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ABSTRACT 61 

1) Among the many concerns for biodiversity in the Anthropocene, recent reports of flying 62 

insect loss are particularly alarming, given their importance as pollinators and as a food 63 

source for many predators. Few insect monitoring programs cover large spatial scales 64 

required to provide more generalizable estimates of insect responses to global change 65 

drivers.  66 

2) We ask how climate and surrounding habitat affect flying insect biomass and day of peak 67 

biomass using data from the first year of a new standardized distributed monitoring 68 

network at 84 locations across Germany comprising spatial gradient of land-cover types 69 

from protected to urban areas. 70 

3) Flying insect biomass increased linearly with monthly temperature across Germany. 71 

However, the effect of temperature on flying insect biomass flipped to negative in the hot 72 

months of June and July when local temperatures most exceeded long-term averages.  73 

4) Land-cover explained little variation in insect biomass, but biomass was lowest in 74 

forested sites. Grasslands, pastures and orchards harbored the highest insect biomass. The 75 

date of peak biomass was primarily driven by surrounding land-cover type, with 76 

grasslands especially having earlier insect biomass phenologies. 77 

5) Standardized, large-scale monitoring is pivotal to uncover underlying processes of insect 78 

decline and to develop climate-adapted strategies to promote insect diversity. In a 79 

temperate climate region, we find that the benefits of temperature on flying insect 80 

biomass diminish in a German summer at locations where temperatures most exceeded 81 

long-term averages. These results highlighting the importance of local adaptation in 82 

climate change-driven impacts on insect communities.  83 

 84 

Keywords: ecological gradients, climate change, land-cover, insect monitoring, malaise trap, 85 

pollinator, thermal performance, LTER 86 

  87 
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INTRODUCTION 88 

Insects constitute much of terrestrial biodiversity and deliver essential ecosystem services such 89 

as pollination of the majority of wild plants and 75% of crop species (Losey & Vaughan, 2006; 90 

Vanbergen & Insect Pollinators Initiative, 2013). Insect biomass is a key constituent of energy 91 

flows in many food webs (Stepanian et al., 2020), a useful measure of whole insect communities 92 

(Shortall et al., 2009) and an indicator of ecosystem function (Barnes et al., 2016; Dangles et al., 93 

2011). Climate change and anthropogenically-altered land-cover are likely drivers of insect 94 

declines, but their effects on insect biomass are still poorly characterized (Habel et al., 2019). 95 

Amidst burgeoning evidence of widespread insect declines, standardized, and large scale insect 96 

monitoring is needed to improve estimates of trends, and identify drivers (Didham et al., 2020; 97 

Wagner, 2020). 98 

Climate change is geographically pervasive (Wilson & Fox, 2020) and may explain 99 

insect decline in natural areas (e.g. Janzen & Hallwachs, 2019; Welti, Roeder, et al., 2020). 100 

Some insect taxa are benefiting from rising temperatures, which can increase local populations 101 

(Baker et al., 2021) and range sizes (Termaat et al., 2019). However, as temperatures continue to 102 

rise and increase more rapidly, negative impacts on insect productivity are expected (Warren et 103 

al., 2018). This relationship is predicted by thermal performance theory, which hypothesizes that  104 

insect fitness, as measured by biomass or other performance indicators, will have a unimodal 105 

response to temperature (Kingsolver & Huey, 2008; Sinclair et al., 2016). 106 

Responses of precipitation regimes to climate change vary with region, but forecasts 107 

generally suggest increased frequency of both heavy precipitation events and droughts (Myhre et 108 

al., 2019). High precipitation increases insect mortality and shortens the period of time insects 109 

are flying (Totland, 1994). Indirect effects of precipitation on flying insects mediated by plants 110 
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(e.g. altering plant phenology or plant nutrition) are context-dependent but increasing rainfall in 111 

average to wet climates is often detrimental (Lawson & Rands, 2019).  112 

Changing land-cover due to human activities is additionally a major threat to insects 113 

(Wagner, 2020), causing loss of resources and nesting locations at local scales, to fragmented 114 

habitats at larger scales (Newbold et al., 2020). Heavily human-modified landscapes come with 115 

associated pressures, such as eutrophication and pesticide use with agricultural intensification 116 

(Carvalheiro et al., 2020; Goulson et al., 2018), and urban light pollution (Owens et al., 2020), 117 

reducing both insect diversity (Fenoglio et al., 2020; Piano et al., 2020), and biomass (Macgregor 118 

et al., 2019; Svenningsen et al., 2020). 119 

Here we ask how climate and land-cover affect flying insect biomass across the growing 120 

season and 84 locations ranging over 7° latitude during the first year of monitoring (2019) of the 121 

German Malaise Trap Program. We hypothesize (H1) the effect of temperature on insect 122 

biomass will a) be unimodal, and b) decline at locations where local temperatures with the 123 

greatest increase above long-term averages. We hypothesize (H2) that flying insect biomass will 124 

decline with increasing precipitation due to reduced flying activity. Finally, we predict (H3) 125 

flying insect biomass will be lower in land-cover types with larger anthropogenic impacts such 126 

as urban and agricultural areas. We additionally conducted an exploratory analysis to see if the 127 

date of peak biomass varied with climate, land-cover type, or elevation and to examine if 128 

identified significant environmental drivers of insect biomass were the result of co-variation with 129 

biomass phenology (e.g. if positive predictors resulted in capturing a phenological interval with 130 

higher biomass). The broad spatial coverage allows us to examine drivers of flying insect 131 

biomass using a macroecological gradients approach (Peters et al., 2019; Pianka, 1966). 132 

 133 
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METHODS 134 

German Malaise Trap Program 135 

The German Malaise Trap Program currently comprises 31 German Long-Term Ecological 136 

Research (LTER-D) and National Natural Landscape sites (https://www.ufz.de/lter-137 

d/index.php?de=46285). The program was established in early 2019 to investigate long-term 138 

trends in flying insect biomass and species composition using DNA metabarcoding. In each site, 139 

one to six locations were selected and one malaise trap was installed per location. All traps 140 

measured 1.16 m2 on each side (Fig. S1). We examine here the 2019 biomass data retrieved from 141 

