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Abstract 18 

 19 

Environmental temperature has a huge impact on multiple meiosis processes in flowering 20 

plants. Polyploid plants derived from whole genome duplication are believed to have an 21 

enhanced abiotic stress tolerance. In this study, the impact of high temperatures on male 22 

meiosis in autotetraploid Arabidopsis thaliana was investigated. We found that autotetraploid 23 

Columbia (Col-0) plants generate a subpopulation of aberrant meiotic products under normal 24 

temperature, which is significantly increased under heat stress. Cytological studies revealed 25 

that, as the case in diploid Arabidopsis thaliana, assembly of microtubular cytoskeleton 26 

network, pairing and segregation of homologous chromosomes, and meiotic recombination in 27 

autotetraploid Arabidopsis are compromised under the high temperatures. Immunostaining of 28 

ɤH2A.X and recombinase DMC1 suggested that heat stress inhibits formation of DNA 29 

double-strand breaks; additionally, it specifically destabilizes ASY1 and ASY4, but not SYN1 30 

on chromosomes. The loading defects of ASY1 and ASY4 overlap in the syn1 mutant, which 31 

supports that the building of lateral element of synaptonemal complex occurs downstream of 32 

a SYN1-ASY4-ASY3 stepwise assembly of axis. Remarkably, heat-induced abnormalities of 33 

ASY1 and ASY4 co-localize on chromosomes of both diploid and autotetraploid Arabidopsis, 34 

suggesting that high temperatures interfere with ASY1-associated SC via an impacted 35 

stability of chromosome axis. Furthermore, ZYP1-dependent transverse filament of SC is 36 

disrupted by heat stress. Taken together, these findings suggest that polyploidization 37 

negatively contributes to instability of chromosome axis and meiotic recombination in 38 

Arabidopsis thaliana under heat stress. 39 

 40 
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Introduction 46 

 47 

Meiosis is a specialized type of cell division that, in plants, occurs in pollen mother cells 48 

(PMCs) and/or megasporocytes giving rise to gametes with halved ploidy. At early stages of 49 

meiosis, meiotic recombination (MR) takes place between homologous chromosomes to drive 50 

exchange of genetic information via formation of crossovers (COs). MR results in novel 51 

combination of genetic alleles among progenies, which enables natural selection can happen 52 

in the population, and safeguards balanced segregation of homologous chromosomes that is 53 

vital for production of viable gametes and fertility (Wang and Copenhaver, 2018). MR is 54 

initiated by the generation of DNA double-strand breaks (DSBs), which are catalyzed by 55 

SPO11, a type-II topoisomerase (topoisomerase VI, subunit A) conserved among eukaryotes 56 

(Bergerat et al., 1997; Da Ines et al., 2020; Grelon et al., 2001; Stacey et al., 2006). In 57 

Arabidopsis, SPO11-1 and SPO11-2 are required for MR, while SPO11-3 plays a role in 58 

endoreduplication (Grelon et al., 2001; Hartung et al., 2007; Stacey et al., 2006; 59 

Sugimoto-Shirasu et al., 2002; Yin et al., 2002). Plants with defective DSB formation exhibit 60 

impaired homolog synapsis and recombination, and are male sterile due to mis-segregation of 61 

chromosomes (Da Ines et al., 2020; De Muyt et al., 2007; Grelon et al., 2001; Stacey et al., 62 

2006; Xue et al., 2018). DSBs are subsequently processed by recombinases RAD51, which 63 

repairs DSBs using sister chromatids as a template that leads to non-crossovers (NCOs); or 64 

DMC1, which drives MR-specific DSB repair (Da Ines et al., 2013; Klimyuk and Jones, 1997; 65 

Kobayashi et al., 2019; Li et al., 2004; Pohl and Nickoloff, 2008; Sanchez-Moran et al., 2007; 66 

Singh et al., 2017; Su et al., 2017; Yao et al., 2020). RAD51 and DMC1 do not act 67 

independently, with RAD51 functioning as an accessory factor of DMC1 in catalyzing MR 68 

(Cloud et al., 2012; Da Ines et al., 2013; Kurzbauer et al., 2012; Lan et al., 2020). There are 69 

two types of COs, most of which (~85%) belong to type-I class catalyzed by ZMM proteins, 70 

and are spaced on chromatin by interference (Higgins et al., 2004); while the other COs 71 

(type-II) mediated by MUS81 are interference-insensitive (Berchowitz et al., 2007; 72 

Hollingsworth and Brill, 2004). 73 

 74 

DSB formation and MR rely on a programmed building of chromosome axis. Meiotic-specific 75 

cohesion protein AtREC8/SYN1 binds sister chromatids together and aids the chromosomes 76 

to form a loop structure (Shahid, 2020; Zickler and Kleckner, 1999). It is proposed that DSBs 77 

are formed at the basal region of the loops that are anchored to the ASY1-associated lateral 78 

element of synaptonemal complex (SC) (Kim and Choi, 2019; Zickler and Kleckner, 1999). 79 

