on offspring birth weight per 1 SD increase in maternal
pre-pregnancy BMI.
The column“−log10 SNP P-value” corresponds to the cutoff used to build the CFI.
The column “1SMR estimate” corresponds to the estimation using one-sample MR.
The column “1SMR Std. error” corresponds to the standard error of the estimation based on one-sample MR.
The column “Variance explained” corresponds to the pre-pregnancy variance explained by the CFI.
The column “SNPs per fold” corresponds to the average number of SNPs with a P-value below a given threshold after
clumping the output of each GWAS of maternal pre-pregnancy BMI.
The column “Selected SNPs per fold” corresponds to the average number of SNPs selected by LASSO to build the -
instrument in each fold.

4. Discussion

This study presents a new type of IV, termed CFI, that is readily adaptable to an MR setting. The

main advantage of CFMR over regular two-sample MR is its ability to perform two-sample MR using

a single sample, which allows its application to considerably smaller sample sizes than is feasible by

two-samples MR. Furthermore, CFMR ensures that the population assumptions of MR are fulfilled.

Additional advantages of CFMR include affording the same power as two-sample MR and allowing

estimates from multiple CFMRs to be meta-analyzed while taking into account heterogeneity between

the different estimates (Figure 2). As CFMR is modular, it lends itself easily to parallel computing and

can therefore be used in conjunction with many statistical methods to build multiple variant scores for

downstream analyses, such as polygenic risk scores (25) or LASSO-based instruments (26; 12; 13; 14).

Compared to two-sample MR, in which one sample is used to build the instrument while the other

is used to test for association, CFMR allows an unbiased estimation of causal effect using two samples

from the same source population. If two separate samples are available for analysis, CFMR can be

applied to each sample separately followed by a meta-analysis of the results. As meta-analyzing the

results increases the active sample size of the study compared to a regular two-sample MR, CFMR can

potentially enhance the power of regular MR analyses. By the same token, CFMR can easily handle

multiple ethnicities in the same sample by enabling separate analyses of each ethnicity followed by

a meta-analysis of the results. This type of cross-ethnic MR would enable accounting for potential

heterogeneous effects of the exposure on the outcome across different sub-populations.

Chernozhukov and co-workers (2) reported that the number of splits has a negligible impact on

the asymptotic convergence speed of the DLM methods. We observed the same trend in our data:
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the number of splits had no appreciable effect on the convergence speed of the exposure predictors in

CFMR. However, as the power of 2SLS depends heavily on the prediction accuracy of the IV (19), it

is critical to obtain a good genetic predictor of the exposure. Two to five splits may be sufficient if a

large sample size (≥ 100, 000) is available for analysis and the exposure under study is highly heritable

(e.g., if a few SNPs have large individual effects on the exposure). However, for more complex traits

and smaller sample sizes, it may be beneficial to increase the number of splits to improve the predictive

performance of the exposure predictors (2). As a rule of thumb, we recommend using CFMR with ten

splits. When the exposure is particularly difficult to predict or the sample size is limited (≤ 5000), or

both, using 20-30 splits may provide some improvement. Moreover, we recommend using CFMR2 in

most practical settings, as also recommended by Chernozhukov and colleagues (2). The rationale for

this is that CFMR1 is asymptotically equivalent to CFMR2, but as CFMR1 is an average of estimates

based on small datasets, which can be noisy, CFMR1 tends to be less powerful than CFMR2 for small

sample sizes. In our presentation of CFMR, we suggest clumping the GWAS results prior to building

the IV. However, the application of other steps, such co-localization (27; 28) or whole-genome (LASSO)

regression (29), may also be worth pursuing in this context.

Our simulations indicate that CFMR remains unbiased as long as the sample size is sufficiently

large (≥ 100, 000). When the variance explained by the instruments is small (e.g., h2 ≤ 1%), CFMR

is biased toward the null, which makes it a conservative approach for causal estimation. Another

attractive feature of CFMR is its good control of type I error even when no instrument is associated

with the exposure (i.e., h2 = 0). This tight error control is partially due to the standard errors of

CFMR being too large for small sample sizes (≤ 10, 000). This is not unexpected, given that the

standard error for 2SLS estimates is based on normal approximation, which may not be valid for small

sample sizes (17). Obtaining narrower confidence intervals for weak CFIs may increase the power of

CFMR for analyzing complex traits and exposures that have low heritability.

Future research should focus on deriving the CFMR distribution for weak instruments using robust

variance estimates. Aside from challenges related to limited sample size, our simulations showed bias

toward the null for weak instruments (h2 ≤ 1%), which is as expected given that we do not assume to

know the causal variant a priori. For instance, when the total variance explained by the SNPs is 0.1%,

each SNP explains only around 0.02% of the exposure heritability. Therefore, it becomes challenging

for LASSO (26) to select causal variants among the 300 variants used in our simulations. Another

limitation of CFMR is pleiotropy, which not only affects CFMR but also the vast majority of other

MR-based methods, perhaps with the exception of CAUSE (10) and MR-PRESSO (11).
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Fig. 2. Application of CFMR to a sample composed of multiple ethnicities.