25 of the 31 sites; the remaining sites began sampling in 2020 and are not analyzed in this study. 142 

To fill spatial gaps, we included 8 sites in Bavaria from an additional project using the same 143 

malaise trap type and measurement methods. Overall, this study includes 1039 samples from 84 144 

locations and 33 participating sites distributed across Germany (Fig. 1; Table S1). Traps ran from 145 

early April to late October 2019 and were usually emptied every two weeks (14.03 days ± 0.06 146 

SE; ranging 7-29 days). Some traps ran for shorter durations and several samples were lost due 147 

to animal or wind damage. By sampling across all times of day for the duration of the growing 148 

season, these data represent a wide variety of flying insect taxa across a large range of seasonal 149 

and diurnal flight periodicity. 150 
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 151 

Figure 1. Malaise trap locations where samples were collected beginning in 2019 are identified 152 

by the dominant land-cover in the surrounding 1 km. Points coded as stars indicate trap locations 153 

at which sampling began in 2020 and are incorporated to show the full extent of the current 154 

program but are not included in the analyses. Overlapping locations were jittered longitudinally 155 

to improve visualization. 156 

 157 
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Lab procedures 158 

Insect biomass was wet weighed to preserve samples for future identification. Alcohol was 159 

filtered in a stainless steel sieve (0.8 mm mesh width) following the procedure in Hallmann et al. 160 

(2017), with one modification: instead of waiting until alcohol drops occurred >10 seconds apart, 161 

samples were filtered for a standard five minutes prior to weighing to the nearest 0.01g.  162 

 163 

Climate 164 

Monthly means of maximum and minimum temperatures, and monthly cumulative precipitation 165 

(henceforth tmax, tmin, and precipitation) were extracted from each location from 2019 using the 166 

Terraclimate dataset (Abatzoglou et al., 2018), and from 1960-2018 using the CRU-TS 4.03 167 

dataset (Harris et al., 2014) downscaled with WorldClim 2.1 (Fick & Hijmans, 2017). Data from 168 

both time periods (2019 and 1960-2018) were not available from either dataset alone. Both 169 

datasets have spatial resolutions of 2.5 arc minutes (~21 km2) with our 84 trap locations 170 

occurring in 72 separate climate grid cells. 171 

Tmax and tmin in 2019 were higher than 1960-2018 averages, especially during summer 172 

months (Fig. 2a) and were highly correlated (R2 = 0.97). Therefore, we used only tmax in our 173 

analyses. Annual precipitation was slightly lower in 2019 (784 mm ± 32 SE) relative to the 174 

1960-2018 average (842 mm ± 32 SE), with summer months comprising the driest period, but 175 

high variation existed across months (Fig. 2b). No latitudinal temperature gradient existed across 176 

our sampling locations in 2019 (Fig. S2a) or long-term averages (Fig. S2b), likely due to a 177 

negatively correlation between elevation and latitude (Fig. S3). However, southern latitudes in 178 
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2019 experienced temperatures exceeding long-term averages to a greater degree than northern 179 

latitudes (Fig. S2c) and had higher precipitation (Fig. S2d).  180 

 181 

Figure 2. Comparison of climate at the 84 trap locations between 2019 and long-term average 182 

(1960-2018) including the average maximum monthly temperatures (tmax) and minimum 183 

monthly temperatures (tmin) in °C ± standard error (a) and cumulative monthly precipitation in 184 

mm ± standard error (b). Period of the year in which malaise trap sampling occurred is shaded in 185 

grey. 186 

 187 

Land-cover 188 

Land-cover categories in a 1-km buffer around each location were extracted using the 2018 189 

CORINE dataset (European Union, Copernicus Land Monitoring Service, 2018). Previous work 190 

suggests that at scales larger than 1-km, insects have weaker responses to land-cover buffers 191 

(Seibold et al., 2019). The 30 CORINE land-cover types were pooled into eight categories: urban 192 

(7.5% of surrounding land-cover), intensive agriculture (2.3%), non-irrigated agriculture 193 

(15.9%), pasture/orchard (12.7%), forest (44.7%), grassland/shrubland (12.1%), freshwater 194 

(3.9%), and saltwater (0.9%).  195 
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 196 

Elevation 197 

Elevation (m above sea level) was extracted using the Digital Terrain Model with 200-m grid 198 

widths (DGM200) from the German Federal Agency for Cartography and Geodesy (GeoBasis-199 

DE / BKG, 2013). Elevation varied from 0 m on a barrier island in northeast Germany, to 1413 200 

m in the German Alps. 201 

All GIS data extraction was conducted in QGIS ver. 3.14 (QGIS.org, 2020). 202 

 203 

Model selection 204 

To identify drivers of insect biomass, we used an Akaike Information Criterion corrected for 205 

small sample sizes (AICc) framework (Burnham & Anderson, 2003); first building an a priori 206 

full model, comparing AICc of models with and without spatial autocorrelation to test for spatial 207 

non-independence, and then comparing all possible reduced models of fixed effects using the 208 

dredge function in the R package “MuMIn” (Bartoń, 2016). Mixed models were fit using the R 209 

package “lme4” (Bates et al., 2015). All analyses were conducted in R ver. 4.0.3 (R Core Team, 210 

2020). To reduce variance inflation due to land-cover categories being percentages, we removed 211 

land-cover categories from the model starting with the least common until the variance inflation 212 

factor (VIF) was <10 (Montgomery et al., 2021); this removed the land-cover types of 213 

freshwater, intensive agriculture, and saltwater. VIF was calculated using the “car” package in 214 

program R (Fox & Weisberg, 2019). Initial analyses substituting the Land Use Index (LUI; 215 