The coiled-coil axis proteins ASY3 and ASY4 play a key role in organizing axis formation, 80 

and mediates the connections between the SYN1-mediated chromosome axis and SC via the 81 

interplay with ASY1 (Chambon et al., 2018; Ferdous et al., 2012; Osman et al., 2018). 82 
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Dysfunction of the axis components causes disrupted axis structure and reduced DSB 83 

formation, and consequently results in failed homolog synapsis and MR (Bai et al., 1999; Cai 84 

et al., 2003; Chambon et al., 2018; Ferdous et al., 2012; Lambing et al., 2020b). SC formation 85 

is essentially required for normal homolog synapsis and CO formation. ASY1 contributes to 86 

CO formation via the DMC1-mediated MR pathway (Armstrong et al., 2002; Sanchez-Moran 87 

et al., 2007). Meanwhile, ASY1 prevents the preferential occurrence of COs at distal regions 88 

by antagonizing telomere-led recombination, and by maintaining CO interference along the 89 

chromosomes (Lambing et al., 2020a). ZYP1 is a conserved transverse filament protein of SC 90 

which is required for homolog synapsis (Barakate et al., 2014; Higgins et al., 2005; Wang et 91 

al., 2010). Recent findings revealed that ZYP1-dependent SC formation is indispensable for 92 

maintenance of interference, by which ZYP1 restricts the number of type-I COs along the 93 

chromosomes; moreover, the bias of CO rate between sexes is wiped when ZYP1 is knocked 94 

out (Capilla-Pérez et al., 2021; France et al., 2021). Homologous chromosomes are separated 95 

by the bipolar pulling of spindles at the end of meiosis I (MI); and after meiosis II (MII), 96 

sister chromatids disjoin with each other, which leads to production of four isolated 97 

chromosome sets (Bhatt et al., 2001; Zamariola et al., 2014). In Arabidopsis, like other dicot 98 

plants, meiotic cytokinesis takes place thereafter the completion of two rounds of 99 

chromosome separation (De Storme and Geelen, 2013). 100 

 101 

Male meiosis in plants is sensitive to variations of environmental temperature (Bomblies et al., 102 

2015; De Storme and Geelen, 2014; Liu et al., 2019; Lohani et al., 2019). In both dicots and 103 

monocots, low temperatures predominantly affect cytokinesis by disturbing the formation of 104 

phragmoplast, which thereby induces meiotic restitution and formation of unreduced gametes 105 

(De Storme et al., 2012; Liu et al., 2018; Tang et al., 2011). In contrast, under high 106 

temperatures, both chromosome dynamics and cytokinesis are prone to be impacted; 107 

especially, the response of MR to heat stress is more complex (De Storme and Geelen, 2020; 108 

Draeger and Moore, 2017; Lei et al., 2020; Mai et al., 2019; Ning et al., 2021; Wang et al., 109 

2017). In Arabidopsis, a mild increase of temperature (28°C) positively affects type-I CO rate 110 

by enhancing the activity of ZMM proteins without impacting DSB formation (Lloyd et al., 111 

2018; Modliszewski et al., 2018). Under a higher temperature (32°C), however, the rate and 112 

distribution of COs are altered (De Storme and Geelen, 2020). Moreover, at extreme high 113 

temperatures (36-38°C) over the fertile threshold of Arabidopsis, occurrence of COs is fully 114 

suppressed due to inhibited DSBs generation and impaired homolog synapsis; additionally, 115 

the microtubular cytoskeleton-based chromosome segregation is disrupted (Lei et al., 2020; 116 

Ning et al., 2021). Environmental temperatures therefore may manipulate genomic diversity, 117 

and/or influence ploidy consistency of plants over generations by impacting male meiosis 118 

during microsporogenesis (Bomblies et al., 2015; Lohani et al., 2019).  119 

 120 

Most higher plants, especially for angiosperms, have experienced at least one episode of 121 

whole genome duplication (WGD) event, which is considered an important force driving 122 

speciation, diversification, and domestication (Del Pozo and Ramirez-Parra, 2015; 123 

Dubcovsky and Dvorak, 2007; Leitch and Leitch, 2008; Ren et al., 2018; Soltis et al., 2015). 124 

Polyploids are classified into autopolyploids and allopolyploids, which originate from 125 

intraspecies WGD events, or arise from multiple evolutionary lineages through the 126 
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combination of differentiated genomes, respectively (Bretagnolle and Thompson, 1995; 127 

Jackson and Chen, 2010; Parisod et al., 2010; Ramsey and Schemske, 1998; Soltis and Soltis, 128 

2009). In autotetraploid plants, four intraspecies-homologues usually undergo randomly 129 

separation at anaphase I; this is different as allotetraploids, in which subgenomes tend to 130 

segregate independently due to CO formation between the genetically-closer pairs of 131 

homologues (Ramsey and Schemske, 2002; Stift et al., 2008). It is believed that the increased 132 

sets of homologous chromosomes contribute to genome flexibility and confer the plants with 133 

enhanced tolerance to both endogenous genetic mutations, or exogenous environmental 134 

stresses (Comai, 2005; Del Pozo and Ramirez-Parra, 2015; Rao et al., 2020; te Beest et al., 135 

