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Abstract 

While the biomedical community has embraced data sharing (e.g. results, raw data) and 

supported establishment of large research consortia (e.g. the Human Microbiome Project) 

aimed to standardize the quality of important sets of microbiome sequencing data, the 

reusability of most microbiome data is still limited by the quality of its associated metadata. To 

ensure that microbiome data is indeed FAIR (Findable, Accessible, Interoperable, and Reusable), 

it is necessary to consider tools and approaches that make it easier to provide high-quality 

metadata that is fit for purpose moving forward. Such tools and approaches could be informed 

by current efforts to harmonize and improve the quality of extant microbiome metadata. 

Introduction 

The scale of microbiome data being shared by the community is rapidly growing.  An 

NCBI BioSample search for “((metagenome OR microbiome)) AND human” resulted in over 

600,000 records in January 2021.  These numbers will only increase over time and providers of 

public microbiome data (e.g. EBI, DDBJ, NCBI) are simultaneously developing useful interfaces, 

APIs, standardized analytical pipelines, and other tools to make it easier to search and access 
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shared datasets.  As of December 2020, the MGnify database which provides a set of such APIs 

and standardized pipelines, contained over 140,000 samples just from human hosts (1). The 

Genomics Standards Consortium and other community initiatives work in close collaboration 

with providers of public microbiome data, to ensure community-wide implementation of data 

standards and facilitate the sharing and reuse of data (2).  Nevertheless, the reusability of this 

shared scientific data is impeded by the current state of the accompanying metadata. 

In this article, we demonstrate the challenges we encountered when trying to use 

sample metadata and the barriers it creates for data reuse as an example case study.  Our goal 

was to leverage public microbiome profiling data to develop a way to compare the relative 

increase or decrease in microbial taxa by way of metadata comparators (e.g. diet, age, gender, 

ethnicity) across human studies. Unfortunately, our efforts were quickly hindered due to the 

encountered challenges of trying to harmonize and rectify missingness of sample metadata.  As 

a way for others to directly assess our code, findings, and data, we include a link to a Figshare 

repository (https://doi.org/10.6084/m9.figshare.13918190.v1). We also include an interactive 

html report (human_sample_metadata_missingness.html) within this Figshare repository under 

the reports folder, which is referenced extensively below.  We chose this format to be 

transparent and allow others to explore the challenges of metadata curation and specific 

problems of interest to them.  The html file can be opened in most modern web browsers and 

the filtered missingness table can be downloaded and exported in a variety of formats. 
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Observations of Metadata from Putative Human Samples 

Table #1 in the interactive html report demonstrates available metadata for samples 

(presumed to be of human host based on record matches of column names indicative of host 

organism). Table #1 shows over 3000 different column descriptors illustrating the wide use in 

terminology used to describe common elements of sample metadata across publicly shared 

human studies.  While some columns could reflect additional data elements from non-human 

samples that were included in the dataset, the majority of data types of interest (e.g. age, 

gender, ethnicity) exhibit multiple columns containing similar data types.  The abundance of 

terms used to describe similar variables presents challenges for data-driven approaches by 

introducing a need for extensive manual curation efforts to harmonize across metadata. Such  

variability is not isolated due to the specific nature or design of each microbiome study (e.g. 

environmental, disease, diet, etc.).  Rather, it appears to reflect systematic issues resulting from 

current data submission practice where researchers have to map individual metadata fields of 

the study to community standards while balancing modern demands of biomedical research 

such as publication requirements and privacy issues. 

Aside from the organizational inconsistencies within the metadata, Table #1 also 

demonstrates a significant level of sparsity (missingness/absence) of basic information 

associated with these human microbiome studies (e.g. host species, host gender, sample type 

[control/experimental], sampling site [e.g. skin/gut], etc.). Table #1 shows that certain 

attributes matching the pattern “age” contain more than 81.6 % missing values (e.g. 

“characteristic.host.age”, “characteristics.host.age.unit” and other variations of the “age” 

descriptor). Exploring the location of host sample site (basic information needed to compare 
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across samples or studies), a similar trend of high missingness is observed. The characteristic 

“host_tissue_sampled” presents with 94% missing values, while characteristics such as 

“body.habitat”, body.product", and "body.site" attempting to describe a similar data type 

produced missingness of ~82% for each characteristic. This lack of consensus for descriptive 

terminology in microbiome studies and high-level of missingness create barriers to metadata 

mining and impedes meta-analysis approaches.  For instance, "host.age", "host.sampling.site", 

or "host.gender" appear as relatively straightforward column descriptors that could describe a 

human microbiome dataset yet are rarely populated based upon the observations above or are 

deposited in a variety of metadata columns using non-standardized terms.  The associated 

Figures 1-4 show visualizations of missingness for sets of metadata columns related to age, 

body mass index, ethnicity, and gender, which were types of metadata of interest for our 

original analytic goals. 