In our application of CFMR to real data, we estimated the effect of maternal pre-pregnancy BMI

on offspring birth weight in the Norwegian MoBa study. Predictors of maternal pre-pregnancy BMI

explained, on average, 11.4% of the variance in maternal pre-pregnancy BMI in the training sets

(Supplementary Figures S20-S30). In comparison, our CFI based on SNPs with a P-value below 10−7

explained only 0.915% (P-value ≤ 10−16) of the variance. The difference in variance explained by the

CFIs in the training versus test sets illustrates how CFMR can circumvent the problem of overfitted

instruments (see also Supplementary Figures 19-30). The variance explained by our CFIs is smaller

(between 0.915% and 1.112%) than the variance explained by the IV used by Tyrrell and colleagues

(1.8%) (21). Interestingly, our estimates of maternal pre-pregnancy BMI on offspring birth weight are

similar to those reported by Tyrrell et al. (21). Notably in the Tyrrell et al. study, 1 SD increase

in maternal pre-pregnancy BMI (4 kg
m2 in Tyrrell et al. and 4.2 kg

m2 in our analysis) corresponded to an

increase of 55 g (95% CI: 17− 93) in offspring birth weight (73.35 g (95% CI: 20.46− 126.246) in our

analysis). In the Tyrrell et al. study, the observational association corresponded to 62 g (95% CI:

56− 70) increase in offspring birth weight per 1 SD of higher maternal pre-pregnancy BMI.

Moreover, the size of the Tyrrell et al. study is very similar to ours (25, 265 and 26, 896, respectively),

and their study included 650 of the MoBa individuals used in the current CFMR. However, the pre-

pregnancy BMI instrument used by Tyrrell et al. was generated using the results from a GWAMA of
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123, 865 individuals of European ancestry (Sardinians, Icelanders, and Estonians) (30). Furthermore,

Tyrrell et al. analyzed 16 cohorts of European ancestry (from Europe, North America, and Australia).

As recently pointed out by Zhang and colleagues (31), variations across populations may lead to biased

estimates in an MR analysis. It is interesting to observe that our CFMR estimates were similar to

the one-sample MR estimates (see Table 1 and Supplementary Figure 31). The fact that the CFMR

estimates were similar to the observational association points to little confounding in the analyses. It

is therefore expected that the one-sample MR estimates would be similar to the CFMR estimates (see

Table 1 and Supplementary Figure 31). However, the standard errors of one-sample MR estimates are

smaller than those of the CFMR estimates. These small standard errors are likely due to the inability

of one-sample MR to handle overfitting, which results in an overly confident estimation (see Table 3.1

and Supplementary Figure 31) and biased inference when using one-sample MR. We illustrate this bias

using simulations, and the results indicate that one-sample MR can be heavily biased even when the

instrument is strong (h2 > 20%) (see Supplementary section 3.2 and Figure 32). CFMR, on the other

hand, remains conservative even in the presence of weak instruments and strong confounding.

To conclude, we show that CFMR is a valuable new approach for MR analysis, particularly for

small sample sizes and understudied exposures. It is especially useful for investigating exposures and

outcomes that might be difficult or expensive to measure, or when dealing with populations made up

of multiple ethnicities. Moreover, CFMR has the potential to enhance the power of two-sample MR

in consortia-led meta-analyses, in which each cohort can apply CFMR to its study population and

the results from each cohort subsequently meta-analyzed in the final step of the analysis. Our results

showed that CFMR performed well when the sample is sufficiently large (≥ 100, 000) and even when

the instruments are weak (h2 ≤ 1%). These advantageous features make CFMR an attractive tool

to reassess the causal effect of poorly heritable traits, especially those with genotype data accessible

through various public repositories, such as the Database of Genotypes and Phenotypes (dbGaP,

https://www.ncbi.nlm.nih.gov/gap/) or the UK Biobank (https://www.ukbiobank.ac.uk/).

Software

A typical CFMR run is provided as an R script at https://github.com/william-denault/CFMR. The

scripts used for the current simulations and application to maternal pre-pregnancy BMI have also been

deposited there.
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1 2-fold CFMR

The first step in a 2-fold Cross-Fitting Mendelian randomization (CFMR) is the random partitioning of the
original sample into two samples of equal size, sample 1 and sample 2. After running a GWAS on each of these
samples (GWAS 1 and GWAS 2) and clumping the results, SNPs that are suitable for use as IVs are selected and
two sets of independent SNPs are created, set1 and set2. Using sample 1 and set1, we build a predictor (pred1)
of the exposure. Similarly, using sample 2 and set2, we build a predictor (pred2) of the exposure. Next, we
use pred1 to predict the exposure in sample 2. Using the predicted exposure as an instrument in sample 2, we
estimate the causal effect of the exposure on the outcome in sample 2 by performing a 2SLS. In a similar and
complementary fashion, we estimate the causal effect of the exposure on the outcome in sample 1 by performing
a 2SLS using the predicted exposure in sample 1 by pred2 as an instrument. The two estimates are referred
to as θ̂20 and θ̂10, respectively. In this context, CFI refers to the use of the predicted exposure of pred2 as an
instrument for sample 1, and vice versa (see Figure 1 in the main text).