2012; Van de Peer et al., 2020; Wu et al., 2020). However, the multiple chromosome sets also 136 

challenge genome stability by impacting homolog pairing and balanced chromosome 137 

segregation with associated reduced fertility or viability of plants (Comai, 2005; Otto, 2007; 138 

Santos et al., 2003; Svačina et al., 2020; Yant et al., 2013). It is proposed that polyploids have 139 

evolutionarily developed a moderate strategy that assures genome stability to a large scale by 140 

early-stage homoeologous chromosome sorting, chromosome axis-mediated MR modification, 141 

and/or by sacrificing an acceptable reduction of CO formation (Bomblies et al., 2016; 142 

Grandont et al., 2014; Lloyd and Bomblies, 2016; Morgan et al., 2020; Seear et al., 2020). 143 

However, it remains not yet clear how male meiosis in polyploid plants responds to increased 144 

environmental temperatures.  145 

 146 

In this study, we found that autotetraploid Col-0 plants incubated at 20°C produce a low but 147 

consistently-detectable rate of abnormal meiotic products, suggesting that meiotic defects 148 

naturally take place in autotetraploid Arabidopsis. We also showed that both the chromosome 149 

dynamics and axis formation in the autotetraploid Arabidopsis plants are more sensitive to 150 

high temperatures than that in diploid Arabidopsis, suggesting that a duplicated genome does 151 

not confer a higher tolerance but instead increases chromosome instability in Arabidopsis 152 

thaliana under thermal conditions. Remarkably, we provided evidence supporting that 153 

ASY1-associated lateral element of SC formation relies on a SYN1-ASY4-ASY3 stepwise 154 

assembly of chromosome axis, in which the stability of ASY4- and ASY3-mediated axis 155 

bridges the impact of high temperature on SC organization. Overall, these findings provide 156 

insights into how high temperatures affect male meiosis in autotetraploid Arabidopsis 157 

thaliana. 158 

 159 

Results 160 

 161 

Heat stress increases meiotic defects in autotetraploid Arabidopsis thaliana  162 

 163 

To reveal the impact of heat stress on male meiosis of autotetraploid Arabidopsis thaliana, we 164 

analyzed tetrad-staged PMCs in heat-stressed autotetraploid Col-0 plants by performing 165 

orcein staining (Fig. 1). First, fluorescence in situ hybridization (FISH) using a 166 

centromere-specific probe was applied in the autotetraploid Col-0 plants, which showed that 167 

somatic cells harbored twenty chromosomes representing that the plants were tetraploid 168 

(Supplement Fig. S1). In plants under control temperature, most PMCs (~95.46%) produced 169 
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tetrads that subsequently developed into normal-sized microspores with a single nucleus (Fig. 170 

1A; B and E). Interestingly, a low proportion of polyads and/or unbalanced-tetrads was 171 

consistently observed, which resulted in formation of microspores with varied sizes (Fig. 1A; 172 

C, polyad, 3.67%; D, unbalanced-tetrad, 0.86%; F, microspores). These phenotypes suggested 173 

that a minor frequency of meiotic defects naturally take place in autotetraploid Arabidopsis 174 

thaliana. In plants stressed by 37°C, a significantly increased frequency (~92.49%) of 175 

abnormal meiotic products was observed, in which unbalanced-triads, polyads and 176 

unbalanced-tetrads occupied the highest proportions (Fig. 1A; M-O, unbalanced-triads, 177 

29.02%; R and S, polyads, 26.42%; P and Q, unbalanced-tetrads, 26.17%). These figures, 178 

together with the observed unbalanced-dyads that contained differently-numbered and/or 179 

-sized nuclei (Fig. 1A, G, I and J, 7.25%), indicated that chromosome segregation in MI 180 

and/or II was interfered. Meanwhile, the occurrence of balanced-dyad and balanced-triad 181 

represented an induction of meiotic restitution (Fig. 1A; H, balanced-dyad, 2.85%; K, 182 

balanced-triad, 0.78%). The defective tetrad stage PMCs leaded to generation of aneuploid 183 

microspores at unicellular stage (Fig. 1T and U). Similar cellular alterations were observed in 184 

autotetraploid Col-0 plants stressed by 32°C (Fig. 1A; V-Z). Moreover, we found that under 185 

high temperatures, the flower buds with the same size as that in control occurring meiosis 186 

and/or cytokinesis contained unicellular stage microspores, which hinted that the high 187 

temperatures accelerated meiosis progressing (Supplement Fig. S2A-C).  188 

 189 

We next stained meiotic cell walls using aniline blue to examine the impact of high 190 

temperatures on meiotic cytokinesis in autotetraploid Col-0 plants. In line with the analysis by 191 

orcein staining, most tetrads in control plants showed a regular ‘cross’-like cell wall 192 

formation (Fig. 2A). Observation of polyad supported that meiotic defects naturally occurred 193 

in the autotetraploid Arabidopsis (Fig. 2B). After incubation under 37°C, the autotetraploid 194 