Sparsity or missingness is lower if metadata elements relating to a feature of interest 

(e.g. age, gender, sample site) are harmonized across studies; nonetheless, such requirements 

slow the pace of data-driven research.  Moreover, outside of obvious descriptors such as age 

and gender, it become difficult to ascertain exactly which columns should be combined and 

necessitates sometimes highly complex filters to select the right set of columns.  For example, 

in the interactive report, we demonstrate the challenge of harmonizing the attribute “age”, 

which seemed a relatively straightforward task. In Table #2 of the html report, you can see the 

level of missingness in intermediary and harmonized age metadata columns.  Concerningly, the 

“any_age” variable corresponding to records with any age related column information 

(identified using regex matching), showed only ~40% completeness.  When trying to harmonize 
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using available metadata, only ~18% of records could be harmonized to a common age 

(age_derived variable).  This is because either the age or age_units information was missing or 

was non-standardized making it difficult to harmonize. 

When available, the community-wide selection and application of consensus descriptors 

or common data elements (CDEs) to describe a study can significantly reduce the activation 

energy needed to repurpose the data. CDEs can facilitate the development of automated 

approaches for harmonizing the metadata and increasing its utility (3) and the National Library 

of Medicine offers a service for searching CDEs (https://cde.nlm.nih.gov/cde/search). The issue 

of lack of consensus descriptors becomes even more challenging when considering information 

that would be specific for each study. We were curious about whether samples came from 

smokers or non-smokers and investigated the columns where this information might be found. 

In one study, the characteristic, “environment.feature”, was found to contain information 

about the host's smoking habits. Uncertainty about where the data should be provided 

contributes to lack of metadata compatibility, presents challenges for data cleanup or rescue, 

and reduces power from secondary studies interested in samples with these attributes.  A 

worst case scenario would involve incorrect comparisons being made due to confusion about 

the metadata. In the case of host smoking status being shared in the “environment.feature” 

column, it suggests confusion with mapping to the community-standard to use for describing 

smoking. According to the mixs_v5 template provided by GSC, it would likely be more 

appropriate to use the “smoker” column 

(http://press3.mcs.anl.gov/gensc/files/2020/02/mixs_v5.xlsx). We hope that these examples 
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demonstrate some of the complexity of the issues created by the current state of metadata 

which preclude maximal reuse of publicly deposited metagenomic data.  

The Systematic Issues Involving Data Sharing 

Our observations of the challenges we encountered with metadata quality suggest a 

systematic issue in current data sharing practices. These suggestions are not intended to cast 

blame at any one of the individual contributors to the data sharing process such as the data 

depositor or repositories.  We appreciate the pressures of publishing and the additional 

demands that depositing data places on all involved. Rather, they are presented to raise 

awareness of the subsequent lack of metadata quality resulting from the current practices in 

place.  And hopefully by highlighting the issue, we can be motivated as a community to identify 

potential areas where the process could be improved. Alas, the admirable goals of seeing that 

this data could be maximally reused by others including the original data depositor do not seem 

feasible if current practices remain.  An important part of this process will be a way to build 

trust amongst all interested parties; for example, those interested in data reuse (including the 

authors here) have to be more vocal in how they anticipate reusing the data to ascertain 

exactly what should be captured to maximize reusability and minimize burden on the data 

submitter. 

The observed issues in metadata quality and completeness, could be categorized in a 

few groups: I) analogous information being split over multiple fields of the metadata  II) the 

information is recorded using non-standardized/variable vocabulary/terminology, III) the 

information does not vary within the study and therefore is not recorded/provided in the 
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metadata (e.g. host organism used), IV) information for specific samples is omitted, V) the 

information does not fit conventional/common data descriptors and is therefore omitted or 

provided/coerced into non-conventional descriptors (rather than the specific descriptors being 

added or edited).   