Büttner, 2014) for land-cover percentages resulted in no top models containing LUI. We 216 

included the 2nd degree polynomial of the sampling period to capture the season pattern of 217 
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biomass. Sampling period refers to the half-month period most overlapping trap sampling days, 218 

and is numerical (e.g. first half of April = sampling period 1). Tmax and precipitation predictors 219 

correspond to the month in which the majority of sampling days occurred. Tmax was first 220 

included as a second order polynomial; however while all top models included the fixed effect of 221 

“poly(tmax,2)”, the second order polynomial term of tmax was never significant; thus we 222 

replaced this parameter with a linear “tmax” term. We initially wished to include the 2019 223 

temperatures minus the long-term average (∆ temp) as a driver, but this variable caused inflation 224 

with sampling period and thus was excluded. Precipitation and elevation were scaled by dividing 225 

by 100.  226 

The full model contained the response variable of sample biomass in mg/day all 84 227 

locations and was log10(x+1) transformed to correct for a log-skewed distribution. Fixed 228 

predictors of tmax, precipitation, elevation, % cover of the five most dominant land-cover 229 

categories, the 2nd degree polynomial of sampling period (poly(period,2)), and a random effect of 230 

trap location to account for repeated observations. We tested five models fitting spatial 231 

autocorrelation (exponential, Gaussian, linear, rational quadratic, and spherical correlation) and 232 

compared their AICc values with a model without a spatial correlation argument (Zuur et al., 233 

2009). The model with the lowest AICc was the model without a spatial autocorrelation term; 234 

thus we proceeded with this model when selecting for fixed effects. Models with a ∆AICc < 2 are 235 

considered parsimonious (Burnham & Anderson, 2003) and reported.  236 

 237 

Temperature variation 238 
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We wished to further examine our hypothesis that the effects of temperature on flying insect 239 

biomass would decrease when local temperatures exceeded long-term averages, and examine 240 

how responses varied across sampling months. We were prohibited from including ∆temp (the 241 

deviation in monthly maximum temperatures from long-term averages) in the mixed model due 242 

to high variance inflation with sampling period. With the aim of reduce complexity due to 243 

variation in timing of sample collection across locations, and eliminate repeated sampling within 244 

a location/month, we calculated an average value of biomass (mg/day) per location and month by 245 

computing a monthly weighted average of insect biomass. Our calculation assumes traps caught 246 

the same amount of biomass each day within a sample and allocates sample biomass to each 247 

month weighed by the number of sampling days (e.g. for a trap run with 1 day in month A and 248 

13 days in month B we assumed 1/14th of the biomass was collected in month A and 13/14ths was 249 

in month B). With these assumptions, the average biomass Bij (mg/day) of location i in month j 250 

is a weighted average of the n samples occurring in the month according to the following 251 

formula: 252 

Eq. 1 253 

𝐵𝑖,𝑗 =
∑ (𝑏𝑖𝑗𝑘 × 𝐷𝑘,𝑗 ÷ 𝐷𝑘)
𝑛
𝑘=1

∑ 𝐷𝑘,𝑗
𝑛
𝑘=1

 254 

Where bijk = the total biomass (mg) at location i occurring at least partially in month j for a 255 

sample k, n= the total number of samples occurring at least partially in month j for location i, Dk,j 256 

= the number of sampling days occurring in month j for a given sample k, Dk = the total number 257 

of sampling days for a given sample k 258 

For each month (April- October), we then tested for an interaction between monthly tmax 259 

and ∆ temp (2019 tmax minus the long-term average tmax) for the corresponding location/month 260 
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on log10 transformed Bi,j. We visualized the results using the R package “effects” (Fox & 261 

Weisberg, 2019). 262 

 263 

Dominant land-cover categories 264 

To visualize changes in flying insect biomass with land-cover, we plotted biomass/day over 265 

median day of sampling for locations corresponding to each dominant land-cover. Dominant 266 

land cover refers to the land cover type with the highest percentage in the 1 km buffer 267 

surrounding each location. The AICc analysis is our primary test of differences in biomass 268 

between land-cover types and uses land cover percentages rather than dominant land covers. 269 

However, we additionally used Welch’s t-tests to identify significant differences between 270 

log10(x +1) transformed Bi,j for all locations, and locations corresponding to each dominant 271 

land-cover within each month. No locations had surroundings dominated by intensive 272 

agriculture. Locations dominated by saltwater (n=1) and freshwater (n=2) were excluded due to 273 

low replication. 274 

 275 

Peak biomass 276 

To calculate the day of the year of peak biomass, we fit splines on the relationship between 277 

biomass (mg/day) of each sample and the median day of the year of each sample for each 278 

location using the “smooth.spline” function in program R. We then extracted the day of the year 279 

when the maximum value of the fitted spline occurred (see Fig. S4 for an example). We excluded 280 

locations where the maximum extracted value occurred at either end of the sampling interval, 281 

assuming these sampling locations may not have captured the peak biomass date; in total we 282 
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were able to calculate peak biomass date for 73 locations. We then followed the same AICc 283 

model selection procedure as was used for determining drivers of insect biomass to conduct 284 

model selection on drivers of peak biomass. The full a priori model was a linear regression 285 

which included the response variable of peak biomass date, and the response variables of the 286 

average monthly 2019 tmax from the beginning of the year (January) to the last main sampling 287 

month (October), the average ∆temp (2019 tmax minus long-term tmax) from January to 288 

October, the cumulative precipitation from January to October, elevation, and the % cover of the 289 

five most dominant land-cover categories. Precipitation and elevation were scaled by dividing by 290 

100. 291 

 292 

RESULTS 293 

Mean flying insect biomass averaged 2,329 ± 79 SE mg/day and varied from >10 to 17,543 294 

mg/day. Biomass increased from 734 ± 98 SE mg/day in early April, to a peak of 5,356 ± 401 SE 295 

mg/day in late June, declining to 568 ± 111 SE mg/day in late October. AICc model comparison 296 

selected two competing top models (Table S2) with both containing tmax, percent forest cover, 297 

and sampling period, then second model additionally containing elevation as predictors of flying 298 

insect biomass (Table 1). The top model explained 43-45% of the variance in flying insect 299 

biomass without location information (marginal R2) and 73% of flying insect biomass was 300 

accounted for when including the random effect of location identity (conditional R2; Table S2). 301 