Col-0 plants showed defective meiotic cell wall formation including unbalanced-triads (Fig. 195 

2C; Supplement Fig. S3F-I), polyad (Fig. 2D; Supplement Fig. S3K and L), 196 

unbalanced-tetrads (Fig. 2E; Supplement Fig. S3E and J), unbalanced-dyad (Fig. 2F; 197 

Supplement Fig. S3B-D), balanced-dyad (Fig. 2G; Supplement Fig. S3A) and balanced-triad 198 

(Fig. 2H; Supplement Fig. S3E). These data demonstrated that heat stress interferes with one 199 

or more meiosis processes; e.g. chromosome segregation and cytokinesis in autotetraploid 200 

Arabidopsis thaliana.  201 

 202 

Microtubular cytoskeleton in autotetraploid Arabidopsis is abnormally assembled under 203 

heat stress 204 

 205 

To address the cellular mechanism underlining heat-induced aberrant tetrad formation and 206 

defective cytokinesis in autotetraploid Arabidopsis, we examined microtubular cytoskeleton 207 

by performing immunostaining of ɑ-tubulin (Fig. 3). In autotetraploid Col-0 plants incubated 208 

at 20°C, formation of spindle was initiated at early metaphase I (Fig. 3A), and thereafter at 209 

middle metaphase I, homologous chromosomes aligned at the cell plate when microtubule 210 

arrays got attachment with the centromeres labeled by an anti-CENH3 antibody (Fig. 3B). 211 

The monopolar pulling force from the spindle separated the homologous chromosomes at the 212 
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end of MI, and two spindles were formed at metaphase II to separate the sister chromatids 213 

(Fig. 3C). At telophase II, mini-phragmoplast structures composed of radial microtubule 214 

arrays (RMAs) were constructed between the four isolated nuclei (Fig. 3D). Notably, triad- 215 

and poly-like configurations together with the occurrence of mini-nucleus (Fig. 3E and F) 216 

supported existence of meiotic defects in control autotetraploid Arabidopsis plants. After heat 217 

treatment, we found that the metaphase I microtubule arrays did not display a typical spindle 218 

configuration, which bond with randomly-distributed univalent chromosomes (Fig. 3G and H). 219 

The univalents and the impaired spindle leaded to unbalanced segregation of homologous 220 

chromosomes at interkinesis, which, meanwhile, showed irregular and sparse phragmoplast 221 

formation (Fig. 3I). Disrupted spindles were also observed at metaphase II (Fig. 3J). These 222 

alterations resulted in generation of unbalanced-tetrad and polyad with omitted and/or 223 

abnormally-shaped RMAs between the adjacent and/or differently-sized nuclei (Fig. 3K and 224 

L). 225 

 226 

Heat stress interferes with chromosome behaviors in autotetraploid Arabidopsis thaliana 227 

 228 

Chromosome behaviors in meiocytes of autotetraploid Col-0 plants were analyzed using 229 

4′,6-diamidino-2-phenylindole (DAPI) staining. In control plants, homologous chromosomes 230 

synapsed at pachytene (Fig. 4A). However, unpaired chromosomes were occasionally 231 

observed indicating a pairing defect (Fig. 4B). Bridge- and thick rope-like structures implied 232 

irregular chromosome interactions (Fig. 4C and D, yellow and green arrows). At diakinesis 233 

and metaphase I, most meiocytes showed existence of five tetravalents (Fig. 5E-G and I; 234 

60.71%, n = 34). About 33.93% meiocytes showed a combination of bivalents and 235 

tetravalents including PMCs containing four (21.43%, n = 12), three (8.93%, n = 5) and two 236 

tetravalents (3.57%, n = 2) (Fig. 4H, J and K, red arrow). Additionally, we observed 237 

meiocytes that harbored ten bivalents (Fig. 3L; 5.36%, n = 3). These suggested that synapsis 238 

took place between four homologues or a couple of them, or occurred only between two 239 

homologous chromosomes. Meanwhile, irregular connections hinted associations between 240 

nonhomologous chromosomes (Fig. 4F, G and J, yellow arrows). After MI, most meiocytes 241 

underwent balanced segregation of the four chromosome sets (Supplement Fig. S4A and D; 242 

75%, n = 48), which resulted in generation of tetrads with four isolated nuclei each harboring 243 

a halved chromosome number (Supplement Fig. S4G; 88.24%, n = 105). Unbalanced 244 

separation of homologues with lagged chromosomes (Supplement Fig. S4B and C, E and F; 245 

25%, n = 16) consequently leaded to defective tetrads (Supplement Fig. S4H-J; 11.76%, n = 246 

