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 2 

Summary 26 

Cellular immunotherapies are rapidly gaining clinical importance, yet predictive platforms for 27 

modeling their mode of action are lacking. Here, we developed a dynamic immuno-organoid 28 

3D imaging-transcriptomics platform; BEHAV3D, to unravel the behavioral and underlying 29 

molecular mechanisms of solid tumor targeting. Applied to an emerging cancer metabolome-30 

sensing immunotherapy: TEGs, we first demonstrate targeting of multiple breast cancer 31 

subtypes. Live-tracking of over 120,000 TEGs revealed a diverse behavioral landscape and 32 

identified a ‘super engager’ cluster with serial killing capability. Inference of single-cell 33 

behavior with transcriptomics identified the gene signature of ‘super engager’ killer TEGs, 34 

which contained 27 genes with no previously described T cell function. Furthermore, guided 35 

by a dynamic type 1 interferon (IFN-I) signaling module induced by high TEG-sensitive 36 

organoids, we show that IFN-I can prime resistant organoids for TEG-mediated killing. Thus, 37 

BEHAV3D characterizes behavioral-phenotypic heterogeneity of cellular immunotherapies 38 

and holds promise for improving solid tumor-targeting in a patient-specific manner. 39 

 40 
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 3 

Introduction 47 

Single-cell analyses are providing unprecedented opportunities to analyze the complexity of 48 

biological systems (van der Leun et al., 2020). However, they are restricted to providing a 49 

snapshot of cellular processes at a given timepoint. Yet living cells are highly dynamic, and 50 

their dynamic behavior shapes their function. Therefore, the development of technologies that 51 

address individual cell dynamics within a population is essential for understanding cellular 52 

behaviors and how these behaviors relate to function. Immune cells engineered to locate and 53 

kill tumor cells represent such dynamic cell populations with an increasing clinical importance 54 

(June and Sadelain, 2018). Successes of T cell therapies for hematological malignancies have 55 

sparked efforts to translate such approaches to solid tumors, including breast cancer (BC), but 56 

efficacy has so far been limited (Chen and Mellman, 2017). This poses a clear need for better 57 

understanding the mechanism of action of cellular therapies in order to optimize treatment 58 

design.  59 

 60 

Because of challenges in identifying tumor-specific antigens for solid cancers (Schumacher et 61 

al., 2019), pan-tumor therapies that recognize metabolic alterations in cancer cells are being 62 

explored (Crowther et al., 2020). This includes an emerging therapy called TEGs, which are 63 

peripheral blood ab T cells engineered to express a Vg9/Vd2 T cell receptor (TCR), comprising 64 

both CD4+ and CD8+ subsets (Gründer et al., 2012; Johanna et al., 2019; Marcu-Malina et al., 65 

2011; Sebestyen et al., 2019; Vyborova et al., 2020). These hybrid cells have the ability to 66 

recognize cancer cells via the Vg9/Vd2 TCR that senses metabolic changes through the recently 67 

identified ligand butyrophilin 2A1 (BTN2A1) bound to BTN3A1 (Rigau et al., 2020; Vyborova 68 

et al., 2020). Yet, they maintain the high proliferation and memory capacity of conventional 69 

ab T cells (Marcu-Malina et al., 2011). TEGs are currently in clinical trials for various 70 
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 4 

leukemia (Sebestyen et al., 2019), but their potential to target solid tumors remains unknown 71 

and should be adressed in adequate preclinical models. 72 

 73 

There is a growing interest to use organoid technology to model immunotherapy function (Bar-74 

Ephraim et al., 2019; Cattaneo et al., 2020; Neal et al., 2018; Schnalzger et al., 2019; Dijkstra 75 

et al., 2018). Patient-derived organoids (PDOs) provide reliable in vitro human cancer models 76 

that recapitulate important characteristics of the original tumor specimen (Tuveson et al.), 77 

allowing for the study of patient-specifc therapy responses (Ganesh et al., 2019; Ooft et al., 78 

2019; Tiriac et al., 2018; Vlachogiannis et al., 2018; Yao et al., 2020). In addition, imaging has 79 

proven to be a powerful approach to characterize the spatial cellular organization and tissue 80 

dynamics in these 3D structures (Dekkers et al., 2019; van Ineveld et al., in press; Lukonin et 81 

al., 2020; 2019; Serra et al., 2019). Here, we aim to combine organoid and 3D imaging 82 

technology for the analysis of functional single cell behavior integrated with transcriptomic 83 

profiling to decipher and manipulate the solid tumor-targeting strategy of engineered immune 84 

cells (Video S1). 85 

 86 

Results 87 

 88 

3D live-tracked TEG targeting efficacy  89 

We devised a multispectral 3D image-based platform; BEHAV3D, to live-track efficacy and 90 

mode-of-action of cellular immunotherapy for ~60 human cancer organoid cultures 91 

simultaneously (Figures 1A-1C; Video S1). Multiple real-time fluorescent dyes and nanobody 92 

technology were implemented for single acquisition 4-fluorophore spectral 3D imaging of T 93 

cell populations, organoids, and dead cells, allowing us to track single TEGs, individual 94 

organoids and their death-dynamics over 24 h (Figures 1B, 1C, and S1A-S1C). We detected 95 
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a high variation of TEG-mediated killing efficacy in cultures derived from 14 BC patients 96 

(Figure 1D; Table S1), and different targeting kinetics over time (Figures 1E, 1F, and S1D-97 

S1F), with percentages of dying PDOs ranging from near 0% (e.g. 34T) to 100% (e.g. 13T) 98 

(Figure 1F). Pearson correlation analysis between imaging data and a commonly used cell 99 

viability assay (Figures S1G and S1H), or interferon gamma (IFN-γ) secretion measured by 100 

ELISA (Figures S1I and S1J), confirmed robustness of our imaging quantification method. 101 

Among the 6 highest TEG-sensitive PDO cultures (above 50% dying organoids; Figure 1F), 102 

we noted cultures derived from primary BC of distinct subtypes (triple negative breast cancer 103 

(TNBC), human epidermal growth factor receptor 2 (HER2)+, estrogen receptor (ER)+, and 104 

ER+ progesterone receptor (PR)+HER2+) and from a metastasis derived from a HER2+ primary 105 

tumor (Figures 1D and 1F), supporting the potential of TEGs in targeting a broad spectrum of 106 

BCs. Importantly, TEGs control the growth of PDO-derived breast tumors (TNBC primary 107 

tumor and HER2+ metastasis) in mouse xenograft models (Figure 1G), showing efficacy of 108 

TEG for BC in vivo. 109 

 110 

PDO inflammatory features associate with TEG sensitivity 111 

Bulk RNA sequencing of PDOs revealed differentially expressed genes (DEGs) between the 6 112 

lowest versus the 6 highest TEG-sensitive PDO cultures (Table S2), related to upregulated 113 

cadherin signaling and steroid biosynthesis pathways in TEG-insensitive cultures, whereas 114 

cytokine signaling, as well as extracellular matrix (ECM) organization, correlated with high 115 

sensitivity to TEG therapy (Figures 1H, and S1K-S1M). The highest association was found 116 

between TEG killing and type 1 interferon (IFN-I) signaling genes, including MX1, IFIT1, 117 

OASL, and XAF1, which were highly expressed especially in the 2 highest TEG-sensitive PDO 118 

cultures; 14T and 13T (Figures 1H, and S1M). Thus, PDOs maintain tumor-specific 119 
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inflammatory features in culture, highlighting their utility for modeling cellular 120 

immunotherapy responses in a patient-specific manner. 121 

 122 

TEGs display a high diversity in behavior and killing potential 123 

BEHAV3D implements single immune cell tracking in a 3D space over time and behavioral 124 

classification (Figures 1B, and 2A; Video S1), revealing that -when exposed to PDOs- TEGs 125 

could be separated into nine subpopulations with unique behavioral patterns (Figures 2B-2D, 126 

and S2A, S2B). Patterns varied from inactive behaviors (dying, static and lazy) to active 127 

motility (slow scanner, medium scanner and super scanner) and organoid engagement (tickler, 128 

engager and super engager), thus demonstrating a high level of behavioral heterogeneity. 129 

Having captured their behavioral single-cell landscape in this classifier (Figures S3C-S3E), 130 

we next predicted TEG behavior when co-cultured with PDOs that showed varying TEG 131 

sensitivity (34T, 100T, 27T, 10T or 13T; Figure 1F), as well as an organoid culture derived 132 

from normal breast tissue, which only showed minimal death when cultured with TEGs 133 

(Figure 2E). A total of 123,296 TEGs were live-tracked to investigate how the organoid 134 

(inflammatory) profile shapes T cell behavior. For each PDO culture, TEGs displayed unique 135 

distributions of behavioral signatures (Figure 2E) and higher organoid killing associated with 136 

an increase in tumor engagement (tickler, engager and super engager), while static, lazy and 137 

medium scanner behavior decreased (Figure 2F). Correlation between single organoid dying 138 

dynamics and TEG engagement over time revealed that organoids contacted by super 139 

engagers, as compared to other organoid-engaging clusters, had the highest chance of being 140 

killed (Figures 2G, and S2F). This indicates that effective killing by TEGs relies on prolonged 141 

organoid contact, a main feature of super engagers (48 ± 8 min / hr; mean ± s.d.). 142 

 143 

 144 
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Serial killing capability of super engager CD8+ TEGs 145 

We next linked behaviors to population phenotypes by first differentially labeling CD4+ and 146 

and CD8+ T cells (Figures 3A, and S3A). This revealed that prolonged organoid contact and 147 

super engager behavior was a preferred feature of CD8+ TEGs, whereas CD4+ TEGs showed 148 

a higher proportion of lazy cells, slow scanners, medium scanners, super scanners, and ticklers 149 

(Figures 3A-3C) characteristic of high movement and short organoid contact (Figure 2C). 150 