Each instrument is then used to estimate the effect of the exposure on the outcome using a sample that does
not overlap with the sample used to build the instrument, despite both samples stemming from the same source
population. Thus, θ̂10 and θ̂20 are unbiased two-sample MR estimates of the causal effect of the exposure on the
outcome (1). Averaging these two estimates provides an unbiased estimate of the causal effect of the exposure

on the outcome. The averaged estimate (θ̂0) is referred to as the CFMR estimate of the exposure effect on the

outcome. We refer to θ̂0 as the CFMR estimate of the exposure effect on the outcome.

2 Study description

The Norwegian Mother, father, and Child Cohort Study (MoBa) is an ongoing nationwide pregnancy cohort
(2). Participants in MoBa were enrolled in the study between 1999 and 2008 from 50 of the 52 hospitals in
Norway. The vast majority of MoBa participants are of Caucasian origin. The genotypes in the MoBa dataset
were obtained from whole-blood DNA from parents and umbilical-cord blood DNA from newborns (3). We
excluded stillbirths, twins, and children with missing data in the Medical Birth Registry of Norway (MBRN).
Pre-pregnancy maternal BMI was calculated on the basis of self-reported height and weight. Information on the
children’s birth weight was extracted from medical records.

Approximately 30, 000 mother-father-newborn trios in the MoBa dataset were genotyped using the Illumina
HumanCoreExome BeadChip (San Diego, CA, USA), which contains more than 240,000 probes. We removed
ethnic outliers based on visual checks using the first three principal components. We used the Haplotype Refer-
ence Consortium (HRC) reference data, version HRC.r1.1 (http://www.haplotype-reference-consortium.org/) for
imputation of additional genotypes in the MoBa dataset. This was performed using the free genotype imputation
and phasing service of the Sanger Imputation Server (https://imputation.sanger.ac.uk/).

The imputation quality was assessed by (i) hard-calling markers with an INFO quality score greater than
0.7, (ii) testing for Mendelian inconsistencies, excess of heterozygosity, and significant deviation from Hardy-
Weinberg equilibrium (HWE), and (iii) screening for high rates of missingness. The remaining set of 7, 947, 894
SNPs met the following criteria and were included in the ten GWASes performed in the current CFMR: (i) call
rate ≥ 98%, (ii) minor allele frequency (MAF) ≥ 1%, and (iii) HWE test P-value ≥ 104. Samples with a call
rate ≤ 98% and an excess heterozygosity ≥ 4SD were excluded. Finally, 1647 mother-child duos characterized
by one or more of the following features were excluded: multiple births, stillbirths, congenital anomalies, births
before 37 weeks gestation, pregnancy hypertension.

3 Simulations

3.1 CFMR unbiased estimation

Here, we show that CFMR behaves satisfactorily with respect to type I error, bias, and statistical power when
LASSO is used to build the exposure predictors pred1 and pred2. We refer to CFMR as the estimator CFMR2.
As explained in the manuscript, we chose CFMR2 over CFMR1 because, similarly to DML1 and DML2, CFMR2
exhibits a better finite sample size performance than CFMR1 (see (4)). Similar to the simulation set-up of Deng
et al. (5), we consider a set of 300 independent variants (V1, ...., V300) for each simulation, with each variant
having a minor allele frequency of 0.3 and only the first five variants being associated with the exposure. The
exposure is generated as X =

∑5
l=1 πVl + h+ v and the outcome is generated as Y = β0X + h+ u, where h is a

hidden confounder generated from a N(0, 2) distribution, and v and u are two correlated error terms generated
from bivariate normal distribution.

3
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)]
The variants have the same effect, denoted as π, where π is selected to ensure that the variants explain

h2 = 20% of the variation in the exposure. Note that the only difference between our simulations and those
of Deng et al. (5) is that the five variants associated with the exposure are assumed to be known in their
simulations. Hence, Deng et al. only use the five truly-associated variants as instrument. In our case, we
consider a more stringent set-up where we purposefully dilute the effects of the five truly-associated variants by
adding 295 non-associated variants. This set-up makes it more challenging to construct accurate predictors of
the exposure, particularly when the sample size is small and the IV is weak.

We applied CMFR to each simulated dataset using a LASSO-based IV and ten random splits. We considered
various sample sizes (N = 1, 000 to 10, 000) and different β0 values (-0.08, -0.05, 0, 0.05, and 0.08), similar to
the simulations by Deng et al. (5). For each combination of sample and effect size, we simulated 1000 datasets.
Figure 1 summarizes the results of our simulations; we also provide a numerical summary of these simulations in
Supplementary Tables 1 and 2. It is clear from Figure 1 that CFMR and two-sample MR have very similar power.
CFMR also shows excellent control of the type I error for the different nominal levels tested (see Supplementary
Table 1 and Supplementary Figure 4).