14).  247 

 248 

In autotetraploid Col-0 plants treated by 37°C, we observed bridge-like chromosome 249 

structures at zygotene (Fig. 4M and N, yellow arrows); meanwhile, incomplete and/or 250 

impaired pairing and synapsis were found on the pachytene chromosomes (Fig. 4O and P, 251 

green arrows). These figures suggested that the high temperature induced abnormal 252 

chromosome interactions and interfered with homolog synapsis. At diakinesis and metaphase 253 

I, ~93.68% meiocytes showed twenty individual chromatids (Fig. 4Q-T, red arrow; n = 89), 254 

which represented an omitted and/or suppressed CO formation that consequently resulted in 255 

unbalanced chromosome segregation at anaphase I (98.08%, n = 51) and tetrad stage (97.67%, 256 
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n = 126) (Supplement Fig. S4K-T). Similarly, in autotetraploid Col-0 plants stressed under 257 

32°C, failed and/or irregular chromosome pairing and synapsis were induced (Fig. 4U and V, 258 

green arrows); in the meantime, a combination of univalents, bivalents and multivalents 259 

suggested that CO formation was compromised (Fig. 4W and X, red arrows) which leaded to 260 

unbalanced chromosome segregation at MII (Supplement Fig. S4U-Y). Taken together, these 261 

findings revealed that heat stress interferes with chromosome pairing and/or synapsis, and 262 

segregation in autotetraploid Arabidopsis. 263 

 264 

High temperatures reduce abundance of HEI10 on diakinesis chromosomes 265 

 266 

Increased temperature influences MR rate by modulating type-Ι CO formation in Arabidopsis 267 

(Modliszewski et al., 2018). Univalents in heat-stressed autotetraploid Col-0 plants suggested 268 

a reduced CO rate under the high temperatures. To this end, we quantified the number of 269 

HEI10 that acts in type-Ι CO formation pathway in diakinesis-staged meiocytes of 270 

autotetraploid Col-0 plants. The plants grown under control temperature showed ~18.10 271 

HEI10 foci per meiocyte (Fig. 5A and B); by contrast, the abundance of HEI10 reduced to 272 

~11.80 and ~0.56 per meiocyte in the plants stressed by 32°C and 37°C, respectively (Fig. 5A, 273 

C and D), which suggested that the high temperatures significantly inhibited occurrence of 274 

type-Ι class CO in the autotetraploid Col-0 plants.  275 

 276 

DSB formation in autotetraploid Arabidopsis is suppressed under high temperatures 277 

 278 

Generation of DSB is crucial for CO formation (De Muyt et al., 2007; Hartung et al., 2007; 279 

Kurzbauer et al., 2012). To test whether heat-induced reduction of CO was owing to a 280 

compromised DSB formation, like in diploid Arabidopsis (Ning et al., 2021), we quantified 281 

the number of ɤH2A.X, which specifically marks DSB sites, on zygotene chromosomes. 282 

Under control temperature, an average of ~146.5 ɤH2A.X foci per meiocyte was detected (Fig. 283 

6A and D). In plants stressed by 32°C and 37°C, however, the abundance of ɤH2A.X was 284 

reduced to ~79.5 and ~84.8 per meiocyte, respectively (Fig. 6B-D), which indicated a 285 

significantly lowered DSB formation. In support of this, the number of DMC1 that 286 

specifically catalyzes DSB repair for MR was reduced to ~39.4 and ~49.7 per meiocyte under 287 

32°C and 37°C, respectively, which were much lowered compared with control (~142) (Fig. 288 

6E-H). These data provided evidence that high temperatures impose a negative impact on 289 

DSB formation in autotetraploid Arabidopsis. 290 

 291 

Heat stress destabilizes ASY1 and ASY4 accumulation on chromosomes 292 

 293 

To reveal the impact of high temperature on chromosome axis formation in autotetraploid 294 

Arabidopsis, we analyzed loading of the main axis-associated components; i.e. SYN1, ASY1 295 

and ASY4 proteins in heat-stressed autotetraploid Col-0 plants. Under control temperature, 296 

linear SYN1 and ASY1 signals overlapped and were fully associated with the entire zygotene 297 

chromosomes (Fig. 7A). At late pachytene, when homologous chromosomes synapsed, ASY1 298 

were unloaded at some chromosome regions (Fig. 7B). After heat treatment, although that 299 

some zygotene chromosomes showed uninfluenced accumulation of ASY1 (Fig. 7C and D; 300 
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Supplement Fig. S5A, 19.55%; Supplement Fig. S6A), most zygotene and pachytene 301 

chromosomes displayed dotted configuration of ASY1 (Fig. 7E and F, yellow arrows; 302 

Supplement Fig. S5A, 80.45%; Supplement Fig. S6B-F), suggesting an impacted stability of 303 

ASY1-associated axis. By contrast, no obvious alteration in SYN1 loading was observed in 304 

heat-stressed meiocytes (Fig. 7C-F, I-K).  305 

 306 

On the other hand, early zygotene chromosomes in autotetraploid Col-0 displayed thin linear 307 