Furthermore, long-term behavior classification and back-projection of cells classified in the 151 

live-tracked imaging dataset (Figures S3B and S3C), showed that single CD8+ TEGs, once 152 

engaged with an organoid, most often killed multiple cells consecutively (serial killing) 153 

(Figures 3D-3G), a preferred feature of engineered T cells(Cazaux et al., 2019; Halle et al., 154 

2016; Weigelin et al.). In contrast, CD4+ TEGs often moved away after organoid engagement 155 

without killing, but occasionally targeted individual cells in different organoids (Figures 3D-156 

3F, and S3D) thereby displaying slower killing rates (Figure 3H). Serial killing by super 157 

engager CD8+ TEGs was characterized by attachment to PDOs using a defined anchor point 158 

from where surrounding cells were killed via long protrusions, intercalating between epithelial 159 

cells and extending their initial size up to 5 times (Figures 3E, and S3E and S3F). 160 

Remarkably, single CD8+ TEGs were able to kill entire organoids (up to 18 cells in 11 hrs; 161 

Figures 3E and 3G; Video S1). This extent of serial killing and morphological plasticity of 162 

super engager CD8+ TEGs was uniquely revealed by the high spatiotemporal resolution 163 

character of BEHAV3D.  164 

 165 

NCAM1 associates with super engager behavior  166 

Through single cell RNA sequencing (scRNAseq), we observed differential expression of 167 

NCAM1 in CD8+ TEGs (Figures 3I, S3G and S3H; Table S3). Although linked to 168 

cytotoxicity in both ab and gd T cells(Van Acker et al., 2017), this surface marker has not been 169 
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examined in the context of cellular immunotherapy. We confirmed potent effector function 170 

related to NCAM1 expression, by showing that NCAM1+CD8+ TEGs had a higher capacity to 171 

kill 13T organoids compared to NCAM1-CD8+ TEGs (Figure 3J). To identify behavioral 172 

mechanisms underlying this high killing potential, we pre-labeled CD8+ TEGs with NCAM1 173 

nanobodies (Figure 3K), to directly compare NCAM1-positive and -negative populations 174 

within the same environment. NCAM1+CD8+ TEGs showed reduced dying and static behavior 175 

(Figures 3L and 3M, and S3I), supporting a higher in vitro persistence. Strikingly, 176 

NCAM1+CD8+ TEGs additionally showed a significant increase in super engager behavior 177 

compared to NCAM1-CD8+ TEGs (Figure 3L and 3M). Thus, surface marker expression can 178 

be linked to engineered T cell behavior, offering the opportunity to enrich for potent effector 179 

behaviors.  180 

 181 

Behavioral-transcriptomic profiling of TEGs  182 

To generate insight into the transcriptional programs that underlie tumor-targeting dynamics 183 

revealed by BEHAV3D, we next performed single cell transcriptomic profiling of TEG 184 

populations enriched for different behavioral signatures, including a TEG population 185 

containing > 90% super engagers (Figures 4A and 4B, and S4A; Video S1). For each main 186 

TEG subset, effector CD8+ (CD8+eff), effector CD4+ (CD4+eff) and memory CD4+ (CD4+mem), 187 

profound transcriptional changes were observed upon 6 h co-culture with highly targeted 13T 188 

organoids, as compared to baseline (no target control) (Figures 4C-4E), showing that dynamic 189 

interplay with PDOs shapes the TEG transcriptomic profile. Behavioral probability mapping 190 

inferred from pseudotemporal ordering (Figure S4B) of the sequenced TEG populations 191 

(Figure 4F), revealed dynamic transcriptional programs that were highly conserved between 192 

CD8+eff, CD4+eff, and CD4+mem TEGs (Figure 4G; Gene cluster (CL)1-3; 85% of genes; Table 193 

S4). These programs included genes to be down- (CL1) or up-regulated (CL3) by 194 
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environmental stimuli or engagement to PDOs, as well as genes transiently expressed (CL2) 195 

along the pseudotime trajectory (Figure 4G; GO terms per CL in Figure S4C). This 196 

differential dynamic expression matched with known gene function, confirming robust 197 

ordering of TEGs, as shown by genes related to the CD3 signaling complex (LCK, SOS1, 198 

CD3E, CD3G; CL1; GO term ‘T cell activation’), known to be down-regulated upon T cell 199 

activation(Liu et al., 2000) in CL1 (Figure 4H). NF-kB signaling, critical for tumor 200 

control(Barnes et al., 2015), and effector molecules including FASLG, IFNG, GZMB, TNF 201 

were found in CL3, with NF-kB signalling induced by environmental stimuli reaching 202 

maximum expression upon prolonged PDO-engagement, while the effector molecules 203 

appeared upon engagement (Figure 4I). In addition, CL3 contained genes related to rRNA 204 

processing that only increased upon prolonged engagement with organoids (Figure 4H), 205 

consistent with accelerated protein production in T cells following TCR engagement(Asmal et 206 

al., 2003; Tan et al., 2017). Finally, CL2 contained early activation markers CD69 and EGR1 207 

with peak expression upon short organoid engagement, in line with IL-2 (CL3), known to be 208 

induced by EGR1(Collins et al., 2006), upregulated towards the end of the trajectory (Figure 209 

4I). Thus, through our behavior-guided transcriptomics approach we robustly identified 210 

dynamic gene orchestration of TEG during tumor targeting.  211 

 212 

Gene signature related to (serial) killing super engager TEGs 213 

Of gene sets regulated in a TEG subset-specific manner (CL4-8; 15% of genes), CL7 contained 214 

genes mainly induced upon prolonged organoid engagement, including cytotoxic genes (e.g. 215 

PRF1, CRTAM, XCL1) (Figures 4H and 4I; GO: ‘Regulation of cell killing’). This cluster of 216 

genes was specifically induced in super engager CD8+eff, and to a lesser extent in CD4+eff 217 

TEGs, and almost absent in CD4+mem TEGs (Figure 4J), associating this gene cluster with 218 

potent (serial) killing T cells (Figures 3D-3G). Analysis of TEGs derived from a different 219 
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healthy donor and co-cultured with another PDO culture (10T), confirmed that 61 out of the 220 

83 genes of CL7 represent a conserved ‘killer’ gene signature (Table S5). Of these, we 221 

identified 20 genes related to T cell activation and cytotoxicity and 14 genes related to other T 222 

cell functions (Figures 4K, and S4D). However, importantly, we found 27 genes with no 223 

previously described T cell function (Figures 4K, and S4D). Overall, half of all conserved 224 

signature genes (31/61) and 17 out of the 27 novel genes were related to morphological 225 

plasticity processes, such as motility, cytoskeleton remodeling and adhesion (Figure S4D). 226 

Given that morphological plasticity is a key determinant of cell migration, many of the novel 227 

genes were found to have a role in promoting tumor cell migration and invasion, including 228 

ECM production and mesenchymal state induction (HEG1, BZW2, DCAF13, SQLE, PKIA). 229 

For some of these genes, such as CCT3 or AFAP1L2, the mechanism promoting migration is 230 

yet undescribed. In line with the prolonged organoid engagement behavioral feature of super 231 

engager TEGs (Figure 2C), we also found various genes related to cell adhesion, such as 232 

NCEH1, BYSL or EMP1. Finally, some genes had an additional function related to neurite 233 

outgrowth and dendritic pruning (SERPINE2, CHD4, NRTK1), potentially matching the long 234 

protrusion that were observed to occur in these serial killing TEGs (Figures 3E, and Figure 235 

S3E and S3F; Video S1). Thus, behavioral transcriptomics identified a specific gene signature 236 

induced in (serial) killing super engager TEGs. 237 

 238 

PDOs shape the dynamic gene signature of TEG during tumor targeting 239 

To further explore our behavioral-guided transcriptomics approach, we next compared 240 

behavior-enriched TEG populations co-cultured between either highly sensitive 13T or 241 

intermediately targeted 10T PDOs. Distinct UMAP embedding of different TEG populations 242 

(Figure 5A) indicated that the patient-specific organoid exposure influences the dynamic TEG 243 

transcriptional profile. 41% or 61% of upregulated genes by environmental stimuli or upon 244 
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prolonged PDO engagement in super engagers, respectively, were common between 10T- and 245 

13T-co-cultured TEGs (Figures 5B, and S5A and S5B; Table S6).  Common super engager-246 

related gene signatures included rRNA processing, NF-kB signaling and cytokine signaling 247 

(Figure S5B), and matched CL3 gene signatures (Figure S4C). However, 10T-co-cultured 248 

TEGs were characterized by induction of high cytokine expression upon prolonged PDO 249 

engagement, including TNF, IFNG and IL2, whereas IFN-I signaling genes were uniquely 250 

induced in TEGs co-cultured with highly sensitive 13T (Figures 5C, and S5C).  251 

 252 

IFN-b primes PDOs for TEG mediated killing  253 

IFN-I signaling plays fundamental roles in anti-tumor immunity, yet with diverse and 254 

sometimes opposing functions reported for both tumor and immune cells, thereby making it 255 

difficult to fully comprehend and therapeutically exploit these effects(Boukhaled et al., 2021). 256 

IFN-I signaling was detected in 13T organoids (Figure S1M), which most prominently 257 

displayed increased RNA levels of the upstream mediator IFN-b, but not IFN-a, among our 258 

collection of PDOs (Figure 5D). Secretion of IFN-b was confirmed by Luminex (Figure S5D), 259 

implying that IFN-b was the main mediator of IFN-I signaling observed in 13T. Interestingly, 260 

peak induction of IFN-I signaling in 13T-co-cultured TEGs was detected in non-organoid-261 

engaging TEGs (from static to super scanner behavior), in line with a secreted source of IFN-262 

b, while the pathway was shut down in super engager TEGs, suggesting a limited role of IFN-263 

I signaling in direct killing behavior (Figures 4F-4H). Adding recombinant IFN-b to co-264 

cultures of TEGs with various PDOs that showed low to medium sensitivity to TEG therapy 265 