 302 

Table 1. Top AICc models. AICc model selection for predictors of flying insect biomass 303 

resulted in two top models (a & b). See Table S2 for AICc parameters. Both models include the 304 
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random variable of trap location. T-tests use Satterthwaite’s method. Poly(period,1) and 305 

poly(period,2) indicate the first and second order terms of the 2nd degree polynomial for 306 

sampling period respectively. Other predictor variables include the percent forest in a 307 

surrounding 1 km buffer (%forest) and monthly maximum temperature (tmax). Model 308 

characteristics include estimate (Est), standard error (SE), degrees of freedom (df), t-value, and 309 

p-value (P). 310 

  Est SE df t-value P 

a.) Model 1      
Intercept 2.278 0.122 952 18.73 < 0.001 

%forest -0.319 0.109 82 -2.93 0.0043 

poly(period,1) -4.124 0.329 952 -12.52 < 0.001 

poly(period,2) -4.402 0.707 952 -6.23 < 0.001 

tmax 0.047 0.005 952 9.53 < 0.001 

b.) Model 2      
Intercept 2.211 0.123 952 18.04 < 0.001 

elevation 0.036 0.013 81 2.72 0.008 

%forest -0.487 0.122 81 -4 < 0.001 

poly(period,1) -4.129 0.329 952 -12.54 < 0.001 

poly(period,2) -4.288 0.707 952 -6.07 < 0.001 

tmax 0.048 0.005 952 9.69 < 0.001 

 311 

 312 

Climate 313 

Flying insect biomass increased with 2019 tmax (Table 1a, Fig. S5a), and declined with 314 

increasing elevation (Table 1b, Fig. S5b). There was a significant interaction between tmax and 315 

∆temp in the mid-season sampling months of June and July. In these two months tmax had a 316 

positive effect on flying insect biomass at locations with low ∆temps, shifting to a negative effect 317 

of tmax on flying insect biomass at locations with high ∆temps (Fig. 3; Table S3). Significant 318 

interactions between tmax and ∆temps were not found in other sampling months (Fig. 3; Table 319 
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S3). The slope of the effect of temperature on flying insect biomass was steeper with lower ∆ 320 

temperatures in April, August, and September, though not significantly. This pattern flipped in 321 

May and October where the slope of the effect of temperature on flying insect was steeper with 322 

higher ∆ temperatures, likely due to colder temperatures in these months, though again the 323 

interaction was not significant (Fig. 3; Table S3). 324 
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 325 

Figure 3. The effect of temperature on flying insect biomass was positive at the beginning of the growing season in (a) April, and (b) 326 

May regardless of ∆temp (2019 tmax minus the long-term average tmax), shifted from positive to negative with increasing ∆temp in 327 

(c) June and (d) July, and again became more positive with temperature independent of ∆temp in (e) August, (f) September, and (g) 328 

October. Number of locations with sampling (n) within each month are provided within panels a-g. While hotter months tended to 329 

have higher ∆temps, there was no consistent relationship between tmax and ∆temps within months (h). Significant interactions 330 

between tmax and ∆temp occurred in June and July; all model coefficients are provided in Table S3331 
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Land-cover 332 

Flying insect biomass declined with % forest in the 1 km buffer surrounding each trap location 333 

(Table 1). No other land cover categories appeared as drivers of insect biomass. Categorizing 334 

locations by dominant land-cover suggested grassland/shrublands had the highest biomass in the 335 

mid growing season (June/July; Fig. 4c), while non-irrigated cropland supported above-average 336 

biomass at either end of the growing season (May and September; Fig. 4e). Higher biomass in 337 

urban-dominated locations (April and July-September; Fig. 4f) may be due to urban-dominated 338 

locations being in southern Germany (Fig. 1) which tended to be slightly warmer (Fig. S2).  339 
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 340 

 341 

Figure 4. Biomass over the median sampling day across all 84 trap locations (a), and comparisons between all locations and locations 342 

with surroundings dominated by forests (b; n=44), grassland/shrubland (c; n=9), pasture/orchard (d; n=6), non-irrigated cropland (e; 343 

n=16), and urban environments (f; n=6). Point shapes and colors in panel (d) match the dominant land category following shapes and 344 

colors in panels b-f. Mean and standard error are provided for biomass within each land cover category and month. Stars indicate 345 

significant differences within each month between dominant land cover categories and all-location averages (* = 0.05 > P > 0.01, ** = 346 

0.01 > P > 0.001, *** = P < 0.001).347 
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Peak biomass 

The day of the year of peak biomass varied from 148.5 (May 28-29th) to 219 (Aug. 7th) across 

the 73 trap locations from which it was estimable (averaging 175.1 [June 24th] ± 1.6 days SE). 

Model selection resulted in 12 top models with ∆AICc < 2 (Table S4). The most consistent result 

was earlier peak biomass dates in locations with more surrounding grassland/shrubland. Other 

drivers of peak biomass date included earlier peak biomass date with increasing elevation, 

∆temp, and % forest, and later peak biomass date with increasing precipitation, % 

pasture/orchard, and % urban surroundings. However, predictive power of top models of peak 

insect biomass date was low (R2 s ranging from 0.07-0.14; Table S4). 

 

DISCUSSION 

In a study of 84 locations widely distributed across Germany, we found strong effects of 

temperature on flying insect biomass. Biomass increased linearly with temperature in contrast to 

the unimodal relationship predicted by the first prediction of our first hypothesis (H1a); 

however, when high, positive deviations from long-term average temperatures were combined 

with the hotter summer months of June and July, temperature no longer had a positive effect on 

flying insect biomass, in support of our second hypothesis (H1b). Temperatures in June 2019 

were especially hotter than long-term averages across trap locations (averaging 4.3°C ± 0.1 SE). 

In contrast, insect biomass only increased with temperature in May 2019, which was cold 

relative to the long-term averages (averaging -0.7°C ± 0.1 SE). The negative effect of high 

deviations from long-term temperature averages suggests insects are adapted to local temperature 
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conditions. Rapid rises in temperature may exceed locally established tolerance limits, having 

negative effects on insect communities even in colder climate regions. 