ASY4 loading (Supplement Fig. S7A), which was extended to the whole chromosomes from 308 

middle zygotene to middle pachytene (Fig. 7G and H; Supplement Fig. S7B and C). As the 309 

progressing of MR, ASY4 signals showed disassociation with some chromosome regions 310 

from late pachytene (Supplement Fig. S7D), and were further unloaded at diplotene with 311 

remaining dotted ASY4 foci on diakinesis-staged chromosomes (Supplement Fig. S7E-G). In 312 

heat-stressed plants, a minor proportion of zygotene and pachytene chromosomes displayed 313 

normal ASY4 accumulation (Fig. 7I; Supplement Fig. S5B, 19.85%; Supplement Fig. S7H 314 

and I); on the contrary, a majority of zygotene- and pachytene-staged meiocytes showed 315 

dotted ASY4 foci (Fig. 7J and K, yellow arrows; Supplement Fig. S5B, 80.15%; Supplement 316 

Fig. S7J and K). Punctate ASY4 signals also occurred on the univalent chromosomes 317 

(Supplement Fig. S7L). These findings suggested that heat stress specifically destabilizes the 318 

ASY1- and ASY4- but not SYN1-mediated chromosome axis. 319 

 320 

Overlapped abnormalities of ASY1 and ASY4 in the syn1 mutant 321 

 322 

It was proposed that assembly of ASY1-associated lateral element of SC relies on a step-wise 323 

formation of SYN1-ASY3-mediated chromosome axis, which is bridged by ASY4 (Chambon 324 

et al., 2018; Ferdous et al., 2012; Lambing et al., 2020b). To consolidate the role of ASY4 in 325 

mediating ASY1 assembly, we performed co-immunostaining of ASY1 and ASY4 in the syn1 326 

mutant. At middle zygotene, when homologous chromosomes partially paired and synapsed, 327 

ASY1 and ASY4 were fully assembled along the whole chromosomes in the diploid Col-0 328 

plants (Fig. 8A). By contrast, incomplete and/or fragmented ASY1 and ASY4 configuration 329 

were observed in zygotene and pachytene meiocytes of the syn1 mutant (Fig. 8B and C), 330 

which, in addition, overlapped (Fig. 8B and C). This supported the notion that 331 

ASY1-associated SC assembly relies on ASY4-mediated axis formation, which in turn 332 

depends on functional SYN1. 333 

 334 

Moreover, DSB formation is considered a downstream event of axis formation and occurs 335 

independently of SC assembly (Lambing et al., 2020b; Sanchez-Moran et al., 2007). To 336 

consolidate this model, we checked localization of ASY1 and ASY4 in the meiocytes of 337 

spo11-1-1, rad51 and dmc1 mutants. We did not detect any alteration in loading of ASY1 338 

and/or ASY4 on chromosomes of these mutants (Fig. 8D, spo11-1-1; E, rad51 and F, dmc1). 339 

 340 

Co-localization of abnormal ASY1 and ASY4 signals on chromosomes of heat-stressed 341 

diploid and autotetraploid Arabidopsis 342 

 343 

Considering the similarities of defective ASY1 and ASY4 accumulation under heat stress, and 344 
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the upstream action of axis formation on SC assembly (Fig. 7E and F, J and K; Fig. 8B and C) 345 

(Ferdous et al., 2012; Lambing et al., 2020b; Ning et al., 2021), we hypothesized that heat 346 

stress destabilizes ASY1-associated SC via impacted ASY4-mediated chromosome axis. To 347 

this end, we conducted a combined staining of ASY1 and ASY4 in both the heat-stressed 348 

diploid and autotetraploid Col-0 plants. Under control temperature, ASY1 and ASY4 349 

co-localized on the entire chromosomes of diploid and autotetraploid Col-0 at early and 350 

middle zygotene (Fig. 9A and D; Supplement Fig. S8A and B). ASY1 subsequently started to 351 

be disassociated with the chromosomes from early to late pachytene, when ASY4 displayed 352 

relatively stable linear configuration (Supplement Fig. S8C-E). Dotted ASY1 foci occurred at 353 

diplotene, which became sparser at diakinesis representing a completed functioning of ASY1 354 

in mediating homolog synapsis (Supplement Fig. S8F and G). ASY4, however, displayed a 355 

slower unloading off the chromosomes, which supported its role in aiding the assembly of 356 

ASY1 (Supplement Fig. S8F and G). Interestingly, in heat-stressed diploid and autotetraploid 357 

Col-0 plants, incomplete and/or dotted ASY1 and ASY4 signals co-localized on the 358 

chromosomes (Fig. 9B and C, E and F, yellow arrows). These observations favored the 359 

hypothesis that heat stress destabilizes ASY1-associated SC via a compromised stability of 360 

ASY4-mediated axis.  361 

 362 

Impaired ZYP1-dependent transverse filament under heat stress 363 

 364 

Formation of ZYP1-dependent transverse filament (TF) of SC is required for homolog 365 

synapsis (Barakate et al., 2014; Capilla-Pérez et al., 2021; France et al., 2021; Higgins et al., 366 