(100T, 34T, 27T and 10T) indeed did not affect TEG targeting efficacy (Figure 5E). However, 266 

34T, 27T and 10T organoids pre-treated with IFN-b showed increased TEG-mediated killing, 267 

while IFN-b treatment did not impact organoid viability by itself (Figures 5F and 5G). These 268 

data support that IFN-b has limited impact on the killing capacity of super engager TEGs, 269 
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confirming that dynamic IFN-I signaling is mainly associating with static to scanner behavior. 270 

Importantly however, IFN-I signaling increases the sensitivity of organoids to TEG therapy. 271 

Thus, behavior-guided TEG transcriptomics in relation to the type of organoid exposure reveals 272 

IFN-b to prime PDOs for targeting by TEGs. This illustrates the potential of the BEHAV3D to 273 

better understand and guide combinatory treatment approaches in a patient-specific manner. 274 

 275 

276 
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Discussion 277 

Here, we provide an organoid-based 3D imaging-transcriptomic platform; BEHAV3D, for 278 

understanding the mode-of-action of cellular anti-cancer immunotherapies in a patient-specific 279 

manner. Using this pipeline, we report on the broad targeting potential of TEGs for breast 280 

cancer, poorly permissive to current immunotherapies (Esteva et al., 2019). In addition, by 281 

behavior-guided transcriptomics we have generated, to our knowledge, the first molecular map 282 

underlying the behavioral landscape of immune cells targeted to solid tumors. By exploiting 283 

these results, we were able to design an optimal sequence of IFN-I and TEG combination 284 

therapy to boost TEG organoid targeting.  285 

Different from recent studies that have mapped the activation trajectories of murine 286 

immune cells during viral infection (Abbas et al., 2020), or human immune cells in normal 287 

physiology or cancer (Szabo et al., 2019), we here reconstructed activation trajectories for 288 

engineered T cells and uniquely exploited dynamic imaging data revealing their single-cell 289 

behavior. This allowed us to dissect gene programs induced by environmental stimuli, versus 290 

induction by short or prolonged tumor engagement, and thereby identify the gene signature of 291 

TEGs that (serially) killed tumor cells. This signature includes genes not previously linked to 292 

T cell function, thereby providing novel opportunities to potentially engineer next generation 293 

T cells with potent serial killing capability. Furthermore, multiple genes in this signature are 294 

associated with morphological plasticity. Such plasticity may underlie the remarkable cellular 295 

extensions of serial-killing TEGs, as observed in our 3D imaging data. Using these protrusions, 296 

TEGs intercalated between tumor cells while sequentially killing multiple tumor cells in the 297 

PDO, suggesting that morphological plasticity may be an important attribute in the targeting 298 

of solid tumors.   299 
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Type 1 IFNs have been described to be beneficial for the control of tumor growth, 300 

including in breast cancer, either by exerting direct antitumor effects (Dunn et al., 2005), or by 301 

improving the response to therapies, such as chemotherapy and checkpoint inhibition (Borden, 302 

2019; Sistigu et al., 2014). Yet, opposite roles in inducing treatment resistance have been 303 

described as well (Benci et al., 2016; Boukhaled et al., 2021; Jacquelot et al., 2019). By using 304 

defined immune-organoid co-cultures, we have shown that an IFN-I signature intrinsic to 305 

tumor cells associates with TEG sensitivity, and that IFN-b primes tumor cells for more 306 

efficient targeting, rather than directly affecting TEG killing behavior. Thus, our data support 307 

the clinical use of IFN-I in combination with TEGs and possibly other cellular 308 

immunotherapies. 309 

Adding to patient-specific drug responses observed in PDOs biobanks (Ganesh et al., 310 

2019; Jacob et al., 2020; Ooft et al., 2019; Tiriac et al., 2018; Vlachogiannis et al., 2018; Yao 311 

et al., 2020), we show that not only killing efficacy, but also the underlying behavioral and 312 

molecular mechanisms of cellular immunotherapy differ between different PDO cultures. We 313 

even detected differences in killing dynamics between individual organoids belonging to the 314 

same PDO culture. This demonstrates that our platform captures the inter- and intra-patient 315 

heterogeneity, a major obstacle for treating solid tumors (Yamamoto et al., 2019). It is 316 

intriguing that gene signatures induced in TEGs upon organoid engagement were partly 317 

dictated by the type of PDO. In addition, the extent of IFN-b pre-treatment outcome on tumor 318 

targeting differed between PDOs, with the highly resistant culture 100T remaining 319 

unresponsive, whereas 34T displayed the highest (4-fold) increase in targeting. Together, these 320 

findings warrant caution regarding generalizing the outcome of immuno-oncology studies that 321 

use a single tumor model, and further supports the value of human organoid technology for 322 

development of personalized therapies.  323 
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Altogether, BEHAV3D combines organoid, imaging and sequencing technologies to 324 

offer a comprehensive platform that integrates multiple single-cell readouts, including tumor 325 

death dynamics, single-cell behavior and underlying transcriptomic profiling (Video S1). 326 

BEHAV3D may thus contribute to the efforts aimed at enhancing the efficacy of solid tumor-327 

targeting by cellular therapies.  328 

 329 

330 
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Methods 331 

 332 

Human material  333 

All human PDO samples were retrieved from a biobank through the Hubrecht Organoid 334 

Technology (HUB, www.hub4organoids.nl). Authorizations were obtained by the medical 335 

ethical committee of UMC Utrecht (METC UMCU) at request of the HUB in order to ensure 336 

compliance with the Dutch medical research involving human subjects’ act. The normal 337 

organoids were generated from milk obtained via the Moedermelkbank Amsterdam 338 

(Amsterdam UMC). Informed consent was obtained from all donors. 339 

 340 

Animal material 341 

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice purchased from Charles River Laboratories 342 

(France). Experiments were conducted in accordance with Institutional Guidelines under 343 

acquired permission from the local Ethical Committee and as per current Dutch laws on Animal 344 

Experimentation. Mice were housed in sterile conditions using an individually ventilated cage 345 

(IVC) system and fed with sterile food and water. Irradiated mice were given sterile water with 346 

antibiotic ciproxin for the duration of the experiment. Mice were randomized with equal 347 

distribution by age and initial weight measured on day 0 and divided into 10–15 mice per 348 

group.  349 

 350 

Organoid culture 351 

Organoids were seeded in basement membrane extract (BME; Cultrex) in uncoated 12-well 352 

plates (Greiner Bio-one) and cultured as described previously(Dekkers et al., 2021; Sachs et 353 

al., 2017). Briefly, Advanced DMEM/F12 was supplemented with penicillin/streptomycin 354 

(pen/strep), 10 mM HEPES, Glutamax (adDMEM/F12+++), 1 x B27 (all from Thermo Fisher), 355 
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1.25 mM N-acetyl-L-cysteine (Sigma-Aldrich), 10 mM Nicotinamide (Sigma-Aldrich), 5 μM 356 

Y-27632 (Abmole), 5 nM Heregulin β-1 (Peprotech), 500 nM A83-01 (Tocris), 5 ng/ml EGF 357 

(Peprotech), 20 ng/ml FGF-10 (Peprotech), 10% Noggin-conditioned medium (NCM) 358 

(Cattaneo et al., 2020), 10% Rspo1-conditioned medium (RCM) (Broutier et al., 2016), and 359 

0.1 mg/ml primocin (Thermo Fisher), and in addition with 1 μM SB202190 (Sigma-Aldrich) 360 

and 5 ng/ml FGF-7 (Peprotech) for PDO propagation (‘Type 1’ culture medium(Dekkers et al., 361 

2021)), or with 20% Wnt3a-conditioned medium (WCM) (Broutier et al., 2016), 0.5 μg/ml 362 

hydrocortisone (Sigma-Aldrich), 100 μM β-estradiol (Sigma-Aldrich) and 10 mM forskolin 363 

(Sigma-Aldrich) for normal organoid propagation (‘Type 2’ culture medium (Dekkers et al., 364 

2021)). Culture medium was refreshed every 2–3 days and organoids were passaged 1:2–1:6 365 

every 7–21 days using TrypLE Express (Thermo Fisher). For co-culturing, organoids of a 5–366 

12-day old culture (depending on PDO growth speed) were recovered from the BME by 367 

resuspension in TrypLE Express and collected adDMEM/F12+++. The organoid suspension 368 

was filtered through a 70 μm strainer (Greiner) to remove large organoids and pelleted before 369 

co-culturing. Organoids of passage 5 to 30 after cell isolation were used.  370 

 371 

Cell lines 372 

Daudi (Gründer et al., 2012), HL60(Marcu-Malina et al., 2011) and Phoenix-Ampho cell lines 373 

were obtained from ATCC (authenticated by short tandem repeat 374 

profiling/karyotyping/isoenzyme analysis). Daudi and HL60 cells were cultured in RPMI 375 

media supplemented with 10% fetal calf serum (FCS) and 1% pen/strep (all from Thermo 376 

Fisher). Phoenix-Ampho cells were cultured in DMEM medium (Thermo Fisher) 377 

supplemented with 10% FCS and 1% pen/strep. All cells were passaged for a maximum of 2 378 

months, after which new seed stocks were thawed for experimental use. Furthermore, all cell 379 

lines were routinely verified by growth rate, morphology, and/or flow cytometry and tested 380 
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negative for mycoplasma using MycoAlert Mycoplasma Kit. Peripheral blood mononuclear 381 

cells (PBMCs) were obtained from Sanquin Blood bank (Amsterdam, The Netherlands) and 382 

isolated using Ficoll gradient centrifugation methods from buffy coats.  383 

 384 

Retroviral transduction of T cells 385 

TEG001 (T cells engineered to express a highly tumor-reactive Vγ9Vδ2 TCR) (Gründer et al., 386 

