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Abstract 

Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported 
in individuals with autism spectrum disorder (ASD) compared to typically developing controls. 
Although these alterations affect multiple and widespread cortical regional asymmetries, the extent to 
which specific structural networks might be affected remains unknown. Inter-regional morphological 
covariance analysis can capture network connectivity relations between different cortical areas at the 
macroscale level. Here, we used cortical thickness data from 1,455 individuals with ASD and 1,560 
controls, across 43 independent datasets of the ENIGMA consortium’s ASD Working Group, to assess 
hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based 
topological metrics. Compared with typical features of small-world architecture in controls, the ASD 
sample showed significantly altered asymmetry of hemispheric networks involving the fusiform, rostral 
middle frontal, and medial orbitofrontal cortex, driven by shifts toward higher randomization of the 
corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex 
showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed 
functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that 
subserve working memory, executive functions, language, reading, and sensorimotor processes. Taken 
together, these findings provide new insights into how altered brain left-right asymmetry in ASD affects 
specific structural and functional brain networks. Altered asymmetrical brain development in ASD may 
be partly propagated among spatially distant regions through structural connectivity. 
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Introduction 

Autism spectrum disorder (ASD) is a childhood-onset condition of neurodevelopmental origin with a 
prevalence of roughly 1%1-4. Individuals with ASD are characterized by social communication and 
interaction challenges alongside restricted and/or repetitive behaviours causing functional impairment in 
major areas of life3. Language delay is also a common feature of the disorder5, 6.  

Brain regions important for social cognition and language show lateralized activation in functional 
neuroimaging studies, in the majority of people7. For example, roughly 90% of the adult population has 
left-hemispheric dominance for word generation tasks, which particularly elicit activation of inferior 
frontal and temporal cortex8, 9, while theory-of-mind tasks typically elicit rightward asymmetrical 
activation around the temporo-parietal junction10. Moreover, increased autism symptom severity has 
been associated with reduced laterality of activation during language and social cognition tasks11, 12. At 
the structural level, too, studies have reported altered asymmetries of regions of the cortex important for 
language and/or social cognition, including temporal regions and the fusiform gyrus13-15. These findings 
suggest that altered asymmetrical neurodevelopment may be etiologically linked to ASD behavioral 
phenotypes. 

We recently performed the largest-to-date study of brain structural asymmetry in ASD13, analyzing a 
total of 1,774 affected individuals and 1,809 controls from multiple datasets made available by the ASD 
working group of the international ENIGMA (Enhancing Neuro-Imaging Genetics through Meta-
Analysis) consortium16, 17. ASD was most notably associated with widespread alterations of cortical 
thickness asymmetry, involving the medial frontal, posterior cingulate and inferior temporal cortex. 
These regions overlapped with those showing altered functional lateralization for language and social 
cognitive tasks in ASD11, 12.  

The widespread nature of altered cortical thickness asymmetries in ASD, over multiple non-contiguous 
regions, raises a new question: do the findings indicate altered asymmetry of topological network 
organization in ASD? Network organization can be investigated using cortical thickness data from in 
vivo, non-invasive structural MRI, by studying the inter-regional covariance of thickness measures18-21. 
Cortical thickness is a widely-used morphological measure to estimate structural networks22, as it relates 
to underlying features such as the sizes and densities of neurons23, 24, as well as functional and white 
matter connectivity22, 25. While it is not fully understood how inter-regional covariation of cortical 
thickness arises, one prevailing hypothesis is that synapses can have mutually trophic and protective 
effects on the pre- and post-synaptic neurons involved, such that increased inter-regional connectivity 
can lead to co-variance at the macro-anatomical level19. In addition, synchronous firing between neurons 
could trigger coordinated synaptogenesis and growth of more highly connected regions26, 27.  

Neural connections may also propagate pathological processes between spatially distant regions28, which 
has led to a notion of brain disorders as being partly “disconnection syndromes”29-31. For example, lower      
structural covariance based on regional thickness measures from the fronto-temporal cortex has been 
observed in individuals with ASD relative to typically developing controls, an association which may 
also be modulated by language and social cognitive abilities32-35. However, the regions in these studies 
were defined by prior knowledge of language, whereas alterations of cortical thickness in ASD are      
more widespread than this16. Transcriptome analyses based on postmortem cortical tissue have 
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implicated disrupted biological pathways affecting cell number, cortical patterning and differentiation, 
axon guidance, synaptic activity and plasticity-related processes in ASD36, 37. This also suggests a 
broader impact on cortical structure beyond core language regions. 

Thus far, investigations of altered topological network connectivity in ASD have been impeded by 
limited sample sizes in relation to subtle effects, and the likely neurobiological heterogeneity of ASD. In 
addition, studies of altered cross-subject morphological covariance have so far ignored intra-individual 
structural covariance. The latter reflects structural covariance between different brain regions within 
each individual (see below)20, 21, 38, and can therefore better capture global and regional network 
characteristics at an individual level.  

No previous studies of structural covariance network connectivity in ASD have specifically addressed 
the possibility of altered network left-right asymmetry at the whole-hemisphere level. Here, we 
hypothesized that ASD is associated with the reorganization of hemispheric cortical thickness 
covariance network architecture, such that altered inter-regional connectivity asymmetry could link 
some of the disparate regions that have previously shown altered asymmetry in separate region-by-
region testing13. We used structural MRI data from 43 datasets (1,455 ASD patients and 1,560 
unaffected controls), collected by members of the ENIGMA consortium’s ASD Working Group, to 
perform the first graph-based, cortex-wide analysis of structural covariance network asymmetry in ASD. 
This was followed by functional annotation of affected networks through the use of meta-analyzed 
functional neuroimaging data, as well as tests relating  altered structural network covariance asymmetry 
within ASD individuals to symptom severity, psychiatric medication use, IQ, age, sex and handedness.  