We also assessed the type I error, bias, and power of CFMR for different estimates of the variance explained
by the exposure (h2 = 0%, 0.001%, 0.01%, 0.1%, 1%, 5%, and 10%) and different sample sizes (N = 1, 000,
5, 000, 10, 000, 50, 000, 100, 000, and 500, 000). For large sample sizes (N= 100, 000 or N=500, 000), we were
unable to perform as many simulation as for smaller samples. Simulations were performed on a computer cluster
with 32 CPUs and 128 GB RAM.

3.2 Comparison with one-sample MR

In this section, we perform a number of simulations to show that, under some settings where one-sample MR is
heavily biased, CFMR remains conservative. The simulations were performed as follows. For each simulation,
we consider a set of 300 independent variants (V1, ...., V300), with each variant having a minor allele frequency
of 0.3 and only the first five variants being associated with the exposure. The exposure is generated as X =∑5
l=1 πVl + h + v and the outcome is generated as Y = β0X + 40 × h + u, where h is a hidden confounder

generated from a N(0, 2) distribution, and v and u are two correlated error terms generated from a bivariate
normal distribution. (

U
V

)
∼ N

[(
0
0

)
,

(
1 0.9

0.9 1

)]
We consider the following two scenarios: 1) where X explains 10% of variance of Y (h2 = 10%), and 2)

where X explains 20% of variance of Y (h2 = 20%). On each simulated dataset, we applied CFMR using a
LASSO-based IV and ten random splits. We also build a predictor predall of X using LASSO and the entire
dataset. We then used the prediction predall on the entire data as instrument. We refer to ‘one-sample MR
estimates’ when we estimate the effect of X on Y using the prediction of predall. We considered various sample
sizes, ranging from 1, 000 to 50, 000, and β0 = 0.08. For each combination of sample and effect size, we simulated
1000 datasets. The results are summarized in Supplementary Table 7 and Figure 32.
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4 Supplementary Material

4.1 Simulations results
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Figure 1: Power curves for CFMR and two-sample MR (2SMR) using the simulation set-up described in the
Simulations section in the main text (with h2 = 20%). The dashed lines represent power curves for CFMR and
the solid lines represent the theoretical power for 2SMR (5).
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Figure 2: Mean estimate of beta by CFMR against the true beta for different values of beta, h2 and N.
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CFMR for different values of beta, h2 and N.
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Table 1: Estimated power of CFMR for different values of β0 and different sample sizes, with h2 = 20%.

Sample size β0 Mean(β̂0) sd(β̂0) Mean(
ˆ

sd(β̂0) Power Number of simulations 1

1000 -0.080 -0.075 0.068 0.068 0.206 1000
1000 -0.050 -0.048 0.072 0.068 0.131 1000
1000 0.050 0.055 0.067 0.068 0.117 1000
1000 0.080 0.084 0.068 0.068 0.239 1000
2000 -0.080 -0.078 0.048 0.046 0.400 1000
2000 -0.050 -0.047 0.045 0.046 0.185 1000
2000 0.050 0.053 0.045 0.046 0.196 1000
2000 0.080 0.077 0.047 0.046 0.381 1000
3000 -0.080 -0.078 0.037 0.037 0.561 1000
3000 -0.050 -0.048 0.037 0.037 0.269 1000
3000 0.050 0.050 0.036 0.037 0.239 1000
3000 0.080 0.082 0.036 0.037 0.603 1000
4000 -0.080 -0.077 0.031 0.032 0.660 1000
4000 -0.050 -0.050 0.033 0.032 0.367 1000
4000 0.050 0.051 0.033 0.032 0.371 1000
4000 0.080 0.081 0.033 0.032 0.721 1000
5000 -0.080 -0.079 0.029 0.029 0.777 1000
5000 -0.050 -0.050 0.029 0.029 0.418 1000
5000 0.050 0.051 0.029 0.029 0.431 1000
5000 0.080 0.081 0.028 0.029 0.816 1000
6000 -0.080 -0.078 0.025 0.026 0.852 1000
6000 -0.050 -0.050 0.026 0.026 0.479 1000
6000 0.050 0.049 0.026 0.026 0.464 1000
6000 0.080 0.080 0.026 0.026 0.878 1000
7000 -0.080 -0.079 0.024 0.024 0.903 1000
7000 -0.050 -0.050 0.025 0.024 0.548 1000
7000 0.050 0.050 0.024 0.024 0.548 1000
7000 0.080 0.080 0.025 0.024 0.907 1000
8000 -0.080 -0.078 0.023 0.023 0.927 1000
8000 -0.050 -0.050 0.022 0.022 0.599 1000
8000 0.050 0.050 0.023 0.022 0.604 1000
8000 0.080 0.080 0.022 0.022 0.960 1000
9000 -0.080 -0.079 0.021 0.021 0.960 1000
9000 -0.050 -0.050 0.021 0.021 0.635 1000
9000 0.050 0.051 0.021 0.021 0.683 1000
9000 0.080 0.080 0.022 0.021 0.968 1000