2012; Straetemans et al., 2015; 2018), LM1s (mock T cells engineered to express a mutant 387 

Vg9/Vd2 TCR with abrogated function) (Marcu-Malina et al., 2011), and TEG011 (mock T 388 

cells engineered to express HLA-A*24:02-restricted Vγ5/Vδ1 TCR; used as control for in vivo 389 

studies) (Kierkels et al., 2019; Scheper et al., 2013), were produced as previously described 390 

(Marcu-Malina et al., 2011). Briefly, packaging cells (Phoenix-Ampho) were transfected with 391 

helper constructs gag-pol (pHIT60), env (pCOLT-GALV) and pMP71 retroviral vectors 392 

containing both Vg9/Vd2 TCR chains separated by a ribosomal skipping T2A sequence, using 393 

FugeneHD reagent (Promega). Human PBMCs from healthy donors were pre-activated with 394 

anti CD3 (30 ng/mL; Orthoclone OKT3; Janssen-Cilag) and IL-2 (50 IU/mL; Proleukin, 395 

Novartis) and subsequently transduced twice with viral supernatant within 48 hrs in the 396 

presence of 50 IU/mL IL-2 and 6 mg/mL polybrene (Sigma-Aldrich). TCR-transduced T cells 397 

were expanded by stimulation with anti-CD3/CD28 Dynabeads (500,000 beads/106 cells; Life 398 

Technologies) and IL-2 (50 IU/mL). Thereafter, TCR-transduced T cells were depleted of the 399 

non-engineered T cells. 400 

 401 

Depletion of non-engineered T cells 402 

Depletion of non-engineered T cells was performed as previously described (Marcu-Malina et 403 

al., 2011). In short, αβ T cells were transduced with pMP71: γ-T2A-δ and incubated with a 404 

biotin-labelled anti-αβ TCR antibody (clone BW242/412; Miltenyi Biotec) followed by 405 
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incubation with an anti-biotin antibody coupled to magnetic beads (anti-biotin MicroBeads; 406 

Miltenyi Biotec). Next, the cell suspension was applied onto an LD column and αβ TCR-407 

positive (αβ TCR+) T cells were depleted by Magnetic-Activated Cell Sorting (MACS) 408 

according to the manufacture's protocol (Miltenyi Biotec).  409 

 410 

Separation of CD4+ and CD8+ subsets of TEGs 411 

In order to separate CD4+ and CD8+ TEGs and LM1s, we performed positive selection using 412 

either CD4 or CD8 Microbeads (Miltenyi Biotech) following manufacturer’s instructions. 413 

After incubation with magnetic microbeads cells were applied to LS columns and CD4+ or 414 

CD8+ TEGs or LM1s were selected by MACS. After MACS selection procedure, both 415 

Vg9/Vd2 TCR+ CD4+ or Vg9/Vd2 TCR+ CD8+  subsets of TEGs were separately expanded by 416 

using a rapid expansion protocol (REP) (Marcu-Malina et al., 2011) where TEGs were cultured 417 

in ‘TEG culture medium’ (RPMI-Glutamax supplemented with 2,5 – 10 % human serum 418 

(Sanquin), 1% pen/strep and 0.5M beta-2- mercaptoethanol) on a feeder cell mixture 419 

composing of irradiated allogenic PBMCs, Daudi and LCL-TM in the presence of IL2 (50 420 

U/ml; Novartis Pharma), IL15 (5 ng/ml; R&D Systems) and PHA-L (1 µg/ml; Sigma-Aldrich). 421 

TEGs were stimulated biweekly by using the REP protocol. In order to monitor the purity of 422 

CD4+ and CD8+ TEGs, cells were analyzed by flow cytometry weekly prior to functional 423 

assays by using anti-pan gd TCR-PE (Beckman Coulter), anti- abTCR-FITC (eBioscience), 424 

anti-CD8-PerCP-Cy5.5 (Biolegend) and anti-CD4-APC (Biolegend) antibodies. TEGs with a 425 

purity lower than 90% were re-selected as described above. TEGs were used for co-culture 426 

assays 4 – 5 days after the last IL2/IL15/PHA-L stimulation.  427 

 428 

 429 

 430 
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Sorting of NCAM1-/+ TEGs 431 

CD8+ TEGs were harvested at day 8-10 of their REP cycle, stained in flow cytometry (FC) 432 

buffer (2% fetal bovine serum, 1x PBS) with Hilyte-488-conjugated NCAM1 nanobodies 433 

(1:400; QVQ) and LIVE/DEAD Fixable Near-IR Dead Cell Stain (1:1000; ThermoFisher) for 434 

30 minutes at 4˚C and consecutively sorted using a SONY SH800S or a FACS Aria Cell Sorter 435 

(BD Biosciences) into NCAM1- and NCAM+ populations. Cells were rested for 16 h in ‘TEG 436 

culture medium’ and then used for co-culture. 437 

 438 

Live cell imaging of TEG and organoid co-cultures 439 

LM1s or TEGs (20,000) were co-cultured with normal organoids, PDOs or control cell lines 440 

(Daudi or HL-60) in an effector to tumor cell (E:T) ratio of 1:3 or 1:25 (for Figures 3D-3F). 441 

CD4+ and CD8+ TEGs were mixed in a 1:1 ratio just before plating. Cells were incubated in 442 

96-well glass-bottom SensoPlates (Greiner) in 200 µl ‘co-culture medium’: 50% ‘Type 1’ 443 

organoid culture medium, 50% ‘TEG assay medium’ (RPMI-Glutamax supplemented with 444 

10% FCS and 1% pen/strep), 2.5% BME and pamidronate for the accumulation of the 445 

phosphoantigen IPP to stimulate tumor cell recognition(Marcu-Malina et al., 2011) (1:2000). 446 

‘Co-culture medium’ was supplemented with both NucRed™ Dead 647 (2 drops per ml; 447 

Thermo Fisher) and TO-PRO-3 (1:3000; Thermo Fisher) for fluorescent labelling of living and 448 

dead cells (‘Imaging medium’). Combination of NucRed™ Dead 647 and TO-PRO-3 light up 449 

dead cell when excited with the 633 nm laser, and living cells when excited with the 561 nm 450 

laser (Figures S1A and S1B). Both were combined to achieve the most optimal fluorescent 451 

intensity ratio between dead and living cells for live cell imaging. Prior to co-culturing, TEGs 452 

were incubated with eBioscience™ Cell Proliferation Dye eFluor™ 450 (referred to as eFluor-453 

450; 1:4000; Thermo Fisher) in PBS for 10 min at 37 °C to fluorescently label all TEGs. When 454 

CD4+ and CD8+TEGs were simultaneously imaged, eFluor-450, as well as Calcein AM 455 
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(1:4000; Thermo Fisher) were used to label the different TEG subsets in PBS for 10 min at 37 456 

°C. For NCAM1 pre-labeling experiments, a combination of eFluor-450 (1:4000; Thermo 457 

Fisher) and Hilyte-488-conjugated NCAM1 nanobodies (1:400; QVQ) was used to label CD8+ 458 

TEGs in PBS for 20 min at 37 °C prior to co-culturing. To prevent evaporation while imaging, 459 

200 µl PBS was added to the wells surrounding the co-culture wells. The plate was placed in a 460 

LSM880 (Zeiss) microscope containing an incubation chamber (37 °C; 5% CO2) and incubated 461 

for 30 min to ensure settling of TEGs and organoids at the bottom of the well. The plate was 462 

imaged for up to 24 hrs with a Plan-Apochromat 20 x/0.8 NA dry objective with the following 463 

settings: online fingerprinting mode, bidirectional scanning, optimal Z-stack step size, Z-stack 464 

of 60 μm in total and time series with a 30 min (up to 60 conditions simultaneously; resolution 465 

512 x 512) or 2 min interval (up to 4 or 10 conditions simultaneously; resolution 512 x 512 and 466 

200 x 200 respectively). To minimize photobleaching of NCAM1-pre-labeled TEGs, the 488 467 

nm laser was only activated 1 Z-stack each hr within the first hrs of imaging. Directly after 468 

imaging, the production of IFN-γ in the supernatant was quantitated using an ELISA-ready-469 

go! Kit (eBioscience) and cell pellets were used to measure organoid viability using a CellTiter-470 

Glo® Luminescent Cell Viability Assay (Promega). 471 

 472 

IFN-b stimulations 473 

PDOs were harvested as described above and incubated in 96-well round bottom culture plates 474 

(Thermo Fisher) in 100 µl ‘Type 1’ organoid culture medium, supplemented with 2.5% BME, 475 

with or without the presence of 100 pg/ml recombinant human IFN-b (Peprotech). After 24 h 476 

incubation (37 °C; 5% CO2), TEGs or LM1s were added to either IFN-b-preincubated or 477 

unstimulated organoids (E:T ratio of 1:3) in 100 µl ‘TEG assay medium’, supplemented with 478 

2.5% BME and pamidronate (1:1000), with or without the presence of 100 pg/ml recombinant 479 

human IFN-b (Peprotech). Medium without T cells was added for ‘organoid only’ controls. 480 
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After 16 h incubation (37 °C; 5% CO2), plates were used to measure organoid viability using 481 

a CellTiter-Glo® Luminescent Cell Viability Assay (Promega). 482 

 483 

In vivo targeting by TEGs 484 

Adult female NSG mice (15-16 weeks old) received sub-lethal total body irradiation (1,75 Gy) 485 

and subcutaneous implantation of an β-estradiol pellet (Innovative Research of America) on 486 

Day -1. On day 0, PDOs (1x106 13T organoid cells in 100 μl BME per mouse) were prepared 487 

as described previously (Dekkers et al., 2021) for subcutaneous injection on the right flank on 488 

Day 0, and received 2 injections of 107 TEGs or TEG011 mock cells on day 1 and 6 in 489 

pamidronate (10 mg/kg body weight) as previously reported(Johanna et al., 2019). On day 1, 490 

together with the first T cell injection, all mice also received 0.6x106 IU of IL-2 (Proleukin; 491 