Some of the systemic reasons leading to the above issues reflect the realities of modern 

biomedical research including the pressure to publish, the transience of the biomedical 

workforce where a project might be started by one researcher and completed by another, the 

privacy aspects of health-related data, and a potential misunderstanding of how the data might 

be repurposed by secondary data users. This leads to current practices such as sharing only 

minimally required data despite additional metadata being potentially useful or even necessary 

for a complete picture of how the data were collected and used within the study. Due to these 

thorny issues, researchers rarely  provide information beyond the minimal deemed required for 

study reproducibility. For example, if researchers have not explored the effect of a covariate or 

have kept such a factor consistent across the samples of their metagenomic study (collect 

samples from only male subjects for example), they may not include such descriptors in their 

metadata despite its fundamental nature. Unfortunately, such practice diminishes the utility of 

the deposited data for repurposing (e.g. a meta-analysis considering the effect of gender on 

microbiome communities) by contributing to the problem of informational "missingness" within 

and between datasets. More insidiously, competitive pressure can create an incentive not to 

fully describe a dataset if samples may be used for future analyses or publications. Whether 

warranted or not, data submitters may fear being scooped. Secondary studies are often 

considering approaches that would leverage the already published hypothesis and results such 
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as a meta-analysis or similar methodology to increase statistical power of detecting effects. 

Given that those interested in reusing data are not aware of the hypothesis, goals and analytical 

methods in the forthcoming studies, it may be worth a community-wide discussion of the 

potential risk of data sharing against the cost toward repurposing the data for new science.  

Further discussion and potential opportunities 

Our experience with the microbiome metadata harmonization problem, lead us to 

consider the reasoning behind collecting such data in the first place by the scientific 

community. What should determine a metadata’s fitness for purpose in other words. The initial 

idea behind collecting such data began with the necessity to make it possible for a study to be 

reproduced to confirm its results (and metadata should be meeting this standard at a 

minimum). With increasing size of publicly available datasets, however, the scientific 

community begun to shift its interest away from reproducing the analysis of another study and 

more towards comparative analyses of their dataset against others as well as combining studies 

through meta-analyses. Initiatives such as the Genomic Standards Consortium (GSC) formed as 

community efforts to facilitate these new requirements of publicly-shared genomic datasets 

(2). Recently, the computational infrastructure has advanced (e.g. compute clusters, cloud 

providers, GPUs, cheap data storage) to support ever larger cross-study analyses involving 

genomic data including metagenomics as part of “big data” initiatives. 

Enforcement of standards or quality at the time of submission has been limited 

historically, which may be indicative of the challenges involved in their enforcement (cost, time, 

etc.) as well as the cost/benefit ratio given recent computational advances discussed earlier . 
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The new NIH Final Data Management Policy (https://grants.nih.gov/grants/guide/notice-

files/NOT-OD-21-013.html) makes it clear that all data and associated information (e.g. the 

metadata) needs to be of sufficient quality to support reproducibility of the study; therefore, it 

remains to be seen how such policies may impact submission moving forward. More 

importantly, enforcement is only one tool in the toolbox and likely will not work well in the 

absence of education and spreading awareness amongst the scientific community.  

Promulgating best practices for data sharing as well as the ways in which publicly shared data is 

likely to be used can be an effective part of a strategy to improve future metadata quality. By 

highlighting that public data is unlikely to be used in a way that would jeopardize data 

submitters (e.g. being scoped) and more likely to be used to expand scientific inquiry that may 

directly benefit the original data depositor, trust can be built among data providers, and those 

interested in reusing the data. 

As part of the trust-building, sufficient detail and standardization of submitted metadata 

to meet minimum study-level reproducibility should be the goal of data providers moving 

forward; however, fundamental study-wide descriptive information for each sample that could 

elucidate the study design should be shared as well whenever feasible. In terms of host-

microbiome data, this may include (but is not limited to) host species, site of sampling from the 

host (e.g. skin, lumen), type of microbiome analysis (e.g. amplicon, metagenome, meta-

transcriptome), targeted sequence (e.g. V3-V4 rRNA region), etc., even if such factors are 

consistent throughout the samples.  Many of these types of information are already 

recommended and are customized for the different types of studies as suggested by the 

Genomics Standard Consortia. In short, the community is continuously assessing, updating, and 
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recommending appropriate metadata that should be included for each type of study (e.g. 

http://www.obofoundry.org/, https://gensc.org/) Nevertheless, in practice, these standards are 

still not always being adhered to.  While greater trust can be built by data submitters with 

greater compliance to best practices, the responsibility cannot just be placed on them. Those 

interested in reusing the data will have to engage with submitters and repositories to 

demonstrate how they plan to reuse the data. And it will be necessary to identify ways to make 

the data submission process easier including how to share metadata that is of sufficient quality 

and standards to maximize data reuse. 