10000 -0.080 -0.080 0.020 0.020 0.979 1000
10000 -0.050 -0.049 0.020 0.020 0.696 1000
10000 0.050 0.050 0.020 0.020 0.708 1000
10000 0.080 0.080 0.020 0.020 0.979 1000

1The column ‘Sample size’ corresponds to the sample size used in the simulation. ‘β0’ is the effect of X on Y to be estimated.
‘Mean β̂0’ corresponds to the average estimate of β0 across simulations. ‘sd(β̂0)’ corresponds to the observed standard deviation of

β̂ across simulations. ‘Mean (
ˆ

sd(β̂0))’ corresponds to the average of the estimated standard deviation of β̂0. ‘Power’ corresponds to
the proportion of the estimated P-value below 0.05. ‘Number of simulation’ is the number of simulations performed for the set of
parameters (Sample size, β0, and h2 in 3).
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Table 2: Type I error of CFMR for different sample sizes, with h2 = 20%.
α level

Sample size 0.05 0.01 0.001 Number of simulations
1000 0.045 0.011 0.001 1000
2000 0.042 0.008 0.001 1000
3000 0.054 0.014 0.003 1000
4000 0.059 0.013 0.001 1000
5000 0.052 0.007 0.000 1000
6000 0.066 0.015 0.002 1000
7000 0.049 0.006 0.001 1000
8000 0.060 0.010 0.001 1000
9000 0.057 0.014 0.002 1000

10000 0.049 0.010 0.001 1000

[H]

Table 3: Power of CFMR for different sample sizes and values of
h2 (see the footnote of Table 1).

h2 Sample size β Mean β̂ sd(β̂) Mean(
ˆ

sd(β̂) Power Number of simulations

0.00000 1000 0.05 -0.1696 72.46 3997.26 0.019 1000
0.00000 1000 0.08 -0.1268 8.09 63.37 0.010 1000
0.00000 5000 0.05 -0.1581 126.03 23670.08 0.016 1000
0.00000 5000 0.08 -0.1396 16.03 260.51 0.007 1000
0.00000 10000 0.05 -0.1533 19.98 386.84 0.028 1000
0.00000 10000 0.08 -0.1061 15.26 226.39 0.006 1000
0.00000 50000 0.05 -0.1477 119.51 21979.87 0.012 335
0.00000 50000 0.08 -0.0712 106.42 5236.63 0.006 330
0.00000 100000 0.05 -0.1587 147.85 8001.65 0.012 335
0.00000 100000 0.08 -0.1087 5.55 36.49 0.015 330
0.00000 500000 0.05 0.0058 1.65 4.67 0.030 67
0.00000 500000 0.08 -0.0875 7.69 51.04 0.000 66
0.00001 100000 0.05 -0.1981 2.87 27.43 0.007 150
0.00001 100000 0.08 -0.2174 1.62 7.43 0.007 150
0.00010 100000 0.05 -0.2185 35.57 1316.74 0.013 150
0.00010 100000 0.08 -0.1148 2.22 5.30 0.013 150
0.00100 100000 0.05 0.0386 0.13 0.13 0.080 150
0.00100 100000 0.08 0.1057 0.13 0.13 0.140 150
0.01000 1000 0.05 -0.1168 10.55 113.30 0.010 1000
0.01000 1000 0.08 -0.1370 33.77 1006.66 0.014 1000
0.01000 5000 0.05 0.0520 21.79 196.09 0.020 1000
0.01000 5000 0.08 0.0852 65.17 2489.32 0.035 1000
0.01000 10000 0.05 0.0629 0.13 0.13 0.057 1000
0.01000 10000 0.08 0.0961 0.13 0.13 0.087 1000
0.01000 50000 0.05 0.0501 0.04 0.05 0.158 330
0.01000 50000 0.08 0.0730 0.05 0.05 0.385 335
0.01000 100000 0.05 0.0550 0.03 0.03 0.408 480
0.01000 100000 0.08 0.0802 0.03 0.03 0.707 485
0.01000 500000 0.05 0.0499 0.01 0.01 0.939 198
0.01000 500000 0.08 0.0817 0.01 0.01 1.000 201
0.05000 1000 0.05 0.0503 5.09 16.17 0.026 1000
0.05000 1000 0.08 0.0840 6.92 34.68 0.018 1000
0.05000 5000 0.05 0.0539 0.06 0.07 0.117 1000
0.05000 5000 0.08 0.0847 0.07 0.07 0.243 1000
0.05000 10000 0.05 0.0513 0.04 0.04 0.184 1000
0.05000 10000 0.08 0.0818 0.04 0.04 0.453 1000
0.05000 50000 0.05 0.0514 0.02 0.02 0.749 335
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Table 3 – Continued from previous page