A decelerating benefit of temperature in locations with greater increases in temperature is 

consistent with previous long-term studies of insects. In a study of two surveys of ant 

communities across North America conducted 20 years apart, and finding that sites with the 

largest increases in temperature had the largest declines in colony density (Kaspari et al., 2019). 

Hallmann et al. (2017) found a positive effect of temperature on insect biomass; however, 

biomass loss over time was greatest in mid-summer, when temperatures are highest. Flying 

insects may be more affected by rising temperatures than non-flying insects as they cannot buffer 

high temperatures by burrowing in soil or plant tissue (Baudier et al., 2015; Wagner, 2020). We 

predict future monitoring will detect increasingly negative effects of temperature due to ongoing 

climate warming, as temperature begins to exceed species’ optimum temperature ranges.  

Climate change predictions for Germany suggest slight increases in cumulative annual 

precipitation, but shifts in the timing of rainfall and drier summers (Bender et al., 2017). The 

2019 growing season matched this prediction with June, July and August being much drier than 

the long-term average and with the wettest month of the study period being October. As insects 

can detect changes in barometric pressure and will stop flying if they sense storms approaching 

(Pellegrino et al., 2013), we predicted increased rainfall would result in reduced flight activity, 

reducing insect biomass. However, precipitation was not a significant predictor of flying insect 

biomass as predicted by H2 potentially due to low variation in precipitation across locations. 

With ~75% of global land significantly altered by human activities (IPBES, 2019), land-

cover change and land use intensification is a major contributor to insect decline (Díaz et al., 

2019; Potts et al., 2010; Winfree et al., 2011). In contrast to H3, we did not detect negative 
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effects of urban and agricultural land-cover on flying insect biomass. The strongest effect of 

surrounding land-cover was reduced insect biomass in forests. Forests may provide fewer floral 

resources than open fields (Jachuła et al., 2017). Alternatively, forest vegetation structure may 

limit insect movement through the landscape, reducing trap catch in comparison to open systems 

like grasslands (Cranmer et al., 2012). The absence of an effect of heavily human-impacted 

habitats on flying insect biomass may be due to a minority of our locations surrounded by high 

proportions of these land-cover types, especially intensive agriculture. Higher temperatures in 

urban areas may explain the above average biomass in spring and late summer/autumn, while 

also making insects in urban areas more vulnerable to future warming in mid-summer. 

Additionally, large variability exists in insect habitat quality of urban areas and agricultural land, 

ranging from paved expanses and areas with intensive pesticide use to urban gardens and low 

intensity organic farms (Bengtsson et al., 2005; Hausmann et al., 2020). While moderately 

impacted by human activity, non-irrigated agricultural areas, pasture land, and orchards in this 

study tended to support higher biomass, suggesting these land use types may provide suitable 

habitats for Germany’s flying insects. Alternatively, fertilization and the prevalence of 

monoculture on conventional farms may increase insect biomass through alleviating nutrient 

limitation and providing high concentrations of host plants, while not benefiting insect 

biodiversity (Haddad et al., 2000; Root, 1973).  

While the date of peak biomass ranged from late May to early August across trap 

locations and varied with land-cover types, the percent variance explained by environmental 

drivers was low. The average temperature at trap locations was not a predictor of the date of peak 

biomass, suggesting the overall positive response of flying insect biomass was not driven by 

shifts in biomass phenology. However, top models included a weak effect of locations with 
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higher ∆ temperatures having earlier peak biomass dates. Land-cover types and temperature may 

also interact in their effects on flying insect biomass, though our number of trap locations is 

prohibitory of examining many interaction terms. Earlier peak biomass dates in grasslands and 

forests compared to urban areas and pasture/orchard is indicative of differences between more 

natural and more human-modified areas and supported by previous work finding later 

phenologies of butterflies (Diamond et al., 2014) and flower bloom times (Li et al., 2021) in 

urban areas. 

 

Comparison with Hallmann et al. 2017 

A recent study (Hallmann et al., 2017) reported large declines in flying insect biomass from 63 

German locations over 27 years. However, sampling locations greatly varied with years and the 

majority (58 out of 63) were clustered in central-west Germany; the sites do not have 

representative coverage of Germany or comprise an extensive latitudinal gradient (coverage of 2° 

latitude). Average insect biomass reported in Hallmann et al. (2017) varied from 9,192 mg/day in 

1989 to 2,531 mg/day in 2016 (May-Sept average; no April 1989 sampling was conducted). In 

comparison, our traps collected a monthly average of 2,404 mg/day in May-Sept. However, 

Hallmann et al. (2017) used traps which were ~51% larger (1.79 m2 per side) than those in this 

study (1.16 m2), suggesting higher trap catch in this study relative to the last sampling year 

(2016) in Hallmann et al. (2017), if trap size has an appreciable positive effect on catch. This 

discrepancy is most likely due to differences in sampling locations as our study cover a wider 

range of locations and habitats than examined in Hallmann et al. (2017), but we cannot rule out 

an increase in biomass of flying insects in Germany. 
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Caveats 

Insect biomass is a common currency ecosystem-level measure of insect productivity and is an 

index of energy availability for higher trophic levels. Nonetheless, from biomass alone we 

cannot differentiate variation in abundance, body size, species diversity, or dominance. High 

temperatures may reduce insect body sizes within species (Atkinson, 1994; Klockmann et al., 

2017; Polidori et al., 2020) or favor smaller species (Bergmann, 1848; Daufresne et al., 2009; 

Merckx et al., 2018). While one long-term study of flying insects in the Netherlands found no 

evidence of higher rates of decline in larger species over the past two decades (Hallmann et al., 

2020), larger-bodied species may have become rare earlier in the last century (Seibold et al., 

2015). Climate and land-cover change may otherwise alter insect communities by favoring 

particular trophic levels (Welti, Kuczynski, et al., 2020), invasive (Ju et al., 2017), or pest 

species (Bernal & Medina, 2018). The lack of an overall unimodal relationship temperature may 

be a result of the coarse taxonomic (flying insects) and temporal (~2 week) sample resolution in 

comparison to other studies (e.g. Kühsel & Blüthgen, 2015). Additionally, malaise traps do not 

collect all flying insects with larger insects like butterflies often being underrepresented. Finally, 

this monitoring program does not yet include multi-year coverage of flying insect trends. 