Novartis) in IFA subcutaneously. Tumor volume was measured once a week using digital 492 

caliper and was calculated by the following formula: 0.4 x (length x width x width). Mice were 493 

monitored at least twice a week for weight loss and clinical appearance scoring (scoring 494 

parameter included hunched appearance, activity, fur texture, piloerection, 495 

respiratory/breathing problem). Humane endpoint (HEP) was reached when mice experienced 496 

a 20% weight loss from the initial weight, tumor volume reached 2 cm3, or when clinical 497 

appearance score of 2 was reached for individual parameter or an overall score of 4. 498 

 499 

Image processing 500 

For 3D visualization, cell segmentation and extraction of statistics, time-lapse movies were 501 

processed with Imaris (Oxford Instruments), versions 9.2 to 9.5. The Channel Arithmetics 502 

Xtension was used for creating new channels to specifically identify organoids (live and dead) 503 

and eFluor-450-labeled or calcein AM-labeled TEGs (live and dead) and exclude cell debris. 504 

The Surface and ImarisTrack modules were used for object detection and automated tracking 505 
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of both TEGs (autoregressive motion) and organoids (‘connected components’ or no tracking). 506 

The Distance Transformation Xtension was used to measure the distance between TEGs and 507 

organoids and thresholds for defining organoid–T cell interactions were visually determined. 508 

For tracked TEGs, time-lapse data containing the coordinates of each cell, the values of cell 509 

speed, mean square displacement, distance to organoids and dead cell dye channel intensity 510 

were exported. For experiments with NCAM1 pre-labelling, the mean intensities of the 511 

NCAM1 channel per T cell were exported. For tracked organoids, time-lapse data containing 512 

the coordinates of each organoid, the surface area, volume and mean dead cell dye channel 513 

intensity were exported.  514 

 515 

Imaging and sequencing data processing 516 

Analysis of imaging and sequencing data was performed using R Studio version 4.0.2, as well 517 

as the following R packages: DESeq2, devtools, dplyr, dtwclust, eulerr, gganimate, ggplot2, 518 

ggpubr, ggrepel, gridExtra, hypergeo, kmodR, lme4, lmerTest, MESS, nlme, openxlsx, 519 

parallel, patternplot, pheatmap, plotly, plyr, png, purr, RColorBrewer, readxl, reshape2, rgeos, 520 

scales, Seurat, sp, spatstat, stats, tidyr, tidyverse, umap, VennDiagram, viridis, xlsx, zoo. 521 

 522 

PDOs killing dynamics  523 

To quantify cell death dynamics of PDO cultures, > 5000 single organoids were analyzed at 524 

each time-point (48 time-points total). The mean dead cell dye intensity within single organoid 525 

surfaces, and values were rescaled to a range between 0 and 100 per experiment to normalize 526 

for variation in the absolute dead cell dye intensity. Per time point, organoids were classified 527 

as ‘dying’ when the mean dead cell dye intensity was above 7. 528 

 529 

 530 
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T cell dynamics analysis and multivariate time series clustering 531 

For the analysis of TEG behavior overtime, the following parameters were used: T cell death, 532 

contact with organoids, speed, square displacement and interaction with other T cells. 533 

Interactions between TEGs were measured by computing the distance to the nearest neighbor 534 

for each cell. To only include active interactions between TEGs that were not engaged to 535 

organoids, we considered cells whose mean speed for the last 20 minutes fell within the 3rd 536 

quartile. A threshold for interacting T cells was defined as 10 µm between cell centroids and 537 

confirmed by visual inspection of imaging data. For each TEG time series, linear interpolation 538 

was used to estimate the values in few cases of missing time points. To compare time series 539 

independently of their length, cell tracks were cut to a length of 3.3 hrs. For each experimental 540 

replicate, the values of each of the numeric variables were converted to z-scores. To enhance 541 

the most discrepant values, only the 3rd quartile range values were kept, while the rest was 542 

converted to the minimum values. Finally, each numeric variable was scaled to a range between 543 

0 and 1 and normalized to the mean of the 0.99 quantile (per experimental replicate). For binary 544 

variables (TEG-TEG or TEG-organoid interactions), the values were labelled as 1 or 0 for 545 

interaction or no-interaction terms. Similarity between distinct cell tracks was measured using 546 

a strategy that allows for best alignment between time-series, previously applied for mitotic 547 

kinetics (Cai et al., 2018) or temporal module dynamics comparisons (Schafer et al., 2019). A 548 

cross-distance matrix based on the multivariate time-series data was computed using the 549 

dynamic time warping algorithm from the package “dtwclust”. To visualize distinct cell 550 

behaviors in 2 dimensions, dimensionality reduction on the multidimensional feature count 551 

table was performed by Uniform Manifold Approximation and Projection method (“umap” 552 

package) (Ali et al.; Becht et al., 2018). Clustering was performed using the k-means clustering 553 

algorithm with outlier detection. The identity of each cluster was defined by the mean time-554 

series values of the different parameters (speed, square displacement, organoid contact, T cell 555 
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interactions, cell death) within each cluster (Figure 2C). To confirm the identity of each 556 

cluster, T cell cluster assignments were back-projected to visualize the surfaces and tracks of 557 

particular T cell populations in the imaging dataset (Figures 2A, S2A and S2B, and S3B). A 558 

combination of datasets with distinct behavioral characteristics was used to construct a global 559 

TEG behavior atlas using the described methodology (Figure 2B).  560 

 561 

Cell behavior classification using a Random Forest classifier 562 

For standardized integration of new experiments, we used a random forest classification 563 

approach (Breiman, L., 2001) in order to relate cell behavior to the nine behavioral signatures 564 

that we found in our global TEG behavior atlas (Figure 2B). To allow for inclusion of 565 

experiments with a low E:T ratio of 1:25, where the parameter of T cell interaction would be 566 

influenced as compared to the standard E:T ratio of 1:3, the following parameters were used: 567 

T cell death, organoid contact, speed, square displacement. The reference dataset used to build 568 

the global TEG behavior atlas was split into cell tracks to be used as a training dataset (95%) 569 

and a test dataset (5%). To reduce dimensionality, for each cell track, four time-series 570 

descriptive statistics were quantified and used to train the classifier. For numeric variables, the 571 

following measures were computed for each cell track: mean, median, the top 90% of the 572 

distribution, and the standard deviation. For binary values, such as the contact with organoids, 573 

the mean was calculated, as well as the mean and maximum of cumulative interaction. The 574 

random forest classifier was trained using 100 trees on the above-mentioned variables using 575 

the nine behavioral signatures as labels (Figures S2C and S2D). The test dataset was used to 576 

assess for accuracy of the classifier and to determine in which behavioral signatures the errors 577 

occurred (Figure S2E).  578 

 579 

 580 
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Correlation between TEG behavior and organoid killing dynamics 581 

To estimate the correlation between the onset of death in individual organoids and the 582 

engagement with T cells belonging to the engaging clusters (C7-9), we implemented a 583 

technique of sliding window correlation analysis, previously used for functional brain 584 

connectivity (Preti et al., 2017) and genome analysis (Burke et al., 2010). We calculated the 585 

Pearson correlation coefficient between the cumulative number of organoid contacts with 586 

TEGs from each cluster and the increase in dead cell dye intensity in each over a sliding 587 

window of 3 hrs (Figures 2F and S2F).  588 

 589 

T cell serial killing capacity analysis 590 

For accurate long-term (up to 24 h) T cell tracking, TEGs were plated at a E:T ratio of 1:25. 591 

Tracks were manually corrected where required. Tracks were divided into shorter subtracks of 592 

160 minutes. Using the random forest classifier described above, each subtrack was assigned 593 

to a behavioral signature (Figures S2D and S2E). The following statistics were calculated for 594 

each type of behavioral signature (9 clusters): for continuous variables (square displacement; 595 

speed, T cell death) the mean, median and standard deviation of the upper quantile were 596 

calculated, and for discrete variables (organoid contact and interaction with T cells) the mean, 597 

cumulative mean, maximum and cumulative maximum were calculated. Principal component 598 

(PC) analysis was used to reduce the dimensionality. The top 5 PCs were used to classify the 599 

change in behavioral signature over time (Figures S3B and S3C). Equivalent to the approach 600 

that was used for the full tracks in Figure 2B, we computed a cross-distance matrix based on 601 

the multivariate time-series data using the dynamic time warping algorithm and performed k-602 

means clustering in UMAP space. The change in behavioral signatures was represented in a 603 

time-series color plot where each row represents one cell track and the color codes for 604 
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behavioral signature (Figure S3C). The relative proportion of CD4+ and CD8+ TEGs in each 605 

cluster was calculated and plotted next to each long-term classification (Figure S3C).  606 

TEGs that engaged to organoids were back-projected to the imaging dataset and their 607 

first and second actions upon organoid engagement were visually analyzed (Figure 3D). TEG 608 

morphological plasticity was calculated by measuring the cell elongation (ratio between the 609 

longest and shortest axes) per cell and per individual timepoint. For each cell track, the 610 

plasticity was then computed as the ratio between the maximal and the minimal cell elongation 611 

(Figure S3F). The actions of CD4+ and CD8+ TEGs upon organoid engagement (Figure 3D) 612 

as well as the speed of killing and serial killing potential (Figures 3G and 3H) were quantified 613 

using Imaris software. Only TEGs were included for which tumor cell killing was clearly 614 

observed (usually visible as a decrease in living cell dye and an increase in dead cell dye, which 615 

co-occurred in many cases with target cell detachment from the organoid). For cases where a 616 

single organoid was fully killed by a single TEG, the number of cells killed by the TEG was 617 

calculated by dividing the killed volume by the average volume of a single 13T cell (2182 618 