h2 Sample size β Mean β̂ sd(β̂) Mean(
ˆ

sd(β̂) Power Number of simulations

0.05000 50000 0.08 0.0800 0.02 0.02 0.979 335
0.05000 100000 0.05 0.0529 0.01 0.01 0.958 335
0.05000 100000 0.08 0.0776 0.01 0.01 1.000 335
0.05000 500000 0.05 0.0495 0.01 0.01 1.000 67
0.05000 500000 0.08 0.0794 0.01 0.01 1.000 67
0.10000 1000 0.05 0.0497 0.12 0.12 0.047 1000
0.10000 1000 0.08 0.0817 0.12 0.12 0.095 1000
0.10000 5000 0.05 0.0486 0.04 0.04 0.210 1000
0.10000 5000 0.08 0.0838 0.05 0.04 0.485 1000
0.10000 10000 0.05 0.0515 0.03 0.03 0.374 1000
0.10000 10000 0.08 0.0799 0.03 0.03 0.760 1000
0.10000 50000 0.05 0.0508 0.01 0.01 0.958 335
0.10000 50000 0.08 0.0803 0.01 0.01 1.000 330
0.10000 100000 0.05 0.0509 0.01 0.01 1.000 335
0.10000 100000 0.08 0.0796 0.01 0.01 1.000 330
0.10000 500000 0.05 0.0500 0.00 0.00 1.000 201
0.10000 500000 0.08 0.0801 0.00 0.00 1.000 198
0.20000 1000 0.05 0.0527 0.07 0.07 0.114 1000
0.20000 1000 0.08 0.0816 0.07 0.07 0.233 1000
0.20000 5000 0.05 0.0505 0.03 0.03 0.420 1000
0.20000 5000 0.08 0.0799 0.03 0.03 0.809 1000
0.20000 10000 0.05 0.0499 0.02 0.02 0.705 1000
0.20000 10000 0.08 0.0805 0.02 0.02 0.981 1000
0.20000 50000 0.05 0.0495 0.01 0.01 1.000 330
0.20000 50000 0.08 0.0798 0.01 0.01 1.000 335
0.20000 100000 0.05 0.0505 0.01 0.01 1.000 330
0.20000 100000 0.08 0.0803 0.01 0.01 1.000 335
0.20000 500000 0.05 0.0497 0.00 0.00 1.000 132
0.20000 500000 0.08 0.0798 0.00 0.00 1.000 134
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Table 4: Type I error of CFMR for different sample sizes and values of h2.
α level

h2 Sample size 0.05 0.01 0.001 Number of simulations
0.00000 1000 0.0380 0.0000 0.0000 1000
0.00000 5000 0.0240 0.0010 0.0000 1000
0.00000 10000 0.0270 0.0050 0.0010 1000
0.00000 50000 0.0239 0.0090 0.0000 335
0.00000 100000 0.0209 0.0000 0.0000 335
0.00000 500000 0.0299 0.0000 0.0000 67
0.00001 1000 0.0260 0.0020 0.0000 1000
0.00001 5000 0.0210 0.0030 0.0000 1000
0.00001 10000 0.0280 0.0020 0.0000 1000
0.00001 50000 0.0250 0.0040 0.0000 1000
0.00001 100000 0.0333 0.0067 0.0000 150
0.00010 1000 0.0270 0.0040 0.0000 1000
0.00010 5000 0.0250 0.0010 0.0000 1000
0.00010 10000 0.0290 0.0040 0.0000 1000
0.00010 50000 0.0200 0.0020 0.0000 1000
0.00010 100000 0.0333 0.0000 0.0000 150
0.00100 1000 0.0270 0.0010 0.0000 1000
0.00100 5000 0.0250 0.0020 0.0000 1000
0.00100 10000 0.0300 0.0040 0.0000 1000
0.00100 50000 0.0230 0.0010 0.0000 1000
0.00100 100000 0.0800 0.0200 0.0000 150
0.01000 1000 0.0240 0.0020 0.0000 2000
0.01000 5000 0.0230 0.0030 0.0005 2000
0.01000 10000 0.0445 0.0075 0.0000 2000
0.01000 50000 0.0487 0.0067 0.0007 1335
0.01000 100000 0.0722 0.0206 0.0021 485
0.01000 500000 0.0597 0.0100 0.0000 201
0.05000 1000 0.0260 0.0040 0.0000 1000
0.05000 5000 0.0430 0.0110 0.0020 1000
0.05000 10000 0.0480 0.0080 0.0010 1000
0.05000 50000 0.0273 0.0061 0.0000 330
0.05000 100000 0.0697 0.0182 0.0000 330
0.05000 500000 0.0758 0.0000 0.0000 66
0.10000 1000 0.0560 0.0050 0.0000 1000
0.10000 5000 0.0410 0.0080 0.0010 1000
0.10000 10000 0.0470 0.0140 0.0010 1000
0.10000 50000 0.0388 0.0060 0.0000 335
0.10000 100000 0.0537 0.0119 0.0000 335
0.10000 500000 0.0398 0.0000 0.0000 201
0.20000 1000 0.0400 0.0100 0.0010 1000
0.20000 5000 0.0510 0.0120 0.0010 1000
0.20000 10000 0.0490 0.0120 0.0030 1000
0.20000 50000 0.0657 0.0119 0.0000 335
0.20000 100000 0.0657 0.0090 0.0000 335
0.20000 500000 0.0522 0.0075 0.0000 134
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5 Estimating the effect of pre-pregnancy maternal BMI on fetal
birth weight using CFMR.