However, such space for time, or ecological gradients approaches have a long and fruitful history 

in ecology and are a useful method for providing predictions of temporal trends in the absence of 

time series (Peters et al., 2019; Pianka, 1966). 

 

Future directions: Importance of large-scale insect monitoring programs 
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In this first study of flying insect biomass from the German Malaise Trap Program, we find that 

even in a temperate climate, the positive effect of temperature on flying insect biomass 

diminished when combined with high positive deviations in temperature from the long-term 

average, and hotter mid-summer months. These interactions could not have been elucidated 

without growing season-long monitoring across a large number of locations and a thermal 

gradient. Large-scale, long-term standardized monitoring is a critical tool to disentangle potential 

drivers of insect decline and understand how this varies with region and taxa. Empirical studies 

of insect communities often lack the spatial coverage to be broadly representative across habitats 

(but see Jeliazkov et al., 2016; Wepprich et al., 2019). Meta-analyses have large spatial coverage, 

but must reckon with variable research goals and methodologies (Gurevitch & Mengersen, 

2010). Spatially distributed monitoring efforts of ecological communities primarily target plants 

and vertebrates but not insects (Eggleton, 2020). Notable exceptions include mosquito and 

ground beetle monitoring by the US National Ecological Observation Network (Thorpe et al., 

2016), and several regional-scale Lepidoptera monitoring programs (e.g. Dennis et al., 2019; 

Kühn et al., 2008; van Swaay et al., 2019). The Global Malaise Trap Program, operating since 

2012 (http://biodiversitygenomics.net/projects/gmp/), and the Swedish Malaise Trap Program 

(operational from 2003-2006; Karlsson et al., 2020) are taxonomic treasure troves, though 

neither measure biomass. The German Malaise Trap Program helps to fill the gap of a 

distributed, standardized, and continuous monitoring program of flying insects for Germany. 

Malaise traps are currently being considered as a standard component of European insect 

biodiversity surveys, and this program provides a blueprint for a coordinated large-scale malaise 

trap sampling network (Haase et al., 2018). As highlighted by the recent insect decline debate 
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(Wagner et al., 2021), comprehensive and standardized monitoring is critical to meet the 

challenge of unravelling insect trends and drivers in the Anthropocene. 
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Table S1. Locations of 84 malaise traps and dominant land-cover category. 

Location Latitude Longitude Dominant Land-cover 

Nationalpark Jasmund_Gumm / 3 54.555368 13.577896 NonIrrigatedCrop 

Nationalpark Jasmund_Fahrn / 2 54.546179 13.659444 Forest 

Nationalpark Jasmund_Goethe / 1 54.534736 13.655306 Forest 

Nationalpark Vorpommersche Boddenlandschaft_DO / 1 54.477017 12.5112 Saltwater 

Nationalpark Vorpommersche Boddenlandschaft_Lang / 2 54.441805 12.49133 Forest 

Nationalpark Vorpommersche Boddenlandschaft_Heidensee / 3 54.437983 12.49335 Forest 

Uni Rostock_ZI 54.42497 12.68462 Freshwater 

Uni Greifswald_ELD/02 54.07926 13.476209 NonIrrigatedCrop 

Uni Greifswald_ELD/01 54.075671 13.479164 NonIrrigatedCrop 

BR Flusslandschaft Elbe MV_Rb_01 53.84217 11.12053 NonIrrigatedCrop 

Nationalpark Niedersächsisches Wattenmeer 53.58827096 6.723134972 PastureOrchard 

BR Schaalsee_Kb_01 53.464759 10.464053 NonIrrigatedCrop 

BR Schaalsee_Db_01 53.335175 11.050982 NonIrrigatedCrop 

BR Flusslandschaft Elbe MV 53.204663 11.030898 Forest 

Nationalpark Unteres Odertal_AGG 53.130186 14.359659 GrassShrubland 

Nationalpark Unteres Odertal_AGU 53.062096 14.323734 GrassShrubland 

Leibniz-Institut für Gewässerökologie und Binnenfischerei 52.451228 13.643994 Forest 

Nationalpark Harz_NP_Hz_Bu 51.8801 10.6553 Forest 

Nationalpark Harz_NP_Hz_Bro 51.7982 10.6174 Forest 

Nationalpark Harz_NP_Hz_Fi 51.7924 10.5155 Forest 

TERENO_TER_FBG_1 51.622578 11.723798 NonIrrigatedCrop 

TERENO_TER_FBG_2 51.62093 11.701777 NonIrrigatedCrop 

TERENO_TER_SST_1 51.393613 11.748875 NonIrrigatedCrop 

TERENO_TER_SST_2 51.39195 11.703426 NonIrrigatedCrop 

Leipziger Auwaldkran_LCC-AWS-01 51.377217 12.280009 Forest 

Leipziger Auwaldkran_LCC-AWS-02 51.375858 12.276423 Forest 

Leipziger Auwaldkran_LCC-LE 51.367403 12.308824 Forest 

BR Oberlausitzer Heide- und Teichlandschaft_TG/3 51.350467 14.664863 Freshwater 

BR Oberlausitzer Heide- und Teichlandschaft_GL/1 51.346559 14.575978 PastureOrchard 

BR Oberlausitzer Heide- und Teichlandschaft_AL/2 51.34004 14.634769 Forest 

Nationalpark Kellerwald-Edersee_NP_Kel_02 51.159 8.93955 Forest 

Nationalpark Kellerwald-Edersee_NP_Kel_04 51.15508 8.79752 Forest 

Nationalpark Kellerwald-Edersee_NP_Kel_01 51.14229 8.92874 Forest 

Nationalpark Kellerwald-Edersee_NP_Kel_03 51.13155 8.97643 Forest 

Biodiversitäts-Exploratorium Hainich-Dün_HEG 19 51.073372 10.473357 PastureOrchard 