 

Material and Methods 

Datasets and participants 

Structural T1-weighted brain MRI-derived data were available via the ENIGMA-ASD Working Group 
16. After data quality control (see below), there were 1,455 individuals with ASD (mean age: 15.65 years, 
range 2-64 years, 1,213 males) and 1,560 healthy controls (mean age: 16.09 years, range 2-64 years, 
1,179 males) across 43 separate datasets (Table 1). Datasets were collected as separate studies between 
1994 and 2013, when DSM-IV and DSM-IV-TR were the common classification systems;      clinical 
diagnosis of ASD was made according to DSM-IV criteria. For each dataset, all subjects were diagnosed 
by a clinically experienced and board certified physician/psychiatrist/psychologist. Data on DSM-IV 
subtypes of ASD were not collated by the ENIGMA ASD working group. For each of the data sets, all 
relevant ethical regulations were complied with, and appropriate informed consent was obtained for all 
individuals. 

Total scores from the Autism Diagnostic Observation Schedule-Generic (ADOS)39 were available for 
704 individuals with ASD. The presence or absence of comorbid conditions had been recorded for 200 
individuals with ASD, and there were 43 affected individuals diagnosed with at least one other co-
occurring condition (e.g., attention deficit hyperactivity disorder, obsessive-compulsive disorder, 
depression, anxiety and/or Tourette's syndrome16). Data on the presence or absence of medication use at 
the time of scanning (i.e., current use of psychiatric treatment drugs prescribed for ASD or comorbid 
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psychiatric conditions) were available for 612 individuals with ASD, of whom 173 were current users. 
Data on IQ were available for 1,210 of the ASD individuals. Cases from the entire ASD spectrum were 
included, but only 61 cases had IQ<70 (cases: mean IQ=103.49, SD=19.74, min=34, max=149). Binary 
categorical data on handedness were available for 599 ASD individuals (551 right-handed, 48 left-
handed). 

There were different assessment and recruitment processes for controls across the datasets, but the 
overwhelming majority were typically developing at the time of scanning, and no controls met criteria 
for a diagnosis of ASD. Only 18 controls had IQ<70. In these individuals the exclusion of an ASD 
diagnosis was performed by a senior child psychiatrist/physician. All eighteen of these were from the 
FSM data set and were clinically diagnosed with idiopathic intellectual disability. Amongst all 1,303 
controls with IQ data, the mean IQ was 111.75, SD=14.73, min=31, max=149. 

Image acquisition and processing 

Structural T1-weighted brain MRI scans were collected at each separate study site, using a variety of 
different scanners and protocols at field strengths of either 1.5 or 3 Tesla (Table 1). Following this 
heterogeneous image acquisition, all sites applied the same harmonized protocol from the ENIGMA 
consortium (http://enigma.ini.usc.edu/protocols/imaging-protocols) for data processing and quality 
control16, 17. FreeSurfer40 (version 5.3) was used to derive mean cortical thickness measures for each of 
68 cortical regions (34 per hemisphere) defined by the Desikan-Killiany atlas41. The default ‘recon-all’ 
pipeline of FreeSurfer was used, which incorporates renormalization40. Parcellations of cortical regions 
were visually inspected following the standardized ENIGMA quality control protocol 
(http://enigma.ini.usc.edu/protocols/imaging-protocols). Briefly, web pages were generated with 
snapshots from internal slices, as well as external views of the segmentations from different angles. For 
subcortical structures, the protocol also consisted of visually checking individual images, plotted from a 
set of internal slices. Values derived from incorrectly labelled structures were excluded. Furthermore, 
any data points exceeding 1.5 times the interquartile range, as defined per site and diagnostic group, 
were visually inspected, and any errors resulted in excluded values.  

Specifically for the present study, we also excluded any individuals with missing thickness data for at 
least one cortical region, as the analyses required all regions for comparability of networks across 
individuals. We also excluded datasets with fewer than 15 controls, as variation within the control group 
of each dataset is important for calculating intra-individual covariance (see below). These steps resulted 
in 43 datasets being included in the present study, with the sample numbers given above.  

Construction of intra-individual hemispheric structural covariance networks 

Within each dataset, regional cortical thickness values were used to separately construct left-
hemispheric and right-hemispheric structural covariance networks for each individual (Fig. 1). Such 
networks are comprised of nodes and edges, in which each cortical region represents a node. The edge 
between each pair of regions in a given individual was calculated with respect to the standard deviations 
for those regional measures calculated from control individuals20, 21. The formula was as follows20, 21: 
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������, �� 	 1
exp � ������� � ��������

2 � �������� � ���������
 

where ������, �� represents the intra-individual structural covariance between region i and region j in 
individual k. ������ and ������ represent the cortical thicknesses of regions i and j in individual k. 
������� represents the standard deviation of cortical thickness in region i across all control individuals 
in a given dataset.  

For each individual, this approach yielded two separate 34×34 matrices, one for the left hemisphere and 
one for the right hemisphere, each representing a network of intra-hemispheric structural connectivity, 
with 561 edges in each network. Edges were then binarized using a sparsity threshold S=0.4, i.e., only 
the top 40% of strongest edges (i.e., 224 edges) within each separate network were given the value 1, 
and the remainder 0, in order to reduce spurious connectivity. The sparsity threshold S=0.4 retained 
network connectedness, such that at least 88% of nodes (30 nodes) remained connected with at least one 
other node in all left- and right-hemisphere networks in all individuals (i.e., a maximum number of four 
isolated nodes in any network). Small-world organization was also retained (minimum small-worldness 
scalar σ=1.0001 in any network, see below). This approach ensured that all left- and right-hemisphere 
networks, in all individuals, had the same number of nodes (34) and edges (224), and enabled us to 
perform subsequent analyses with reference only to relatively high-level, reliable connectivity42. 

Hemisphere-level network properties  

We used the Brain Connectivity Toolbox43 and GRETNA44 toolbox to calculate topological network 
indices (Fig. 1). At the whole-hemisphere level, we used small-world parameters to measure the balance 
between network integration and segregation. Small-worldness can be quantified by the clustering 
coefficient and shortest path length45. Based on these measures, a network can be described as regular, 
random or small-world. A regular network is characterized by a high clustering coefficient and high 
shortest path length, indicating high local specialization (high local efficiency) and low global 
integration (low global efficiency). In contrast, a random network has a low clustering coefficient and 
low shortest path length, corresponding to low local specialization (low local efficiency) and high global 
integration (high global efficiency). In general, human brain networks are organized in an optimized, 
small-world fashion18, 46, with an intermediate balance between regular and random properties, i.e., a 
large number of short-range connections coexist with a smaller number of long-range connections. 