Figure 9: Manhattan plot from the GWAS performed on the first split number 1. The horizontal red line
corresponds to the genome-wide significance threshold 5 × 10−8. The horizontal blue line corresponds to a
significance threshold of 10−5.
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Figure 10: Manhattan plot from the GWAS performed on split number 2. The horizontal red line corresponds to
the genome-wide significance threshold 5×10−8. The horizontal blue line corresponds to a significance threshold
of 10−5.
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Figure 11: Manhattan plot from the GWAS performed on split number 3. The horizontal red line corresponds to
the genome-wide significance threshold 5×10−8. The horizontal blue line corresponds to a significance threshold
of 10−5.
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Figure 12: Manhattan plot from the GWAS performed on split number 4. The horizontal red line corresponds to
the genome-wide significance threshold 5×10−8. The horizontal blue line corresponds to a significance threshold
of 10−5.
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Figure 13: Manhattan plot from the GWAS performed on split number 5. The horizontal red line corresponds to
the genome-wide significance threshold 5×10−8. The horizontal blue line corresponds to a significance threshold
of 10−5.
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Figure 14: Manhattan plot from the GWAS performed on split number 6. The horizontal red line corresponds to
the genome-wide significance threshold 5×10−8. The horizontal blue line corresponds to a significance threshold
of 10−5.
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Figure 15: Manhattan plot from the GWAS performed on split number 7. The horizontal red line corresponds to
the genome-wide significance threshold 5×10−8. The horizontal blue line corresponds to a significance threshold
of 10−5.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.441737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.441737
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 16: Manhattan plot from the GWAS performed on split number 8. The horizontal red line corresponds to
the genome-wide significance threshold 5×10−8. The horizontal blue line corresponds to a significance threshold
of 10−5.
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Figure 17: Manhattan plot from the GWAS performed on split number 9. The horizontal red line corresponds to
the genome-wide significance threshold 5×10−8. The horizontal blue line corresponds to a significance threshold
of 10−5.
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Figure 18: Manhattan plot from the GWAS performed on split number 10. The horizontal red line corresponds
to the genome-wide significance threshold 5 × 10−8. The horizontal blue line corresponds to a significance
threshold of 10−5.

Figure 19: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the boxplot of the
difference between the predicted pre-pregnancy BMI and the observed pre-pregnancy BMI on each training set,
using a P-value threshold of 10−3. Right panel, the boxplot of the difference between the predicted pre-pregnancy
BMI and the observed pre-pregnancy BMI on each test set, using a P-value threshold of 10−3 .
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Figure 20: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the boxplot of the
difference between the predicted pre-pregnancy BMI and the observed pre-pregnancy BMI on each training set,
using a P-value threshold of 10−4. Right panel, the boxplot of the difference between the predicted pre-pregnancy
BMI and the observed pre-pregnancy BMI on each test set, using a P-value threshold of 10−4 .

Figure 21: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the boxplot of the
difference between the predicted pre-pregnancy BMI and the observed pre-pregnancy BMI on each training set,
using a P-value threshold of 10−5. Right panel, the boxplot of the difference between the predicted pre-pregnancy
BMI and the observed pre-pregnancy BMI on each test set, using a P-value threshold of 10−5 .
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Figure 22: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the boxplot of the
difference between the predicted pre-pregnancy BMI and the observed pre-pregnancy BMI on each training set,
using a P-value threshold of 10−6. Right panel, the boxplot of the difference between the predicted pre-pregnancy
BMI and the observed pre-pregnancy BMI on each test set, using a P-value threshold of 10−6 .

Figure 23: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the boxplot of the
difference between the predicted pre-pregnancy BMI and the observed pre-pregnancy BMI on each training set,
using a P-value threshold of 10−7. Right panel, the boxplot of the difference between the predicted pre-pregnancy
BMI and the observed pre-pregnancy BMI on each test set, using a P-value threshold of 10−7 .

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.441737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.441737
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 24: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the boxplot of the
difference between the predicted pre-pregnancy BMI and the observed pre-pregnancy BMI on each training set,
using a P-value threshold of 10−8. Right panel, the boxplot of the difference between the predicted pre-pregnancy
BMI and the observed pre-pregnancy BMI on each test set, using a P-value threshold of 10−8 .