μm3). The killing rate of TEGs was measured as the time period from target cell engagement 619 

until tumor cell death (Figure 3H). 620 

 621 

NCAM1 pre-labelling quantification using 3D imaging data 622 

Behavioral classification of NCAM1 pre-labelled TEGs was performed as described above, by 623 

predicting behavioral signatures with the Random Forest classifier. NCAM1+/– TEGs were 624 

identified based on an NCAM1 intensity threshold in individual TEGs, visually defined at the 625 

timepoints where the 488 nm laser was turned on. To ensure inclusion of true NCAM1- or 626 

NCAM1+ TEGs, two intensity thresholds were defined. Only tracks with a defined NCAM1+ 627 

or NCAM1- identity were used for subsequent analysis. For each individual well, a difference 628 
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in percentage of NCAM1+ and NCAM1- TEGs was calculated per behavioral signature 629 

(Figures 3L and S3I). 630 

 631 

PDO bulk RNA sequencing 632 

For bulk RNA sequencing characterization, RNA of PDOs grown in ‘Type 1’ culture medium 633 

was isolated according to the manufacturer’s protocol using the RNeasy Mini Kit (QIAGEN). 634 

Quality and quantity of the RNA samples and the libraries were measured with Agilent’s 635 

Bioanalyzer2100 and Invitrogen™ Qubit™ 3.0 Fluorometer. Quality control was done using 636 

FastQC, alignment has been done using STAR 637 

(https://github.com/alexdobin/STAR/releases/tag/STAR_2.4.2a) and reads have been mapped 638 

to the GRCh37 version of the human reference genome. Quality control on the bams was done 639 

using Picard. Read counts were generated with Htseq-count after which normalization is done 640 

using DESeq. RPKMs have been calculated with edgeR. For the library preparation the TruSeq 641 

Stranded mRNA Library Prep kit from Illumina was used. Sequencing was performed on the 642 

nextseq500 sequencer (also Illumina) with single-end 75bp reads. PDO cultures were ranked 643 

by responsiveness to TEGs (Figure 1D) and differentially expressed genes between the 6 most 644 

TEG-sensitive and 6 least TEG-sensitive cultures were analyzed. Genes exhibiting a more than 645 

4-fold expression change with an adjusted p-value <0.05 after multiple hypothesis testing 646 

correction were used as input gene set enrichment analysis.  647 

 648 

SORTseq sample preparation 649 

For sequencing of different behavior-enriched TEG populations (Figure 4A), TEGs 650 

(>0,8x106 per condition) were either (1) co-cultured with 13T PDOs (E:T of 1:3) and separated 651 

into organoid-engaged (engaged) and organoid non-engaged (non-engaged) populations by 2 652 

slow-spin (30 rcf) centrifugation steps at 6 h co-culture, (2) co-cultured with 10T or 13T PDOs 653 
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(E:T of 1: 3) and separated at 4 hrs into organoid-engaged and organoid non-engaged 654 

populations by a slow-spin (30 rcf) centrifugation step, co-cultured for another 2h with or 655 

without addition of fresh PDOs, again followed 2 slow-spin (30 rcf) centrifugation steps to 656 

obtain non-engagedEnriched and super-engaged TEG populations, or (3) cultured for six hrs 657 

without addition of PDOs (no target control), using 12-wells culture plates (Thermo Fischer) 658 

and ‘co-culture medium’. To create single-cell suspensions, conditions containing organoids 659 

(all ‘engaged’ TEG conditions) were treated with TrypLE for seven minutes at 37°C and 660 

washed with adDMEM/F12+++. Cells were then stained in FC buffer (2% FCS in 661 

PBS) with anti-CD3-APC conjugated antibodies (1:80; BioLegend) and LIVE/DEAD Fixable 662 

Near-IR Dead Cell Stain (1:1000; ThermoFisher) for 30 minutes at 4°C and sorted into 384-663 

wells SORTseq plates using a FACS Aria Cell Sorter (BD Biosciences) and directly stored at 664 

-80°C until further processing. 665 

 666 

SORTseq library preparation and sequencing 667 

All sorted plates were processed according to the CEL-Seq2 protocol with the total 668 

transcriptome amplification via poly-A RNA-capture, library preparation, and sequencing into 669 

Illumina sequencing libraries as previously described(Muraro et al., 2016). Paired-end 670 

sequencing (read1: 30 bp; read2: 120 bp) was used to sequence the prepared libraries using an 671 

Illumina NextSeq sequencer.  672 

 673 

Mapping and quantification of SORTseq data 674 

SORTseq data were mapped and reads were counted, using STAR version 2.6.1a on the 675 

Hg38p10 human genome (annotated with GenCode v26). Plate-QC was performed using the 676 

Sharq pipeline (Candelli et al., 2018). Percentage of ERCC spike-in reads and mitochondrial 677 

mRNA reads versus total read count per cell were applied as QC parameters to identify 678 
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systemic processing or pipetting errors over the plates. Cells with mitochondrial mRNA reads 679 

higher than 15%, ribosomal RNA content higher than 30%, or ERCC reads higher than 25% 680 

were excluded from the downstream analysis. Cells with fewer than 650 and higher than 4500 681 

genes captured, and genes captured in fewer than 2 cells per plate were also excluded. After 682 

the initial QC steps, the ERCC spike-in reads were removed from the final count tables.  683 

 684 

SORTseq and 10x genomics data integration and TEG subpopulation analysis 685 

For analysis of TEGs not exposed to organoids (Figures 3I, and S3G and S3H), 3 686 

experimental replicates were used consisting of two datasets processed using SORT-seq and 687 

one dataset processed using 10x Genomics Chromium Single Cell 3′ gene-expression kit. 688 

SORTseq data was processed as described above. For the 10x dataset, (fresh, not co-cultured) 689 

TEGs were viability-enriched via FACS by DAPI staining (1:1000; Thermo Fischer) and 690 

loaded according to the standard protocol of the Chromium Single Cell 3′ Kit (v3). All the 691 

following steps were performed according to the standard manufacturer’s protocol. The library 692 

was sequenced on an Illumina Novaseq S1-flowcell and 19,000 reads/cell were collected. 693 

Single-cell RNAseq data were mapped, and counts of molecules per barcode were quantified 694 

using the cellranger(3.1.0) 10x software package to map sequencing data to the GRCh38(3.0.0) 695 

reference transcriptome supplied by 10x. Cells with mitochondrial mRNA reads higher than 696 

15% and with fewer than 200 or more than 5000 distinct genes were excluded from the 697 

downstream analysis. Data were normalized by sequencing depth, scaled to 10,000 counts, log-698 

transformed, and regressed against the UMI-counts and percentage of mitochondrial mRNA 699 

using the ScaleData function of the Seurat package. For integration of the 10x genomics (n = 700 

1) and SORTseq (n = 2) datasets, we used previously published Seurat v3 data anchor-based 701 

integration(Stuart et al., 2019). Briefly, all three datasets were normalized using SCTtransform 702 

(Hafemeister and Satija, 2019) followed by selection of 5000 features for downstream 703 
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integration. Transfer anchors were then learned and applied for integration of all datasets into 704 

a combined dataset. Cell visualization and placement in 2D view was achieved using principal 705 

component analysis (PCA) followed by Uniform Manifold Approximation and Projection 706 

(UMAP)(McInnes et al.). Shared nearest neighbor graph-based clustering was done using 707 

Seurat package’s FindNeighbors and FindClusters functions with a resolution of 0.8. For cell 708 

type identification marker genes for each cluster were calculated using the FindAllMarkers 709 

function and examined to profile marker genes that correspond to known cell types. Additional 710 

support for identifying cell subpopulations similitudes was achieved by analyzing the 711 

differentially expressed genes with a cell-type annotation tool(Cao et al.). Main marker genes 712 

used for TEG subpopulations identification are plotted in Figure S3H. 713 

 714 

Pseudotime Trajectory Inference  715 

Two experimental SORTseq replicates of TEGs co-cultured with 13T PDOs, generated as 716 

described above, were used for trajectory interference (Figure S4B). Proliferating T cells were 717 

excluded from the analysis since they did not show any dynamic inflammatory genes during 718 

the analysis. Afterwards, the gene expression table was log normalized with 10,000 scaling 719 

factor. Cell visualization and placement in 2D view was achieved using principal component 720 

analysis (PCA) followed by Uniform Manifold Approximation and Projection (UMAP) 721 

(McInnes et al., 2020). Shared nearest neighbor graph-based clustering was done using Seurat 722 

package’s FindNeighbors and FindClusters functions with the resolution of 2. Based on marker 723 

gene expression of CD8, CD4 and IL17RB (Terrier et al., 2010), TEGs were sub-clustered into 724 

3 subtypes; IL17RB-CD8+eff, IL17RB-CD4+eff and IL17RB+CD4+mem. Downstream analyses 725 

were done on each subset separately and compared with each other where mentioned. 726 

RunFastMNN function from SeuratWrappers package was utilized to correct for batch effects 727 

between the two SORTseq replicates. Unless specified, batch corrected UMAP values were 728 
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used for visualization of single cells. We used Monocle3 (Cao et al., 2020) package to infer the 729 

pseudotime trajectory and significantly dynamic genes for each T cell subtype. For each cell 730 

subtype either no target control or non-engagedEnriched TEGs were designated as the root of the 731 

trajectory. In order to have comparable results from both Seurat and Monocle3 packages, the 732 