The clustering coefficient ci of the node i was defined as45 

�� 	 ��

����� � 1�/2 

where ��  represents the number of existing edges among the neighbors of node i. ��  denotes the actual 
number of neighbors of node i, thus the denominator quantifies the number of all possible edges among 
the neighboring nodes. The clustering coefficient C of a whole hemispheric network was then defined as 
the mean clustering coefficient across all nodes in that network, separately per individual and 
hemisphere. 

The shortest path length ��  of a node i was defined as45 
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where min����� represents the shortest path length between node i and j. N represents the number of 
nodes in the network. The shortest path length L of a network was then defined as the mean shortest path 
length between any pair of nodes in the network, calculated separately per individual and hemisphere.  

Next, we generated 100 random networks with the same number of nodes (34), edges (224), and degree 
distribution as the real networks47 to calculate a normalized clustering coefficient γ=C/Crand and 
normalized shortest path length λ=L/Lrand

45, in which Crand and Lrand were defined as the mean clustering 
coefficient and mean shortest path length across randomly generated networks. The small-world index σ 
was calculated as σ=γ/λ, which should be greater than 1 in small-world networks, and whose minimum 
value was 1.0001 across the networks of all individuals and hemispheres (see above)45. 

These procedures resulted in three hemisphere-level connectivity metrics for each individual and 
hemispheric network: the normalized clustering coefficient γ, the normalized shortest path length λ, and 
the small-world index σ. 

Node-level network properties 

For each of the 34 nodes, separately per individual and hemisphere, we calculated four measures: the 
degree centrality and nodal global efficiency (both indicate connectivity globally from/to a given node) 
and the clustering coefficient and nodal local efficiency (both indicate local connectivity from/to a given 
node)42, 48, 49.  

Specifically, the degree centrality of node i was defined as the sum of all existing edges between that 
node and all other nodes in the network, reflecting the importance of that node in network information 
communication.  

The global efficiency of node i (��	
�) indexes information transfer from itself to all other nodes in the 
entire network48, computed as the reciprocal of the shortest path length ��  :  

��	
� 	 1
� � 1 � 1

"��
����

 

where "��  is the shortest path length between node i and node j in network G. N is the number of nodes 
in the network. 

The clustering coefficient measures the extent of local density of connections for a given node (see the 
formula further above, where node-level clustering coefficients were calculated as a step towards the 
hemisphere-level clustering coefficient).  

The local efficiency of node i (�	
�) corresponds to the efficiency of information flow within the local 
environment48, which is defined as  

�	
� 	 1
� � ��	
��#��

��
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where #�  represents the subgraph composed of the nearest neighbors of node i. 

Hemispheric asymmetry 

To quantify the asymmetry of each separate network metric within each individual, we calculated the 
hemispheric difference (HD):  

$% 	 "&'( � )�*+( 

Therefore, a positive value of HD represents a leftward asymmetry for a given metric, while a negative 
HD represents a rightward asymmetry for that metric. (Note that the widely-used asymmetry index 
(Left-Right)/(Left+Right) would be less well suited to the present study, as Left and/or Right could 
sometimes take the value zero for the metrics defined above, in which case this index would take 
extreme or undefined values.)50  

Statistical analysis 

We used linear mixed effects random-intercept models ('fitlme' function in MATLAB version 2016a 
(The Mathworks Inc.) to test for case-control differences, across all datasets simultaneously, but 
separately for each network metric HD. All models included the same fixed effects, i.e., diagnosis (case 
versus control status), age and sex, plus a random effect indicating which of the 43 datasets an 
individual was from, as shown in the following formula: 

$% 	 ,�-*�./�/ � -*& � /&0 � 1-�,.� �,-(-/&(� 

The random effect ‘dataset’ adjusted for all variables that differed between datasets, including scanner 
type and field strength (Table 1). The t values derived from the “diagnosis” factor were used to compute 
Cohen’s d effect sizes51 

, 	 ( � ��� � ���
√�� � �� � 3,' 

where �� and �� are the numbers of cases and controls, and df represents the degrees of freedom. 
,' 	 .4/ � �0� � 0��, where obs equals the number of observations, 0� the number of groups and 0� 
the number of factors in the model. 

Permutations (N=10,000) were used to test the significance of each case-control diagnosis effect on each 
HD metric, by randomly assigning the diagnosis labels across individuals, separately within each dataset 
while maintaining the same numbers of cases and controls within each dataset, prior to mega-analysis 
across datasets. Shuffling was carried out within datasets separately because intra-individual covariance 
was calculated with reference to the variance in matched controls (see above). The empirical p value 
was obtained for each diagnosis effect on each HD metric by counting the number of unsigned t values 
in the permutation analysis that were greater than the unsigned t value for the data with the real case-
control labels, and dividing that number by the total number of permutations (N=10,000). For the 3 
network-level metric HDs, significance was determined by the p values for diagnosis effects with 
Bonferroni correction of 0.05/3. For the node-level network metric HDs, significance was determined 
for diagnosis effects using false discovery rate (FDR) correction for 34 nodes, with threshold 
pFDR<0.05/4 (due to testing four nodal-level network measures). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442735doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442735


12 

 

Directions of topological network asymmetry changes 

For any HDs showing significant case-control differences in the main analysis above, we used linear 
mixed effects models to examine separately the corresponding left and right metrics to understand the 
unilateral effects. Models with the same fixed and random effects were used as above, and again t values 
and Cohen’s d effect sizes for the diagnosis term were extracted/derived from each of the models. 
Empirical p values were calculated based on 10,000 permutations, as above. As this was a post hoc 
analysis to further describe any specific alterations of asymmetry in cases, we did not perform multiple 
testing correction for these analyses. 