2005; Wang et al., 2010). We analyzed ZYP1 assembly to examine the impact of heat stress 367 

on the central element of SC in autotetraploid Col-0 plants. In control, ZYP1 proteins were 368 

linearly and partially loaded at the central regions of paired homologous chromosomes from 369 

zygotene (Fig. 10A), which were fully assembled at middle pachytene representing a matured 370 

SC formation (Fig. 10B). As the disintegration of SC from late pachytene, ZYP1 proteins 371 

were gradually disassociated with chromosomes (Fig. 10C). After heat treatment, dotted 372 

and/or fragmented installation of ZYP1 on chromosomes were observed from early zygotene 373 

to late pachytene (Fig. 10D-H, yellow arrow), indicating that assembly of transverse filament 374 

of SC was impaired. Meanwhile, aggregated and/or enlarged ZYP1 foci implied pairing of 375 

multiple chromosomes (Fig. 10D, G and H, blue arrows) (Morgan et al., 2017). Overall, these 376 

figures suggested that heat stress disrupts the building of ZYP1-dependent transverse filament 377 

of SC in autotetraploid Arabidopsis. 378 

 379 

Discussion 380 

 381 

WGD is a conserved phenomenon that contributes to genomic diversity and speciation in 382 

higher plants (Comai, 2005; Dubcovsky and Dvorak, 2007; Ren et al., 2018; te Beest et al., 383 

2012; Van de Peer et al., 2020). Additional copies of genome, however, increase the 384 

complexity for homologous chromosomes to pair and synapse (Lloyd and Bomblies, 2016; 385 

Svačina et al., 2020; Yant et al., 2013). In our study, the autotetraploid Col-0 plants generate a 386 

low but consistently-detectable rate (~4.53%) of aberrant meiotic products under normal 387 
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temperature conditions (Fig. 1, 2 and 3), suggesting that meiotic alterations naturally occur in 388 

these autotetraploid Arabidopsis plants. The regularly formed spindle and phragmoplast 389 

microtubule arrays in the autotetraploid Col-0 plants under control temperature (Fig. 3) 390 

indicate that the meiotic defects are not caused by alterations in microtubular cytoskeleton 391 

and cytokinesis, but are probably induced by the alterations in earlier meiosis processes, e.g. 392 

improper chromosome behaviors with a resultant impacted CO formation. Chromosome 393 

spreading analysis confirmed this which showed incomplete and/or irregular pairing and 394 

synapsis at pachytene stage (Fig. 4B-D). The observation of regions of co-aligned, but 395 

un-synapsed axes suggest that the synapsis defects are (or at least in part) independent of 396 

defects in chromosome pairing (Capilla-Pérez et al., 2021; France et al., 2021). At the same 397 

time, we found that the autotetraploid Arabidopsis plants primarily generate diakinesis PMCs 398 

that contain five tetravalents (Fig. 4). This phenotype supports the opinion that autotetraploid 399 

plants, in contrast to allotetraploids, preferentially undergo synapsis between four 400 

homologous chromosomes (Braz et al., 2021; Lloyd and Bomblies, 2016; Svačina et al., 401 

2020). The unbalanced chromosome segregation at anaphase I could result from the 402 

difficulties in multivalent resolving in the meiocytes with a mixed existence of tetravalents 403 

and bivalents, as well as the ten bivalents (Yant et al., 2013). The autotetraploid Col-0 plants 404 

that we used here was colchicine treatment-induced, which is very typical of newly formed 405 

(neo)-autotetraploids that is believed to be less stable than the evolution-derived 406 

autotetraploids; e.g. A. lyrate and A. arenosa (Henry et al., 2014; Lloyd and Bomblies, 2016; 407 

Yant et al., 2013). Therefore, the meiotic defects we observed are probably the effects of 408 

polyploidization without natural selection. 409 

 410 

Under heat stress, as other plant species, the autotetraploid Col-0 plants exhibit a severe 411 

organization of phragmoplast and RMAs at the end of meiosis (Fig. 3I, K and L), indicating 412 

that microtubular cytoskeleton is a prominent targeted by high temperatures (De Storme and 413 

Geelen, 2020; Lei et al., 2020; Mai et al., 2019; Wang et al., 2017). Nevertheless, 414 

heat-induced polyad formation, and the disrupted RMA configuration could be a secondary 415 

effort from the impaired spindle and/or a univalent-induced mis-segregation of chromatids at 416 

MII, which normally occur in mutants with a defective MR (Bai et al., 1999; Shi et al., 2021; 417 

Xue et al., 2019). Besides, in heat-stressed autotetraploid Arabidopsis, a high frequency of 418 

univalents is induced and the abundance of HEI10 is lowered, indicating a largely suppressed 419 

CO formation. Subsequent cytological analysis on key MR events suggested that the high 420 

temperatures interfere with MR in the autotetraploid Arabidopsis plants probably by 421 

impacting DSB formation, and by destabilizing chromosome axis and SC. Genome 422 

duplication has been suggested to provide increased tolerance to environmental stresses (Folk 423 

et al., 2020; Lourkisti et al., 2020; Rao et al., 2020). However, in contrast to the diploid 424 