Biodiversitäts-Exploratorium Hainich-Dün_HEW 42 51.06991 10.273537 Forest 

Kammeyergarten (HTW Dresden) 51.00973 13.87283 Urban 

Nationalpark Eifel_K7 50.60815 6.423185 Forest 

Nationalpark Eifel_Lohrbachskopf 50.596079 6.464039 Forest 

Nationalpark Eifel_Malsbenden 50.579769 6.467363 Forest 

Nationalpark Eifel_Dedenborn 50.569256 6.359577 Forest 

Nationalpark Eifel_Klusenberg 50.558923 6.403459 PastureOrchard 
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Nationalpark Eifel_Müsaulsberg 50.540129 6.380197 GrassShrubland 

Rhein-Main-Observatorium_O7 M5 50.32513 9.49509 PastureOrchard 

Rhein-Main-Observatorium_S5 M4 50.19838 9.18597 Urban 

Rhein-Main-Observatorium_O3 M3 50.18603 9.09684 NonIrrigatedCrop 

Rhein-Main-Observatorium_W4 M2 50.18383 9.08732 Forest 

Rhein-Main-Observatorium_A1 M6 50.17989 8.95835 NonIrrigatedCrop 

Rhein-Main-Observatorium_W2 M1 50.14157 8.98389 Forest 

Hammelburg_672/0879 50.10155 9.872025 Forest 

Hammelburg_672/0623 50.081017 9.868256 GrassShrubland 

Hammelburg_672/0660 50.080042 9.854267 GrassShrubland 

Hammelburg_672/0613 50.061344 9.853936 GrassShrubland 

Hammelburg_672/0632 50.053814 9.862878 GrassShrubland 

Haßfurt-Prappach 50.052633 10.567867 NonIrrigatedCrop 

Hammelburg_672/0878 50.051675 9.810758 Forest 

Hammelburg_672/0614 50.050261 9.867828 GrassShrubland 

Hammelburg_672/0619 50.05 9.857231 GrassShrubland 

Zeil-Schmachtenberg 50.004987 10.609725 NonIrrigatedCrop 

Ebelsbach-Steinbach 49.998288 10.63084 NonIrrigatedCrop 

Ebelsbach_1100/049 49.9814 10.686604 Forest 

Ebelsbach_1100/053 49.97884 10.701188 Forest 

Bavaria_6029_3For 49.91667 10.52549 Forest 

Bavaria_6225_2Urb 49.77293 9.929597 Urban 

Nationalpark Hunsrück-Hochwald_Erbeskopf / 4 49.72858 7.094094 Forest 

Nationalpark Hunsrück-Hochwald_Wildwiese Thranenweiher / 3 49.7081 7.10412 Forest 

Nationalpark Hunsrück-Hochwald_Bunker / 2 49.702007 7.090252 Forest 

Nationalpark Hunsrück-Hochwald_Abentheuer / 1 49.652115 7.090571 Forest 

Bavaria_6532_3Urb 49.420593 11.050254 Urban 

Bavaria_6945_2For 49.08558 13.304759 Forest 

Nationalpark Bayerischer Wald_KOL 49.05463 13.2552 Forest 

Bavaria_6938_4Urb 49.00426 12.09667 Urban 

Nationalpark Bayerischer Wald_BER 48.89879 13.44339 Forest 

Nationalpark Schwarzwald_NP_SW_02 48.688465 8.241284 Forest 

Nationalpark Schwarzwald_NP_SW_03 48.684751 8.235532 Forest 

Bavaria_7544_2Ag 48.583249 13.390587 Urban 

Nationalpark Schwarzwald_NP_SW_01 48.510327 8.219127 Forest 

Biodiversitäts-Exploratorium Schwäbische Alb_AEG 50 48.405781 9.467762 PastureOrchard 

Biodiversitäts-Exploratorium Schwäbische Alb_AEW 06 48.394119 9.446531 Forest 

Bavaria_7935_2Urb 48.06033 11.64965 NonIrrigatedCrop 

Bavaria_8130_2For 47.87829 10.81209 Forest 

Nationalpark Berchtesgaden_Stubenalm 2 47.58952579 12.93652472 Forest 

Nationalpark Berchtesgaden_Schapbach 1 47.58526593 12.95199356 Forest 

Nationalpark Berchtesgaden 47.57017655 12.95833947 Forest 
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Table S2. Top AIC models (∆AICc<2) of predictors of flying insect biomass. All models included the random variable of trap 

identity. Predictor variables are defined in the Methods. Marg R2= marginal R2 or the percent variance explained by the fixed effects, 

Cond R2= conditional R2 or the percent variance explained by the fixed effects plus the random effect of trap, df= degrees of freedom, 

logLik= log likelihood, and w= model weight. For summary tables of model estimates, see Table 1. 

Int elevation poly (period,2) tmax %forest Marg R2 Cond R2 df logLik AICc ∆ w 

2.28  + 0.04708 -0.319 0.43 0.73 7 -378.56 771.2 0 0.17 

2.21 0.036 + 0.04787 -0.487 0.45 0.73 8 -378.39 772.9 1.7 0.073 
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Table S3. Model coefficients for the interaction between monthly tmax and ∆temp (Fig. 3). 1 
Models were fit for each 2019 sampling month including April (a; F(3,64) = 13.2, R2 = 0.38, P < 2 
0.001), May (b; F(3,78) = 6.8, R2 = 0.21, P < 0.001), June (c; F(3,78) = 14.5, R2 = 0.36, P < 0.001), 3 

July (d; F(3,79) = 15.5, R2 = 0.37, P < 0.001), August (e; F(3,72) = 5.3, R2 = 0.18, P = 0.002), 4 
September (f; F(3,64) = 5.7, R2 = 0.21, P = 0.002), and October (g; F(3,59) = 3.1, R2 = 0.14, P = 5 
0.03). 6 