Associations with ASD severity, medication, IQ, age, sex or handedness 

For each topological network HD that showed significant associations with case-control status in the 
main analysis, we used separate linear mixed effects models to examine possible relationships between 
these HDs and ASD severity, medication use, IQ, age, sex or handedness within the ASD individuals 
only. These analyses would inform whether major aspects of case heterogeneity were related to the 
relevant topological network HDs. 

Autism severity was based on the total ADOS scores of ASD individuals (N=704): 

$% 	 5%6� � -*& � /&0 � 1-�,.� �,-(-/&(� 

The presence/absence of current psychiatric medication use was coded as a binary predictor variable 
(0=no medication, 2=medication) (N=612) 

$% 	 �&,��-(�.� � -*& � /&0 � 1-�,.� �,-(-/&(� 

IQ was tested for association with HDs within the 1,210 ASD individuals with IQ data. IQ was coded as 
a continuous predictor variable: 

$% 	 �7 � -*& � /&0 � 1-�,.� �,-(-/&(� 

Age and sex were tested for associations with HDs within 1,455 ASD individuals (age as a continuous 
variable, sex as a binary variable: 

$% 	 -*& � /&0 � 1-�,.� �,-(-/&(� 

Handedness was tested for association with HDs within 599 ASD individuals that had data on this trait. 
Handedness was coded as a binary predictor variable (1=right handedness, 2=left handedness). 

$% 	 +-�,&,�&// � -*& � /&0 � 1-�,.� �,-(-/&(� 

For each of these analyses, permutations (N=10,000) were used to test the significance of each effect of 
interest, by shuffling the relevant variable (either ADOS scores, medication use, IQ, age, sex or 
handedness) across case individuals, separately within each dataset, prior to mega-analysis across 
datasets. P values were obtained by counting the number of unsigned t values in the permutation tests 
that were greater than the actual unsigned t values for the real data, and dividing by the total number of 
permutations (N=10,000) for each separate analysis. P values were FDR-corrected at 0.05 for multiple 
testing over the number of network HDs that showed significant effects in the main analysis (i.e., seven 
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network HDs, see Results). We did not additionally correct for multiple testing over the six variables of 
interest (ADOS scores, medication use, IQ, age, sex or handedness) as this was an exploratory analysis 
to describe how each case heterogeneity variable might impact the network HDs. 

Descriptive edge-level analysis 

For each specific node that showed a significant case-control difference of degree centrality asymmetry 
in the main analysis, we extracted the intra-hemispheric structural connectivity values (i.e., one value for 
each edge) linking this ‘seed’ node to all the 33 other nodes, separately from each hemispheric structural 
covariance network of each individual (this time without thresholding and binarization for sparsity, see 
above). For each matched pair of left and right edges, we then calculated the HD (again as Left-Right). 
The same linear mixed effects random-intercept model as the main analysis was used to examine each 
edge HD as the dependent measure across individuals, and 10,000 permutations were again used to 
assess the empirical two-tailed significance of the effect of diagnosis. Separately for each relevant node, 
the p value was FDR-corrected at 0.05 for multiple testing over the 33 edges connecting to that node. 

Cognitive functional annotation based on Neurosynth 

To indicate the potential cognitive functions of regions that showed altered degree centrality asymmetry, 
we used the online platform Neurosynth52 (https://neurosynth.org/) which includes meta-analytic brain 
maps based on input data from >14,000 human functional neuroimaging studies. As of February 2021 
there were 1,307 maps in the database, representing different terms that capture diverse cognitive 
functions. Each map indicates a pattern of brain activation linked to a given term, through semantically-
related words that occurred in the papers describing those studies. The large size of the database has 
been shown to compensate for any imperfect assignment of activations to particular cognitive domains 
or tasks52. This approach therefore provides a data-driven alternative to assigning brain regional 
functions by ad hoc, selective citations of limited numbers of papers from the literature. 

Separately for each cortical region with significantly altered asymmetry of degree centrality in the node-
level analysis, plus all regions linked to them by edges that showed significant alterations of asymmetry 
in ASD in the edge-level analysis (see above), we mapped these regions to bilateral masks in MNI 
standard space. The resultant binary masks were then used as input to identify region-associated 
cognitive terms through the Neurosynth “decoder” function. Finally, cognitive terms with 
correlations >0.2 were visualized on a word-cloud plot, with sizes scaled according to their correlations 
with the corresponding meta-analytic maps generated by Neurosynth, while excluding anatomical terms, 
non-specific terms (e.g. 'Tasks'), and one from each pair of virtually duplicated terms (such as 'Words' 
and 'Word'). 

Sensitivity analyses 

To assess robustness with respect to the sparsity threshold 0.4 that was used in the main analysis, we 
repeated the analyses under varying sparsity thresholds ranging from 0.25 to 0.5 (with an interval of 
0.01). At the lowest threshold, a minimum 79% of nodes (27 nodes) were connected to at least one other 
node in all hemispheric networks in all individuals (maximum seven unconnected nodes out of 34). We 
then computed the area under the curve for each network metric HD over the range of sparsity 
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thresholds. The area under the curve for a given network HD Y, calculated over the sparsity threshold 
range of S1 (0.25) to Sn (0.5) with interval of ΔS (0.01), was computed as  

8���� ����� ��� ����� 	 �98���� � 8������
���

���

: � ;�/2 

Case-control differences in the area under the curve for each network metric HD were then tested 
separately using the same mixed effects random-intercept model as the main analysis: 

$% 	 ,�-*�./�/ � -*& � /&0 � 1-�,.� �,-(-/&(� 

To assess whether non-linear age could have an impact on case-control differences of network HDs, we 
added a non-linear age term ‘zage2’, i.e., (age-mean_age)2 as a fixed effect in the linear mixed effects 
model to test each association: 

$% 	 ,�-*�./�/ � -*& � <-*&� � /&0 � 1-�,.� �,-(-/&(� 

Permutations (N=10,000) were used as in the main analysis, to determine the empirical significance of 
case-control differences for each network HD metric. 