Figure 25: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the bivariate plot of
the predicted pre-pregnancy BMI on training sets against true values using a P-value threshold of 10−3. Right
panel, the bivariate plot of the predicted pre-pregnancy BMI on test sets against the true values using a P-value
threshold of 10−3.
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Figure 26: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the bivariate plot of
the predicted pre-pregnancy BMI on training sets against true values using a P-value threshold of 10−4. Right
panel, the bivariate plot of the predicted pre-pregnancy BMI on test sets against true values using a P-value
threshold of 10−4.

Figure 27: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the bivariate plot of
the predicted pre-pregnancy BMI on training sets against true values using a P-value threshold of 10−5. Right
panel, the bivariate plot of the predicted pre-pregnancy BMI on test sets against true values using a P-value
threshold of 10−5.
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Figure 28: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the bivariate plot of
the predicted pre-pregnancy BMI on training sets against true values using a P-value threshold of 10−6. Right
panel, the bivariate plot of the predicted pre-pregnancy BMI on test sets against true values using a P-value
threshold of 10−6.

Figure 29: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the bivariate plot of
the predicted pre-pregnancy BMI on training sets against true values using a P-value threshold of 10−7. Right
panel, the bivariate plot of the predicted pre-pregnancy BMI on test sets against true values using a P-value
threshold of 10−7.
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Figure 30: Predicted pre-pregnancy BMI performance on test and training sets. Left panel, the bivariate plot of
the predicted pre-pregnancy BMI on training sets against true values using a P-value threshold of 10−8. Right
panel, the bivariate plot of the predicted pre-pregnancy BMI on test sets against true values using a P-value
threshold of 10−8.
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Figure 31: CFMR and one-sample MR (1SMR) estimates of the effect of pre-pregnancy maternal BMI on birth
weight, with 95% confidence intervals.
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Table 5: CFMR estimates (raw scale).
−log10 SNP Variance CFMR Std. Error P-value 95% CI 95% CI

P-value explained by CFI estimate error lower limit upper limit

-3 1.112 % 24.130 5.938 0.00005 12.491 35.768
-4 1.102 % 27.031 6.257 0.00002 14.767 39.295
-5 1.101 % 22.399 6.308 0.00038 10.035 34.762
-6 1.112 % 19.571 5.910 0.00093 7.986 31.155
-7 0.951 % 17.420 6.409 0.00657 4.859 29.980
-8 0.044 % 20.669 9.125 0.02351 2.785 38.553
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Figure 32: Summary of the simulations performed in Supplementary Section 3.2. The x-axis corresponds to
the number individual used in each simulation (1000; 5, 000; 10, 000; and 50, 000), the y-axis corresponds to the
estimated effect. The solid horizontal black line corresponds to the true value of the effect to be estimated. The
different types of lines correspond to the variance X explained by the genetic marker used as instrument (10%
and 20%). The red lines (1SMR) correspond to the estimations based on one-sample MR and the green lines
correspond to the estimations based on CFMR.
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Table 6: Association of CFI with potential confounders.
−log10 SNP P-value Confounder Estimate Std. Error P-value
-3 Mother’s age -0.012 0.015 0.4254063
-3 Mother’s education -0.014 0.007 0.0548912
-3 Gestational age 0.017 0.005 0.0014255
-3 Mother’s smoking 0.033 0.008 0.0000443
-4 Mother’s age -0.004 0.020 0.8356098
-4 Mother’s education -0.005 0.009 0.6290257
-4 Gestational age 0.027 0.007 0.0001246
-4 Mother’s smoking 0.039 0.011 0.0002364
-5 Mother’s age -0.029 0.033 0.3819641
-5 Mother’s education 0.008 0.016 0.6245407
-5 Gestational Age 0.051 0.012 0.0000125
-5 Mother’s smoking 0.089 0.018 0.0000005
-6 Mother’s age -0.087 0.066 0.1878742
-6 Mother’s education 0.003 0.031 0.9251442
-6 Gestational Age 0.068 0.023 0.0034211
-6 Mother’s smoking 0.121 0.035 0.0005351
-7 Mother’s age -0.105 0.131 0.4222781
-7 Mother’s education 0.027 0.061 0.6548937
-7 Gestational Age 0.075 0.046 0.1035003
-7 Mother’s smoking 0.003 0.069 0.9634737
-8 Mother’s age -0.372 0.227 0.1006788
-8 Mother’s education -0.052 0.106 0.6247780
-8 Gestational age 0.088 0.079 0.2663506
-8 Mother’s smoking -0.001 0.120 0.9932419

Table 7: Estimation of the effect of X on Y for β = 0.8 by one sample MR and CFMR, respectively. The
simulations are detailed in Supplementary Section 3.2.

N h2 CFMR β̂ 1SMR β̂
estimate estimate

1000 0.10 -0.15 4.63
5000 0.10 0.67 1.54

10000 0.10 0.71 1.13
50000 0.10 0.80 0.88
1000 0.20 0.51 2.54
5000 0.20 0.76 1.14

10000 0.20 0.78 0.97
50000 0.20 0.80 0.84
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