FastMNN batch corrected UMAP coordinates were imported and used throughout the 733 

trajectory analysis in Monocle3. In IL17RB-CD4+eff and IL17RB+CD4+mem subtypes, Monocle 734 

identified no target control cells as a separate partition. In order to have all cells along with a 735 

single pseudotime spectrum (e.g., not having several cells with a same pseudotime value), we 736 

added maximum pseudotime values of no target control T cells to pseudotime values of 737 

remaining cells in that subtype. For all TEG subtypes, significant dynamic genes along with 738 

the pseudotime trajectory were calculated and identified using Monocle3’s graph_test function 739 

using 1e-20 q value as the significance cutoff. Afterwards, using k-means clustering and also 740 

visual inspection of the genes’ behavior over the pseudotime, TEGs were clustered into sub-741 

clusters with similar pattern (CL1-8; Figure 4G). The expression profile of the genes along 742 

with the pseudotime trajectory was plotted using pheatmap package(Kolde et al.) using row 743 

scaled (z-score) expression values. Smoothed gene(s) behavior was calculated and visualized 744 

recruiting gam smoothing function in ggplot2 package (Wilkinson, 2011). 745 

 746 

Behavior signature inference over the pseudotime. 747 

To align the pseudotime inference with the different behavioral signatures that we identified 748 

with BEHAV3D, we build a probability map distribution for different behavioral signatures 749 

over the pseudotime, based on the fundamental principle of transitivity of probabilistic 750 

distribution (Figure 4F).  We defined three states of cells quantified by different methods: 751 
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• Behavioral_signatures (Bsig): {Static, Lazy, Medium-scanner, Scanner, Super scanner, 752 

Tickler, Engager, Super engager}. Behavioral signatures of cells identified by imaging 753 

(Figure 4B). 754 

• Experimental_engagement_state (Expeng): {No target control, Non-engaged, Non-755 

engagedenriched, Engaged, Super-engaged}. Cell distribution among different 756 

experimental conditions (Figure 4A) 757 

• UMAP_cluster (Ucl): {1…X}. Cell assignment to distinct clusters grouping cells with 758 

similar gene expression. Shared nearest neighbor graph-based clustering was repeated 759 

several times using Seurat package’s FindNeighbors and FindClusters functions with a 760 

resolution ranging from 1 to 7. 761 

From these three different cell states, the following information was quantified: 762 

• p(Bsig|Expeng): For each Experimental_engagement_state we quantified the probability 763 

distribution of each Behavioral_signature (Figure 4F. This was achieved by 764 

reproducing the Experimental_engagement_states in silico on our imaging data. These 765 

values were calculated separately for CD4+ and CD8+ TEGs. 766 

• p(Expeng|Ucl): For each UMAP_cluster, we quantified the probability of each 767 

Experimental_engagement_state to belong to this cluster.  768 

Given these probabilities, we then quantified for each T cell the probability distribution of each 769 

unique Behavioral_signature in each UMAP_cluster, using the equation: 770 

 771 

As a result, each cell was assigned a certain probability distribution for different behavioral 772 

signatures. To refine the probability map, the same process was repeated for 7 runs with 773 

different cluster sizes and the final probability distributions were averaged per cell. Note that 774 

for cells belonging to the No target control Experimental_engagement_state, a 775 

Behavioral_signature called No target control was assumed. The probability distribution along 776 
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the pseudotime trajectory was plotted using pheatmap package70 of scaled values for each 777 

behavioral signature. Given that the non-engaged behavioral signatures (Static, Lazy, Slow 778 

scanner, Medium scanner, Super scanner) exhibited an identical probability map, their values 779 

were plotted together. For visualization purpose, extreme outlier values of skewed distributions 780 

were transformed to a maximal cutoff value. Based on the probability distribution of different 781 

behavioral signatures, the pseudotime was divided into 4 stages (Baseline (no organoids); 782 

Environmental stimuli, Short engagement, Prolonged engagement) for each TEG subtype 783 

(CD8+eff, CD4+eff and CD4+mem). 784 

 785 

Differential gene expression analysis of TEGs co-cultured with distinct PDO cultures 786 

For comparison of TEGs targeting 10T or 13T PDOs (Figures 5A-5C), SORTseq dataset was 787 

used including TEGs from distinct Experimental engagement states: Non-engagedEnriched and 788 

super engager. No target control TEGs were used as a control group. SORTseq data were 789 

mapped and quantified and visualized with UMAP as described above. Differential gene 790 

expression analysis was performed with the FindMarkers function from Seurat v3. Common 791 

and specific gene sets were filtered and visualized by Venn diagram with the VennDiagram 792 

package.  793 

 794 

Gene set enrichment analysis 795 

The functional enrichment analysis in this study for pathway and biological processes 796 

annotations for gene sets of interest was conducted using ToppFun on the ToppGene 797 

Suite(Kaimal et al.) (Figures 1H, S4C, and S5B). An enrichment score was assigned based on 798 

gene enrichment ratio and log p value. For redundant annotations, the annotation with the 799 

highest gene enrichment ratio was selected. The pathways and biological processes with 800 

highest enrichment for gene set of interest were displayed in RStudio. 801 
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Serial killer gene signature analysis 802 

Genes of CL7 (Figure 4G; Table S4 and S5) were analysed to identify a unique signature for 803 

killer TEGs. 61/83 genes composing this cluster were common to TEGs incubated with 13T 804 

and 10T organoids and underwent extensive literature curation to identify genes with a known 805 

role in T cell cytotoxicity; T cell biology (not related to cytotoxicity); morphological plasticity 806 

or other processes such as GTPase signaling, ribogenesis and transcriptional regulation. 807 

Overlapping gene roles were plotted in a Venn diagram with the Venneuler package (Figure 808 

4K).  809 

 810 

Statistical analysis 811 

Statistical analysis was performed using R or Prism 7 software (GraphPad). Results are 812 

represented as mean ± s.e.m. unless indicated otherwise; n represents independent biological 813 

replicates. Two-tailed unpaired t-tests were performed between two groups, unless indicated 814 

otherwise. Pearson correlation was used for paired comparison between three different readouts 815 

(IFN-γ production, cell viability and live imaging). For live-cell imaging, the increase in dead 816 

cell dye between the first and last time point was used as measure. To compare tumor volume 817 

in mice treated with TEGs or TEG001 mock cells, two-way ANOVA with repeated measures 818 

was performed. To compare frequencies of different behavioral signatures between PDOs, a 819 

Pearson’s Chi-squared test was applied. To compare the percentage of dead organoids when 820 

TEGs were co-cultured with different PDOs, a one-way ANOVA followed by Bonferroni 821 

correction was performed. To estimate the change in correlation between 13T PDO death 822 

dynamics and cumulative contact with TEGs for different behavioral signatures, data was fitted 823 

to a linear mixed model with experimental replicate as random effect to account for variation 824 

between them. For cell type enrichment analysis of TEGs’ first and second action after 825 

engagement, a hypergeometric test was used (Fisher exact test). For comparisons of 826 
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percentages of distinct TEG subtypes in the same well (CD4+ vs CD8+ or NCAM+ vs NCAM), 827 

for each behavioral signature data were fitted to a linear regression model with each individual 828 

replicate set as random effect to account for variation between them. For each fitted model, an 829 

analysis of variance was computed with an F-test. For comparison of IFN-b treatment, paired 830 

t test was performed. 831 

 832 

Data availability 833 

RNA sequencing and imaging data is available upon request. 834 

 835 

Code availability 836 

Upon request. 837 
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Figure legends 885 

 886 

Figure 1. TEG efficacy across organoids of multiple breast cancer subtypes detected by 887 

multispectral 3D live imaging and in vivo TEG targeting.  (A) Schematic representation of 888 

co-culture preparation. TEGs were generated by engineering peripheral blood αβ T cells to 889 

express a defined Vg9/Vd2 TCR via retroviral transduction. TEGs were then co-cultured with 890 

patient-derived breast organoids (PDOs). (B) Schematic representation of the BEHAV3D 891 

platform. Fluorescent dyes were combined to specifically label organoids (yellow), TEGs 892 

(blue) and dead cells (red). Co-cultures of organoids and TEGs were imaged in 96-well plates 893 

using spectral confocal microscopy in 3D, followed by segmentation and tracking of organoids 894 

and T cells, and subsequent behavior classification. TEGs of experimental conditions as 895 

indicated were sequenced and pseudotime ordering was used to integrate behavioral data. 896 

Identified targets were used to manipulate TEG targeting. (C) Representative 3D multispectral 897 

images of breast PDO cultures (yellow) that show low (1837M), intermediate (10T) and high 898 

(13T) killing by TEGs (blue) at the indicated time points of imaging. Dead cells depicted in 899 

red. Scale bars, 100 µm (left two columns) and 30 µm (right two columns). (D) Quantification 900 

of killing of organoids derived from 14 different BC patients upon 24 hr co-culture with TEGs 901 

by 3D live cell imaging. All data were corrected for control LM1 T cell responses. (n = 4 902 

independent experiments; mean ± s.e.m.; TNBC = triple negative breast cancer; ER = estrogen 903 

receptor; PR = progesterone receptor). (E) Representative 3D multispectral images showing 904 

automated rendering of single organoids (confetti colors) and T cells (blue) (left image), and 905 

an enlarged section showing presence of dead cell dye (red) in a single organoid (transparent 906 

purple rendering) and TEGs (transparent blue rendering) at the indicated time of co-culture. 907 

Scale bars, 100 µm (left image) and 30 µm (right image). (F) Quantification of the percentage 908 

of dying single organoids (% of total) over time for each PDO co-cultured with TEGs (n = 4 909 
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independent experiments; mean ± s.e.m.). (G) Quantification of the volume of tumors overtime 910 

generated by subcutaneous transplantation of 13T (black lines) or 169M organoids (orange 911 

lines). Animals received 2 injections of either TEGs (dashed line) or control TEG011 cells 912 

(Control; solid line) at the indicated timepoints. (n ≥5 per condition; mean ± s.e.m.). Statistical 913 

analysis was performed by Two-Way ANOVA with repeated measures: 13T-TEG vs 13T-914 

control p < 0.0001; 169M-TEG vs 169M-control p=0.0016. (H) Gene ontology enrichment 915 

analysis of differentially expressed genes between the six highest versus six lowest TEG-916 

sensitive organoid cultures from d. 917 

 918 

Figure 2. TEGs exposed to PDOs display high diversities in their behavior with distinct 919 

killing potential. (A) Representative image of automated tracking of each TEG (left image; 920 