 

Results 

Hemisphere-level network asymmetries 

None of the three hemisphere-level metric HDs (i.e., the normalized clustering coefficient γ, the small-
world index σ, or the normalized shortest path length λ) showed significant differences between 
individuals with ASD and controls (all p>0.05). A non-significant trend effect of diagnosis was observed 
for a leftward shift in λ asymmetry in ASD (Cohen’s d=0.06, p=0.10; Supplementary Table 1). 
Unilateral analysis of each hemisphere showed that ASD was nominally associated with reduced λ in the 
right hemisphere (Cohen’s d=-0.07, unadjusted p=0.04), but not in the left hemisphere (Cohen’s 
d=0.004, p=0.92), which hints at a more efficient global information transmission and a shift towards 
randomization of right hemisphere networks in ASD (Supplementary Table 2).  

Node-level network measures 

We mapped the Cohen’s d effect sizes of associations between node-level network measure HDs and 
ASD over the whole cerebral cortex (Fig. 2). Effect sizes were low, ranging from -0.15 (nodal global 
efficiency HD of fusiform) to 0.14 (degree centrality HD of superior frontal cortex) (Supplementary 
Tables 3-6). Among node-level metric HDs, the degree centrality asymmetries of three regions, namely 
fusiform (Cohen’s d=-0.14, p<0.0001), rostral middle frontal cortex (Cohen’s d=-0.13, p=0.0007) and 
superior frontal cortex (Cohen’s d=0.14, p=0.0003), were significantly associated with ASD after FDR 
correction (Fig. 2 and Supplementary Table 3). In addition, nodal global efficiency HDs of four 
regions, namely fusiform (Cohen’s d=-0.15, p=0.0001), rostral middle frontal cortex (Cohen’s d=-0.13, 
p=0.0001), superior frontal cortex (Cohen’s d=0.13, p=0.0007) and medial orbitofrontal cortex (Cohen’s 
d=-0.11, p=0.001), were significantly associated with ASD after multiple testing correction (Fig. 2 and 
Supplementary Table 4). Overall, reduced leftward lateralization was observed in network measure 
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HDs of the fusiform, rostral middle frontal and medial orbitofrontal cortex in ASD (Supplementary 
Tables 3 and 4). Superior frontal cortex showed reduced rightward asymmetry of both degree centrality 
and global efficiency HDs in ASD (Supplementary Tables 3 and 4). There were no significant 
associations between ASD and the HDs of the nodal clustering coefficient or nodal local efficiency after 
FDR correction (Fig. 2 and Supplementary Tables 5 and 6). 

Further investigating the significant effects on asymmetry in unilateral analyses, the effects on degree 
centrality asymmetries of the fusiform and rostral middle frontal cortex, and nodal global efficiency 
asymmetries of the fusiform and medial orbitofrontal cortex, involved right-sided increases, thus 
resulting in reduced leftward topological asymmetries (Supplementary Table 7). For the effect on 
nodal global efficiency asymmetry of the rostral middle frontal cortex, bilateral increases were observed 
in ASD, but more so in the right than left hemisphere, consistent with reduced leftward lateralization in 
ASD individuals relative to controls. The effects on degree centrality and nodal global efficiency 
asymmetries of the superior frontal cortex involved bilateral decreases in ASD, but more so in the right 
hemisphere, consistent with reduced rightward asymmetry of these metrics in ASD (Supplementary 
Table 7). 

Clinical severity, medication, IQ, age, sex and handedness 

For the 7 network HDs that showed significant case-control differences in our main analysis, we found 
no significant associations with autism symptom severity (total ADOS scores) (ps>0.05; 
Supplementary Table 8). There also were no significant associations of current medication use with 
these metric HDs after FDR correction (Supplementary Table 9). Medication status showed a 
nominally significant association with the degree centrality HD of the fusiform (Cohen’s d=-0.22, 
unadjusted p=0.04), and a marginal trend with fusiform nodal global efficiency HD (Cohen’s d=-0.19, 
unadjusted p=0.06). There were no significant associations of IQ with the network HDs within ASD 
individuals (ps>0.05; Supplementary Table 10). Age showed a significant positive association with the 
nodal global efficiency HD of the medial orbitofrontal cortex (t=2.36, unadjusted p=0.006; 
Supplementary Table 11). There were no significant associations between network HDs and sex 
(Supplementary Table 12) or handedness (Supplementary Table 13). 

Descriptive edge-level analysis 

The degree centrality of each node provides a metric of its hemisphere-wide connectivity. For the three 
regions that showed significant associations between their degree centrality HDs and ASD in the main 
analysis, i.e., fusiform, rostral middle frontal and superior frontal cortex, we performed descriptive edge-
level analysis of case-control associations. Four edges linked to the fusiform cortex showed significant 
associations with ASD after FDR correction, which linked to the rostral middle frontal (Cohen’s d=-0.12, 
p=0.0004), cuneus (Cohen’s d=-0.14, p=0.0005), medial orbitofrontal (Cohen’s d=-0.11, p=0.002), and 
postcentral regions (Cohen’s d=-0.13, p=0.0006; Fig. 3A and Supplementary Table 14). These edges 
all showed reduced leftward asymmetry in ASD relative to controls (Supplementary Table 14). A 
significant association was also observed between ASD and connectivity asymmetry between the rostral 
middle frontal and three other regions, which were the inferior parietal region (Cohen’s d=-0.13, 
p=0.0004), fusiform (Cohen’s d=-0.12, p=0.0004), and precuneus (Cohen’s d=-0.17, p<0.0001) after 
FDR correction (Fig. 3B and Supplementary Table 15). All of these effects involved lower leftward 
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asymmetry in ASD compared to controls. In addition, connectivity between the superior frontal and 
paracentral cortex showed a significant association with ASD (Cohen’s d=0.12, p=0.001; Fig. 3C and 
Supplementary Table 16). This connectivity showed lower rightward asymmetry in ASD compared to 
controls. In total, among the nine regions with altered connectivity asymmetry in ASD according to 
edge-level analysis, four were among those associated with altered cortical thickness asymmetry as 
previously found in separate region-by-region testing in the ENIGMA ASD data13.  