As an example, submission guiding tools are being developed to aid the submitter 

through the appropriate metadata organizational and descriptive strategy during the 

submission process. Tools such as METAGENOTE (4) (https://metagenote.niaid.nih.gov/) aim to 

facilitate data submission to correctly classify and organize data and associated metadata by 

recommending standardized columns for metadata associated with experimental design or 

focus.  For instance, in human host gut longitudinal studies with interventions, columns such as 

ethnicity of host, comorbidities, diet or time points for sample collection are suggested. On the 

other hand, in human host lung observational non-longitudinal experimental designs, different 

columns are recommended more applicable to that type of experiment (e.g. host smoking 

status, observation group, age, etc.).  

Development of machine learning (ML)-based tools to guide data submission are 

another strategy that could facilitate improvements in metadata quality. One example would 

be data ingestion assistance agents that make real-time recommendations for needed 

information as well as steps that check data deposition and prompt data depositors on 
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potential discrepancies in the data.  Such tools might not only guide data submitters but can 

also learn from them the kind of additional metadata that researchers might be providing in 

order to describe their data. With such knowledge, the tools can improve their suggestions to 

future submitters. ML tools might warn submitters against incorrect, incomplete data 

descriptors to support improvement in the correct use of metadata column headers, but also 

the metadata entries themselves, reducing the barrier to (meta)data reuse by decreasing 

subsequent curation or harmonization efforts.  The Center for Expanded Data Annotation and 

Retrieval (CEDAR) serves as a an example of the type of model that could be applied in real-

time to metadata (5-7) and tools such as BioPortal demonstrate how metadata could be 

mapped to common ontologies (8). As the scientific community gains experience with the 

requirements for the minimum viable metadata for the reusability and reproduction of the 

studies, it will hopefully become easier on the data depositor to select standardized 

vocabularies and ontologies for effective data description. 

Our experience with exploring large-scale metadata sets have convinced us that it is 

time for our scientific community to formalize the minimal required metadata necessary to 

reproduce at least the main findings of the original study. The increasing efforts in cross-study 

analyses (meta-analysis) efforts would allow us to familiarize ourselves with the type of minimal 

metadata required for larger-scale analyses. Optimally, the goal would be for an external data 

accessor to obtain a basic understanding of the design and sample source and organization of 

each study, without having to invest significant time reading the associated publication. We 

believe metadata could accurately reflect the high-level study design and data-driven efforts 

would have to rely on a (meta)data-centric approach to be scalable. Standardizing metadata 
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submission procedures for this purpose would require more stringent informational demands 

on metadata per sample (e.g. columns for type of experimental design, experimental group, 

time frame [with units], microbiome data type, etc.) to allow for more diverse utilization of the 

submitted datasets.  The GSC provides templates that likely already cover such information. 

Data quality mindfulness is increasingly vital and with it the necessity for tutorials, articles and 

protocols that could guide the data submitters through the correct submission process along 

with the submission tools. 

Community driven efforts both internal and external to NIH can be informative when 

considering strategies or approaches to improve future metadata. Several community driven 

resources such as MG-RAST (9, 10) and Qiita (11) have been collecting microbiome data and 

metadata in recent years. Examples of records from each database demonstrate the breadth of 

metadata being collected across sample sites such as skin, gut, and lung (see Metadata 

Examples.xslx in the Figshare supporting files). While this paper indicates there are 

impediments to the automated use of microbiome data due to metadata, research groups are 

putting focus into collecting and utilizing data that meets sufficient quality and interest.  

Though there are challenges, some progress is being made with its reorganization, 

harmonization and successful exploration. For example, the IHD database leverages stool 

microbiome data across independent studies with cases and controls for a meta-analysis (2). 

The authors were then able to also examine the effects of various batch normalization tools 

pooling samples across diseases and increasing the statistical power of differential OTU 

detection (3). Also, the Integrative Human Microbiome Project has undertaken a consortia-wide 

effort to collect the required metadata to support data reuse and repurposing (12). Such 
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projects serve as an example of the type of work that could be better supported with quality 

improvements in metadata. The National Microbiome Collaborative is working with the 

community to specifically address data reuse including metadata quality (13, 14). 