10 hrs tracks are rainbow-colored for time). Tracks were classified according to TEG behavior 921 

and back-projected in the image (right image; color-coded by cluster). Scale bars, 50 µm. (B) 922 

Umap plot showing nine color-coded clusters identified by unbiased multivariate timeseries 923 

dynamic time warping analysis. Each data point represents a T cell track of 3.3 hrs. Numbers 924 

refer to cluster names presented in (C). (C) Heatmap depicting relative values of T cell features 925 

indicated for each cluster, named according to their most distinct characteristics. AU: arbitrary 926 

units in respect to maximal and minimal values for each feature. (OC, organoid contact; Dis, 927 

square displacement; Sp, speed; TI, T cell interactions; CD, cell death) (D) 3D-rendered images 928 

of 100T (low-targeting; left image) and 13T (high-targeting; right image) organoids (grey) and 929 

TEGs with 3.3 hr tracks belonging to lazy (green) and super engager (red) clusters. Scale bars, 930 

20 µm. (E) Behavioral cluster distribution of TEGs co-cultured with the indicated PDOs and a 931 

normal organoid culture (left plot), in relation to their killing capacity (right bar graph) 932 

represented as the percentage of dying organoids (% of total) (n ≥ 3 independent experiments; 933 

mean ± s.e.m.).  X2 test; p = 1.132e-08. (F) Pearson correlation between behavior cluster size 934 
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and the percentage of dying organoids represented in d. CL9 p=0.00006; CL8 p= 0.009; CL7 935 

p=0.006; CL5 p=0.014; CL4 p=0.022; CL2 p=0.0019. (n ≥ 3 independent experiments; mean). 936 

(G) Change in correlation between 13T organoid death dynamics (measured as increase in dead 937 

cell dye) and cumulative contact with TEGs (from cluster (C)7-9). Data is represented as mean 938 

correlation per timepoint of all single organoids (n = 4 independent experiments). Linear mixed 939 

model fitting with each experimental replicate as a random effect: C9 vs C8 p= 5.19e-06; C9 940 

vs C7 p < 2e-16.  941 

 942 

Figure 3. Unique targeting features of TEGs subpopulations and serial killer potential. 943 

(A) Representative 3D-rendered images of CD4+ (blue) and CD8+ (red) TEGs and their full 944 

tracks (up to 10 hrs) co-cultured with the 13T organoids (grey surface rendering at t = 0). 945 

Overview: Scale bar, 50 µm. Zoomed images: Scale bar, 30 µm (B) Relative behavioral cluster 946 

distribution of TEGs co-cultured with the indicated PDOs and a normal organoid culture. (C) 947 

Behavioral cluster size difference (%) between CD4+ and CD8+ TEGs co-cultured with the 948 

indicated PDOs and a normal organoid culture calculated from B. (n ≥ 3 independent 949 

experiments for each co-culture; mean ± s.e.m.) Linear regression model fitting with each well 950 

as a random effect: C9 p=7.52E-06; C8 p=0.0034; C7 p=0.00018; C6 p=0.000023; C5 951 

p=0.0062; C4 p=0.01; C3 p= 0.001; C1 p=3.01E-06. (D) Quantification of the first action and 952 

second action of CD4+ and CD8+ TEGs after they engaged with an organoid. n = 3 replicates. 953 

Hypergeometric test was used to analyze cell type enrichment in each category. “Kills multiple 954 

cells” p<0.0001; “Kills one cell” p= 0.000015; “No killing” p= 0.0018. (E) 3D multispectral 955 

images showing a CD4+ TEG (green) that kills a 13T tumor cell (becomes red) in a first 956 

organoid (yellow) and a second tumor cell in a neighboring organoid (upper panel), and a CD8+ 957 

TEG (blue) killing a complete 13T organoid of ~18 cells (yellow becoming red) in 11 hrs 958 

(lower panel). Scale bars, 30 µm. (F) Processed images of j showing 3D-rendered organoids 959 
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(grey) at t = 0 and the CD4+ TEG (green) or the CD8+ TEG (blue) with their full track rainbow-960 

colored for time. Scale bars, 10 µm. (G) Quantification of the number of cells killed in a 961 

sequence by CD8+ TEGs in time. (n = 3 independent experiments). (H) Quantification of the 962 

time it takes to kill one 13T tumor cell for CD4+ TEGs and CD8+ TEGs (n = 3 independent 963 

experiments).  (I) UMAP embedding showing the expression levels of NCAM1. Color gradient 964 

represents the log2-transformed normalized counts of genes. (J) Quantification of the 965 

percentage of dying 13T organoids (% of total) at 10 hrs of co-culture with either sorted 966 

NCAM1-CD8+ TEGs or NCAM1+CD8+ TEGs (n = 5 independent experiments; mean ± s.e.m.). 967 

Two-tailed unpaired t test, p= 0.0001036. (K) Schematic representation of fluorescent labeling 968 

strategy of CD8+ TEGs with NCAM1 nanobody and efluor-450 to image and track NCAM1-969 

positive versus -negative TEGs.  (L) Behavioral cluster difference (%) between NCAM1-CD8+ 970 

TEGs or NCAM1+CD8+ TEGs co-cultured with 13T organoids. (n = 6 independent 971 

experiments; mean ± s.e.m.). Linear regression model fitting with each experimental replicate 972 

as a random effect:  CL9 p=0.0002; CL8 p=0.07; CL2 p=0.005; CL1 p=0.02. (M) 3D-rendered 973 

images of 13T organoids (grey) from the same well with NCAM+ ‘super-engager’ CD8+ TEGs 974 

(top  image) and NCAM- ‘lazy’ and ‘dying’ CD8+ TEGs (bottom image). Scale bars, 10 µm. 975 

 976 

Figure 4. Behavioral-transcriptomic profiling of TEGs upon PDO exposure, engagement 977 

and killing. (A) Schematic representation of cell population separation for isolation and 978 

sequencing of super-engaged, engaged, non-engaged; non-engagedEnriched, and no target 979 

control TEGs. (B) Distribution of the 9 behavioral signatures described in Figures 2B and 2C 980 

of the indicated behavior-enriched TEG populations isolated at 6 hrs of co-culture. (C-E) 981 

UMAP embedding of pooled scRNAseq profiles showing distribution of, CD8+eff, CD4+eff, 982 

CD4+mem TEGs (C),  the 5 behavior-enriched TEG populations described in a (D), and 983 

normalized gene expression of IFNG and GZMB (E). Colors represent the log2-transformed 984 
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normalized counts of genes. (F) Heatmap representing the probability distribution of different 985 

behavioral signatures and no target control over pseudotime for CD8+eff, CD4+eff and CD4+mem 986 

TEGs.  Color represents the scaled probability for each behavioral group. (G) Heatmap 987 

showing normalized gene expression dynamics of TEGs upon exposure and engagement to 988 

13T PDOs. Columns represent T cells ordered in pseudotime, rows represent the expression of 989 

genes, grouped based on similarity, resulting in 8 gene clusters (CL). CL1-3 represent gene 990 

expression patterns shared among TEG subsets. CL4-8 show different expression dynamics 991 

between TEG subsets. Horizontal color-bar (on top) represents the corresponding stage of 992 

targeting based on data in f. (H) Averaged gene expression over pseudotime for all genes from 993 

indicated GO terms for the indicated TEG subtypes. Graph background color-shading represent 994 

the corresponding stage of targeting. Line colors indicate GO term. (I) Gene-expression dot 995 

plot for a curated subset of genes at different stages of targeting. Rows depict genes. Dot color 996 

gradient indicates average expression, while size reflects the proportion of cells expressing a 997 

particular gene (%). (J) Violin plots for different TEG subtypes showing averaged expression 998 

of genes related to GO term ‘Regulation of cell killing’ enriched in CL7 from g. Colors indicate 999 

different stages of targeting. (K) Venn diagram depicting common and unique functions from 1000 

61 conserved genes composing a (serial) killer gene signature.  1001 

 1002 

Figure 5.  IFN-I signaling in PDOs primes TEG efficacy. (A) Top panel: UMAP embedding 1003 

of pooled scRNA-seq profiles from super-engaged and non-engagedEnriched TEG populations 1004 

co-cultured with either 13T or 10T PDOs; and no target control T cells. TEGs are colored per 1005 

experimental condition. Bottom panel: UMAP plot showing the expression levels of IFNG and 1006 

GZMB. Colors represent the log2-transformed normalized counts of genes. (B) Venn diagrams 1007 

depicting common and unique genes upregulated in TEGs upon 13T and 10T organoid 1008 

exposure (environmental stimuli; top panel) or prolonged engagement (super engagers; bottom 1009 
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panel). (C) Heatmap of gene expression for genes involved in functional annotations of interest 1010 

(“Response to IFN-I”, “Cytokine response”), grouped according to TEG populations. (D) 1011 

IFNA and IFNB expression in PDOs from the BC panel in Figure 1D. (E-G) Quantification 1012 

of dying single organoids in presence or absence of recombinant IFN-b for the following 1013 

conditions: organoids co-cultured with TEGs with direct addition of IFN-b, corrected for 1014 

responses of LM1 control T cells (E); organoids pre-incubated with IFN-b for 24 hrs before 1015 

co-culture with TEGs, corrected for responses of LM1 control T cells (F), and organoids pre-1016 

incubated with IFN-b  for 24 hrs and cultured in absence of TEGs (G). Lines connect 1017 

experimental replicates. (n≥3). Statistical analysis in (F) was performed by paired t test: 34T-1018 

IFN-b vs 34T-control p < 0.0006; 27T-IFN-b vs 27T-control p < 0.0216; 10T-IFN-b vs 10T-1019 

control p < 0.0402. 1020 

 1021 
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