Functional annotation of networks with altered lateralized connectivity in ASD 

The most prominently shared functional annotation for all three networks that showed associations of 
degree centrality asymmetry with ASD was ‘working memory’ (Fig. 4 and Supplementary Table 17). 
However, each network also had additional cognitive annotations. Disrupted asymmetry of fusiform 
connectivity involved cortical regions that are especially active during executive control, reading and 
motor tasks (Fig. 4A and Supplementary Table 17). Regions with altered connectivity asymmetry 
linked to the rostral middle frontal cortex were associated with executive, reading and attention tasks 
(Fig. 4B and Supplementary Table 17). Finally, alteration of superior frontal connectivity asymmetry 
involved regions associated with executive and sensorimotor tasks (Fig. 4C and Supplementary Table 
17). 

Sensitivity analyses 

Across the defined range of sparsity thresholds (0.25-0.5), all of the associations remained significant 
between ASD and the asymmetries of degree centrality and nodal global efficiency, for the regions of 
fusiform, rostral middle frontal, superior frontal and medial orbitofrontal cortex (Supplementary Table 
18); this indicated that the findings were robust to threshold selection. 

After adding a non-linear age2 term to the linear mixed effects models, the effects of case-control status 
on the 7 affected network HDs remained significant and largely unaffected (Supplementary Table 19). 

 

Discussion 

We used a cortex-wide, graph-based approach to investigate differences of topological network 
asymmetries between individuals with ASD and unaffected controls across 43 datasets of the 
international ENIGMA consortium's ASD Working Group. We found significantly lower asymmetry of 
topological network measures which may reflect altered information transfer in individuals with ASD 
relative to controls, specifically involving the fusiform, prefrontal and orbitofrontal cortex. The findings 
were largely driven by a shift to greater randomization of right hemispheric network organization in 
ASD. The affected structural covariance networks included prefrontal, parietal, posterior cingulate and 
paracentral cortical regions. Data-driven functional annotation, using meta-analyzed fMRI data, 
consistently identified working memory as a function that may be especially affected by network 
asymmetry alterations in ASD, consistent with executive function challenges characteristic of ASD53-55.  

The network-level findings provide a new understanding of the widespread, dispersed topography of 
altered cortical thickness asymmetry in ASD that was reported in a previous ENIGMA-ASD study 
(which used separate region-by-region testing13). In other words, some of the altered regions can now be 
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understood in terms of their embedding within specific structural networks that show altered asymmetry 
in ASD, and have particular functional annotations (more on this below). In general, many cognitive 
processes involve a degree of left-right hemispheric dominance in the healthy brain7, so that the typical 
asymmetry pattern in the population is likely to be an optimal form of brain organization. It follows that 
alterations of network-level asymmetry may have functional consequences. As ASD is a childhood-
onset disorder, and the majority of individuals in this study were children, the present findings provide 
further evidence that altered lateralized neurodevelopment is subtly disrupted in ASD. The network-
level findings further imply that inter-regional connections may propagate disrupted cortical thickness 
asymmetries among sets of spatially distant cortical regions, i.e., intra-hemispheric topographic 
connectivity may help to shape spatial patterns of cortical pathology in ASD.  

The effect sizes in this study were small, with Cohen's d ranging from -0.15 to 0.14. These findings 
indicate that case-control group average differences in structural network asymmetry are very subtle in 
ASD, and of similar magnitude to those reported in previous ENIGMA consortium studies of brain 
regional anatomy and asymmetry in ASD13, 16. Future studies may apply normative modelling56 or 
clustering57 approaches to identify subgroups of individuals with highly atypical structural network 
asymmetry, and these may constitute etiological subgroups of ASD. MRI-based regional cortical 
thickness measures are fairly crude biological readouts, affected by numerous possible underlying 
factors, including the degree of myelination58, as well as the numbers and densities of different types of 
cells and dendritic processes59-61. Therefore it also remains possible that subtly altered network 
asymmetry at the macro scale in ASD reflects more substantial alterations at finer levels of analysis. For 
example, neurite orientation dispersion and density imaging has been used to study grey matter 
microstructural asymmetries in vivo62, or the ratio of T1w and T2w images in grey matter can be used to 
create an estimate of cortical myelin content63. Future post mortem studies of cortical histology and gene 
expression may also reveal microstructural and/or molecular alterations, but there is currently limited 
data available from homotopic regions of the two hemispheres, as many brain banks assign the left and 
right hemispheres into distinct storage and analysis protocols64. 

Three specific cortical regions had node-level degree centrality asymmetries that were significantly 
altered in ASD: the fusiform, rostral middle frontal, and superior frontal cortices. Our meta-analyzed 
fMRI-based annotations implicated a range of functions mapping to each of the affected networks 
involving these regions (Fig. 4), which included working memory and other executive function-related 
annotations in common across the networks, but also language-related, reading-related, and 
sensorimotor annotations. Language delay is a common feature of ASD5, 6, and the disorder is also 
associated with reduced left-hemisphere language dominance11. Numerous reports based on behavioral, 
neurophysiological, neuroimaging or histopathological data have also reported atypical motor system 
development in ASD65. Our findings may therefore indicate that alterations of specific right-hemisphere 
structural networks underlie some of the language- and motor-related deficits in ASD.  These functional 
annotations, that were based on meta-analyzed fMRI data from other cohorts, motivate future studies of 
brain-behaviour correlations using neuroimaging and behaviour data from the same affected individuals. 

The fusiform gyrus is especially known to show right-lateralized activation in response to face-related 
perception66-69, which is important in social interactions. Reduced rightward functional asymmetry for 
face processing has been associated with ASD70, so face processing may be one aspect of cognition that 
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is disrupted by increased randomization of a right-hemispheric structural network that includes the 
fusiform gyrus. The rostral middle frontal cortex (dorsolateral prefrontal cortex), has been proposed to 
act as a coordinating hub in cognitive control tasks, as part of a frontal-parietal network71. This region 
has been shown to be abnormally active in the left hemisphere in ASD relative to typically developing      
controls in a recent meta-analysis of cognitive control tasks72. Resting-state fMRI data have also 
suggested a rightward shift in asymmetry of executive control networks in ASD73. Moreover, white 
matter network analysis has suggested that individuals with ASD exhibit a greater age-related increase 
in global efficiency involving the right dorsolateral prefrontal cortex than typically developing controls74. 
The superior frontal cortex is known as a core region of the default mode network, which can show 
altered functional asymmetry in ASD73. Abnormal lateralization of functional connectivity between the 
superior frontal gyrus and temporal cortex has also been reported in ASD, and associated with language 
and social deficits12. Our findings further support altered lateralization of superior frontal cortex 
connectivity in ASD, demonstrated here on a structural level.  