The Bioinformatics and Computational Biosciences Branch within NIAID works on the 

development of community-driven tools to assist in the generation and management of 

microbiome data such as METAGENOTE (4) (https://metagenote.niaid.nih.gov/) and Nephele 

(15) (https://nephele.niaid.nih.gov/index) and is interested in helping facilitate these 

community efforts.  We believe the message of this article is timely given the recent release of 

the Final NIH Policy for Data Management and Sharing 

(https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html), which encourages the 

sharing of data to support reproducibility and transparency of NIH-supported research. The 

demand for reproducibility is not just important from the aspect of the individual study itself 

but also helps organize the required metadata for data repurposing to support new science.  

Despite community efforts to generate and adhere to standards, implementing such 

standards is not straightforward process. Due to the variety of experimental types and possible 

designs, the community is already immersed with both usable and unusable data. It is therefore 

crucial to start investing time and effort into exploring solutions to make data re-utilization 

easier and more efficient for the entire community. One of the most productive approaches will 

be to take a hard look at the initial submission step where (meta)data quality issues first arise. 

It will take a team effort involving data generators, secondary data users, data repositories, and 

other interested stakeholders in the data ecosystem to build trust and understanding on how 

best to encourage maximal data reuse with minimal level of burden. 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442781doi: bioRxiv preprint 

https://metagenote.niaid.nih.gov/
https://nephele.niaid.nih.gov/index
https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
https://doi.org/10.1101/2021.05.05.442781


Materials and Methods 

Computational Environment 
 
This work utilized the computational resources of the NIH HPC Biowulf cluster. 
(http://hpc.nih.gov). 
 
Code and data used for the analysis 

Code 

The analysis was completed as a drake workflow in R.  The code for the analysis demonstrating 

all steps of the pipeline can be obtained as part of the supplementary data in Figshare 

(https://doi.org/10.6084/m9.figshare.13918190.v1).  

Data 

Data were pulled directly from Mgnify or Biosamples resources using available APIs. Data were 

pulled from each API in summer 2020; therefore, the individual files in the downloads folder 

provide a time stamp of when the data were last pulled. The API calls focused on using analyses 

from MGnify pipeline version 4.1 for amplicon analyses.  Relevant metadata files can be found 

in the data and downloads folders in the unzipped supplementary file found in the Figshare link. 

Interactive HTML report 

The interactive HTML report is provided as part of the supplementary files from Figshare.  After 

unzipping the files, the report can be found in the reports folder with the corresponding R 

markdown file. 

Missing data visualizations 

The Biosamples data frame within the HTML report focusing on putative human samples was 

used for data visualization of key metadata column types.  For age, the 3000+ metadata 
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columns were filtered using dplyr select(matches(“\\bage\\b”)) to filter age-related columns.  

For gender, the metadata columns were filtered using dplyr select(matches(“gender|sex”, 

ignore.case = T)) to filter age-related columns.  For ethnicity, the metadata columns were 

filtered using dplyr select(matches(“ethnicity|race”)) to filter ethnicity-related columns.  For 

body mass index (BMI), the metadata columns were filtered using dplyr 

select(matches(“\\bheight\\b|\\bweight\\b|\\bbmi\\b”, ignore.case = T)) to filter BMI-related 

columns.  Metadata-filtered data frames were then used in gg_miss_var function call to 

visualize the missing data of each type. 
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Figures 

 

Figure 1. Metadata column missingness is shown for columns relating to age sorted by 
percentage missingness. The 3000+ metadata columns associated with putative human 
amplicon microbiome samples were filtered for those matching an age-related regex expression 
for visualization using the “naniar” R package. 
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Figure 2. Metadata column missingness is shown for columns relating to body mass index 
sorted by percentage missingness. The 3000+ metadata columns associated with putative 
human amplicon microbiome samples were filtered for those matching an BMI-related regex 
expression for visualization using the “naniar” R package.  
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Figure 3. Metadata column missingness is shown for columns relating to ethnicity sorted by 
percentage missingness. The 3000+ metadata columns associated with putative human 
amplicon microbiome samples were filtered for those matching an ethnicity-related regex 
expression for visualization using the “naniar” R package.  
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Figure 4. Metadata column missingness is shown for columns relating to gender sorted by 
percentage missingness. The 3000+ metadata columns associated with putative human 
amplicon microbiome samples were filtered for those matching a gender-related regex 
expression for visualization using the “naniar” R package.  
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