  Estimate Stand. Error t-value P 

a) April      
Intercept 0.74 1.42 0.52 0.61 

tmax 0.16 0.10 1.53 0.13 

∆temp 0.07 0.70 0.11 0.92 

tmax * ∆temp -0.01 0.05 -0.22 0.83 

b) May     
Intercept 0.83 0.76 1.10 0.28 

tmax 0.14 0.05 2.81 0.006 

∆temp -1.17 0.80 -1.46 0.15 

tmax * ∆temp 0.07 0.05 1.31 0.19 

c) June     
Intercept -4.19 1.81 -2.31 0.023 

tmax 0.30 0.08 4.03 < 0.001 

∆temp 1.51 0.43 3.47 < 0.001 

tmax * ∆temp -0.06 0.02 -3.28 < 0.001 

d) July     
Intercept -4.11 1.38 -2.99 0.004 

tmax 0.32 0.06 5.36 < 0.001 

∆temp 2.87 0.71 4.05 < 0.001 

tmax * ∆temp -0.12 0.03 -3.94 < 0.001 

e) August     
Intercept 0.32 4.92 0.06 0.95 

tmax 0.13 0.20 0.67 0.50 

∆temp 0.13 1.75 0.08 0.94 

tmax * ∆temp -0.01 0.07 -0.16 0.88 

f) September     
Intercept -1.25 1.61 -0.78 0.44 

tmax 0.23 0.09 2.58 0.012 

∆temp 1.93 2.25 0.85 0.40 

tmax * ∆temp -0.12 0.13 -0.95 0.35 

g) October     
Intercept 1.81 1.75 1.03 0.31 

tmax 0.06 0.13 0.46 0.64 

∆temp -0.66 1.13 -0.59 0.56 

tmax * ∆temp 0.04 0.08 0.51 0.61 
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Table S4. Top models (∆AICc < 2) for day of peak flying insect biomass. Predictor variables 7 

are defined in the Methods. Df= degrees of freedom, logLik= log likelihood, and w= model 8 
weight.  9 

Intercept elevation precip ∆temp %forest 

%grassland 

/shrubland 

%pasture 

/orchard %urban 
R2 df logLik AICc ∆AICc w 

183.1     -20.85   0.07 3 -291.94 590.2 0 0.03 

180.9     -19.1 14.66  0.09 4 -290.87 590.3 0.12 0.028 

174.4 -1.93 2.41   -21.83   0.11 5 -289.96 590.8 0.59 0.022 

171.6 -1.83 2.46   -20.37 14.35  0.13 6 -288.92 591.1 0.9 0.019 

193.5   -5.01  -21.66   0.08 4 -291.31 591.2 0.98 0.018 

185.1    -4.13 -22.29   0.08 4 -291.51 591.6 1.39 0.015 

190.2   -4.40  -19.94 13.65  0.1 5 -290.38 591.7 1.44 0.015 

184.7 -1.84 2.61 -5.72  -23.25   0.13 6 -289.22 591.7 1.49 0.014 

184.2 -0.32    -20.29   0.07 4 -291.72 592 1.8 0.012 

175 -1.75 2.64  -5.49 -24.47   0.12 6 -289.44 592.1 1.92 0.011 

181.6 -1.75 2.64 -5.48  -21.78 13.92  0.14 7 -288.22 592.2 1.95 0.011 

182.6         -19.9   5.41 0.07 4 -291.80 592.2 1.97 0.011 

   10 
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 11 

Figure S1. Examples of traps running in 2019 as part of the German Malaise Trap Program. 12 

Photos show traps at the LTER site Tereno- Friedeburg (a; photo credit: Mark Frenzel), at the 13 
Harz National Park (b; photo credit: Andreas Marten), at the Black Forest National Park (c; 14 
photo credit: Jörn Buse), and at the LTER site Rhine-Main-Observatory (d; photo credit: Peter 15 

Haase). 16 

  17 
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 18 

Figure S2. Changes with latitude across our 84 trap locations in 2019 mean monthly maximum 19 
temperature (a), the 1960-2018 long-term average monthly maximum temperature (b), the 20 
change in 2019 mean monthly maximum temperature minus the 1960-2018 long-term average 21 
(c), and 2019 cumulative monthly precipitation (d). Each point represents one month at one 22 

location, and only month/location combinations from which flying insect biomass data were 23 
collected are included. Averaging across April to October, 2019 mean monthly maximum 24 
temperature showed a weak trend to decrease with latitude (a; F1,82 = 2.7, R2 = 0.03, P = 0.10), 25 

while the 1960-2018 long-term average monthly maximum temperature did not vary with 26 
latitude (b; F1,82 = 0.6, R2 < 0.01, P = 0.44). While varying with month, the average ∆ °C of 2019 27 
maximum temperature over the long-term average decreased with latitude (c; F1,82 = 12.6, R2 = 28 
0.13, P < 0.001), as did cumulative monthly precipitation (d; F1,82 = 26.8, R2 = 0.24, P < 0.001).  29 
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 30 

Figure S3. Elevation declined with increasing latitude across our 84 trap locations (F1,82 = 74.5, 31 
R2 = 0.48, P < 0.001). 32 

  33 
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 34 

Figure S4. Example of determination of peak biomass day from a trap at Hunsrück-35 

Hochwald National Park. Points represent the biomass (mg/day) collected from each sample 36 

plotted over the median day of the year of the sample. The red line is a spline fitted to these 37 

points. The grey vertical line show the maximum value of the spline, at which the day of year 38 

was extracted. At this site, 2019 peak biomass was estimated to occur at the 190.5th day of the 39 

year (July 9th-10th). 40 

  41 
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 42 

Figure S5. Responses of flying insect biomass to tmax and elevation. Each point represents 43 
the biomass from one sample. Across all months and site combinations, flying insect biomass 44 

increased with mean monthly 2019 maximum temperature (a), and increased weakly with 45 
elevation (b). Model estimates are provided in Table 1. 46 
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