For the medial orbitofrontal cortex, there was a significant association of its nodal global efficiency 
asymmetry with ASD, but no significant association with its degree centrality asymmetry, and we 
therefore did not include it in fMRI-based annotation and edge-level analysis. The medial orbitofrontal 
cortex was the only cortical region to show altered asymmetry of both cortical thickness and surface area 
in individuals with ASD, in a previous ENIGMA consortium study that tested it separately region-by-
region (not in a network context)13. Another study found that alterations in structural covariance 
between inferior frontal cortex and the left orbitofrontal cortex was modulated by language ability within 
ASD individuals33, suggesting a possible contribution of the orbitofrontal cortex to communication 
deficits in ASD. 

Within ASD individuals, we found no associations of the affected network asymmetry metrics with 
autism symptom severity, psychiatric medication usage, IQ, sex or handedness. Age showed an 
association with one network metric HD, i.e., the nodal global efficiency HD of the medial orbitofrontal 
cortex, but apart from this single effect, we were unable to link structural network asymmetries to the 
within-case phenotypic variables available in the current study. Deeper phenotyping may be needed to 
understand the relevance of structural connectivity asymmetry alterations in terms of clinical 
heterogeneity75, 76. For example, only total ADOS scores were available through the consortium (rather 
than subscores that reflect different behavioural dimensions)39, and data on medication usage and 
comorbidities were limited to relatively small subsets of the overall data (see Methods). Future 
longitudinal studies may help to characterize atypical developmental trajectories of asymmetry patterns 
in ASD, and capture causal and dynamic processes of structural asymmetry alterations over the course 
of the disorder. It is also possible that altered structural connectivity will not map onto any identifiable 
symptom domains of ASD, but rather reflects a shared susceptibility mechanism across various 
individuals with heterogeneous presentations of ASD, and potentially other diagnoses too. 

In conclusion, this consortium study identified small group-average differences between ASD 
individuals and unaffected controls in specific aspects of the asymmetry of hemispheric structural 
connectivity networks. The affected networks mapped most consistently to working memory as a 
function that is influenced by alterations of network connectivity asymmetry in ASD. These findings 
help to elucidate altered cortical thickness asymmetry in ASD in terms of hemispheric network 
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architecture, and suggest that neurodevelopmental alterations of brain asymmetry in ASD may 
propagate via structural connectivity. 
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Table 1. Characteristics of the 43 datasets of the ENIGMA Autism Spectrum Disorder working 
group that were used in this study. 

Dataset 
no. Dataset name 

N 
total 

N 
cases 
(M/F) 

N 
controls 
(M/F) Mean age (min, max) 

Scanner 
type 

Field 
strength 

1 ABIDE_CALTECH 31 13/1 13/4 29.05 (17.5,56.2) 
Siemens 
Trio 3T 

2 ABIDE_LEUVEN_2 35 12/3 15/5 14.16 (12.1,16.9) 
Philips 
Interna 3T 

3 ABIDE_MAX_MUN 51 21/3 24/3 26.47 (7,58) 
Siemens 
Verio 3T 

4 ABIDE_NYU 184 68/10 81/25 15.29 (6.47,39.1) 
Siemens 
Allegra 3T 

5 ABIDE_OLIN 36 17/3 14/2 16.81 (10,24) 
Siemens 
Allegra 3T 

6 ABIDE_PITT 58 26/5 23/4 19.17 (9.33,35.2) 
Siemens 
Allegra 3T 

7 ABIDE_SBL 30 15/0 15/0 34.37 (20,64) 
Philips 
Interna 3T 

8 ABIDE_SDSU 37 14/1 16/6 15.04 (8.67,37.7) GE MR750 3T 
9 ABIDE_STANFORD 40 16/4 16/4 9.96 (7.53,12.94) GR Signa 3T 

10 ABIDE_TCD 55 24/1 30/0 16.66 (9.3,25.91) 
Philips 
Achieva 3T 

11 ABIDE_UM_1 126 48/14 41/23 12.82 (8.07,20.9) GE Signa 3T 
12 ABIDE_UM_2 31 14/1 15/1 15.27 (11.14,26.8) GE Signa 3T 

13 ABIDE_USM 100 59/0 41/0 21.34 (8.2,50.22) 
Siemens 
Trio 3T 

14 ABIDE_YALE 55 20/8 19/8 12.72 (7,17.83) 
Siemens 
Magnetom 3T 

15 ABIDEII-BNI 57 28/0 29/0 38.11 (18,64) 
Philips 
Ingenia 3T 

16 ABIDEII-EMC 41 18/2 19/2 8.32 (6.4,10.66) GE MR750 3T 

17 ABIDEII-ETH 31 11/0 20/0 22.93 (13.83,30.67) 
Philips 
Achieva 3T 

18 ABIDEII-GU 98 39/8 26/25 10.71 (8.06,13.91) 
Siemens 
TriTim 3T 

19 ABIDEII-IP 52 14/7 9/22 20.66 (6.05,46.6) 
Siemens 
TriTim 1.5T 

20 ABIDEII-IU 39 15/4 15/5 24.38 (17,54) 
Philips 
Achieva 3T 

21 ABIDEII-KKI 199 35/15 94/55 10.34 (8.01,12.99) 
Philips 
Achieva 3T 

22 ABIDEII-NYU_1 72 38/4 28/2 10.05 (5.22,34.76) 
Siemens 
Allegra 3T 

23 ABIDEII-OHSU 92 29/7 27/29 10.98 (7,15) 
Siemens 
Skyra 3T 

24 ABIDEII-OILH 39 12/1 17/9 23.54 (18,31) 
Siemens 
TriTim 3T 

25 ABIDEII-SDSU 57 26/7 22/2 12.99 (7.4,18) GE MR750 3T 
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26 ABIDEII-TCD 41 19/0 22/0 15.38 (10,20) 
Philips 
Achieva 3T 

27 ABIDEII-USM 32 15/2 12/3 21.36 (9.12,38.86) 
Siemens 
TriTim 3T 

28 BRC 44 17/0 27/0 14.75 (10,18) 
GE Signa 
HDx 3T 

29 Barcelona 52 29/2 20/1 11.97 (7.25,17.08) 
Siemens 
Trio 3T 

30 Dresden 45 18/3 20/4 35.33 (21.1,56.8) 
Siemens 
Trio 3T 

31 FAIR 81 33/6 27/15 11.47 (7.84,15.94) 
Siemens 
Magnetom 3T 

32 FSM 80 20/20 20/20 4.1 (1.83,6) GE Signa 1.5T 

33 MRC 137 67/0 70/0 26.96 (18,45) 
GE Signa 
HDx 3T 

34 PITT_1 56 11/3 34/8 16.32 (8,36) 
Siemens 
Allegra 3T 

35 PITT_2 89 38/6 39/6 16.97 (8,36) 
Siemens 
Allegra 3T 

36 ParelladaHGGM 66 33/2 30/1 12.52 (7,18) 
Philips 
Intera 1.5T 

37 TCD_2 27 10/0 17/0 16.94 (12.7,24.8) 
Philips 
Achieva 3T 

38 TORONTO_1 177 70/20 45/42 11.83 (3.3,20.8) 
Siemens 
Trio 3T 

39 TORONTO_2 192 99/41 28/24 11.03 (2.48,21.67) 
Siemens 
Trio 3T 

40 UMCU_1 57 25/3 27/2 14.3 (7.11,24.72) Philips 1.5T 

41 NIJMEGEN2 68 27/18 15/8 26.29 (18,40) 
Siemens 
Avanto 1.5T 

42 NIJMEGEN3 92 36/4 43/9 9.54 (6.07,12.27) 
Siemens 
Avanto 1.5T 

43 NIJMEGEN1 33 14/3 14/2 14.95 (12.28,18.02) 
Siemens 
Trio 3T 
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Figure legends 

Figure 1. Schematic workflow of this study. 

(A) Flowchart of the procedure used in the current study. We first constructed intra-individual, intra-
hemispheric structural covariance networks in each dataset using regional cortical thickness data. Then, 
for each individual, we computed graph theory metrics at the global and nodal levels using the intra-
hemispheric networks. Finally, we calculated individual-level hemispheric differences for each metric, 
to examine case-control differences of topological network asymmetry. (B) Small-world network model. 
At the whole-hemisphere level, we estimated network integration and segregation using small-world 
parameters. A regular network is characterized by a high clustering coefficient and long shortest path 
length, corresponding to high local specialization and low global integration. In contrast, a random 
network has a low clustering coefficient and short shortest path length, corresponding to low local 
specialization and greater global integration. A small-world model reflects a balance between the 
extremes of local specialization versus global integration. (C) At the nodal level, we examined four 
graph theory measures: degree centrality and nodal global efficiency both measure global connectivity 
from/to a given node, whereas the cluster coefficient and nodal local efficiency reflect local connectivity 
from/to that node. Abbreviations: ASD: autism spectrum disorder; HC: healthy control; SD: standard 
deviation. 

 

Figure 2. Cohen’s d effect sizes of ASD case-control associations for node-level topological 
asymmetries.  

(A) Effect sizes from ASD case-control analysis of node-level topological metric asymmetries that 
reflect global connectivity of each node, i.e., degree centrality and nodal global efficiency. (B) Effect 
sizes from ASD case-control analysis of nodal-level topological metric asymmetries that reflect local 
connectivity of each node, i.e., the clustering coefficient and nodal local efficiency. Positive effect sizes 
(orange-yellow) indicate shifts towards greater leftward or reduced rightward asymmetry in ASD 
compared to controls, and negative effect sizes (blue) represent shifts towards greater rightward 
asymmetry or reduced leftward asymmetry in ASD compared to controls. 

 

Figure 3. Altered asymmetry of connectivity linking to the nodes with significant alterations of 
degree centrality asymmetry in ASD. 

(A) Altered asymmetry of connectivity linked to the fusiform in ASD. (B) Altered asymmetry of 
connectivity linked to the rostral middle frontal cortex in ASD. (C) Altered asymmetry of connectivity 
linked to the superior frontal cortex in ASD. The yellow nodes indicate the brain regions. Red indicates 
a significant edge-level, reduced rightward asymmetry of connectivity in ASD compared to controls, 
and blue indicates an edge-level, reduced leftward asymmetry of connectivity in ASD compared to 
controls.  
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Figure 4. Cognitive functions associated with cortical regions showing altered connectivity 
asymmetry. 

Meta-analyzed fMRI data were used to functionally annotate cortical regions showing altered 
connectivity asymmetry with the fusiform (A), rostral middle frontal (B) or superior frontal (C) cortex. 
Left panels indicate the regions showing alterations of lateralized connectivity, which were used as input 
masks to the decoder function of Neurosynth (see Methods). Middle panels show the brain co-activation 
maps corresponding to the input masks. Right panels show the cognitive terms corresponding to the co-
activation maps, in word-cloud plots. The font sizes of the cognitive terms indicate their map-wide 
correlations with the co-activation maps (correlation coefficients are in Supplementary Table 17).  
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Figure 1. Schematic workflow of this study. 
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Figure 2. Cohen's d effect sizes of ASD case-control associations for node-level topological 
asymmetries. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442735doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442735


34 

 

 

Figure 3. Altered asymmetry of connectivity linking to the nodes with significant alterations of degree 
centrality asymmetry in ASD. 
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Figure 4. Cognitive functions associated with cortical regions showing altered connectivity asymmetry. 
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