Arabidopsis Col-0 plants, we here showed that the neo-autotetraploid Col-0 generates a 425 

higher frequency of aberrant meiotic products under high temperatures (Fig. 1; ~92.5% at 426 

37°C) (Lei et al., 2020). Meanwhile, we recorded a higher rate of destabilized loading of 427 

ASY1 and ASY4 in the heat-stressed autotetraploid Col-0 plants (80.45% defective ASY1 and 428 

80.15% defective ASY4 in autotetraploid Col-0) (Ning et al., 2021), which represents 429 

enhanced sensitivity of axis and SC formation to increased temperature. These facts suggest 430 

that meiosis programs, especially for axis organization and chromosome dynamics are more 431 
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unstable under high temperatures in neo-tetraploid Arabidopsis thaliana.  432 

 433 

The significantly reduced abundance of γH2A.X and DMC1 in autotetraploid Col-0 plants 434 

under high temperatures indicated an interfered DSB generation (Fig. 6). This phenomenon is 435 

similar with what has been reported in the diploid Arabidopsis (Ning et al., 2021), which 436 

suggests that a duplicated genome does not change the threshold of DSB formation system in 437 

Arabidopsis thaliana. In Saccharomyces cerevisiae, DSB repair defect is more pronounced 438 

under lower temperature (Pohl and Nickoloff, 2008). The negative impact of high 439 

temperatures on DSB formation thus is likely conserved among eukaryotes. The attempt to 440 

reveal how heat stress influences DSB formation has been tried by examining the expression 441 

of key DSB generation-involved factors in the diploid Arabidopsis, which showed that the 442 

transcripts of neither SPO11-1 nor PRD1, 2 and 3 are sensitive to the increased temperature. 443 

Therefore, heat stress induces DSB reduction not likely by impacting the DSB formation 444 

machineries at the mRNA levels. In multiple species, the activity of phosphatidylinositol 3 445 

kinase-like (PI3K) protein kinase Ataxia-Telangiectasia Mutated (ATM), which undertakes a 446 

conserved function in sensing DNA damage and subsequently evoking DSB repair events 447 

(reviewed by (Paull, 2015)), is negatively correlated with DSB abundance (Carballo et al., 448 

2013; Garcia et al., 2015; Joyce et al., 2011; Lange et al., 2011; Li and Yanowitz, 2019; 449 

Mohibullah and Keeney, 2017; Zhang et al., 2011). A recent report in Arabidopsis suggested 450 

that ATM limits DSB formation by restricting the accumulation of SPO11-1 on chromatin, 451 

with the atm mutant having increased amount of SPO11-1 (Kurzbauer et al., 2021). 452 

Supportively, the atm mutation increases the foci of recombinases RAD51 and DMC1; 453 

meanwhile, it enhances the chromosome fragmentation in the atcom1 mutant, which is 454 

defective for DSB processing (Kurzbauer et al., 2021; Uanschou et al., 2007). We have 455 

previously identified an elevated expression of ATM in heat-stressed diploid Arabidopsis 456 

plants (Ning et al., 2021). Taken together, it is possible that high temperatures interfere with 457 

DSB formation with associated induction of univalents by activating ATM. To this end, a 458 

decreased SPO11-1 abundance should occur in heat-stressed wild-type plants, and the atm 459 

mutant may exhibit higher DSB threshold to increased temperatures. Further examination on 460 

SPO11 dynamics under increased temperature thus is of necessity to verify the hypothesis.  461 

 462 

In both diploid and autotetraploid Arabidopsis, we observed an interfered configuration of 463 

ASY1 and ASY4 on chromosomes (Fig. 7 and 9) (Ning et al., 2021). At the same time, 464 

fragmented and/or disrupted ZYP1 loading, and multilayer-SC structures occurs in both the 465 

diploid and autotetraploid Arabidopsis under high temperatures (Fig. 10) (Loidl, 1989; 466 

Morgan et al., 2017; Ning et al., 2021). These facts reveal that chromosome axis and SC are 467 

the prominent targets by high temperatures that interfere with MR. In the syn1 mutant, the 468 

accumulation of ASY3 and ASY4 is compromised, which, however, is not the case conversely 469 

(Fig. 8) (Chambon et al., 2018; Ferdous et al., 2012; Lambing et al., 2020b). Considering that 470 

a linear configuration of ASY3 depends on a functional ASY4 (Chambon et al., 2018), it is 471 

possible that SYN1, ASY4 and ASY3 act in a stepwise manner in mediating axis formation. 472 

However, since it has been evidenced by BiFC and Y2H assays that a direct interaction exists 473 

between ASY4 and ASY3 (Chambon et al., 2018), we cannot exclude the possibility that the 474 

normal loading of ASY4 also relies on the existence of ASY3 on the chromatin. Furthermore, 475 
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it has been shown that ASY1 cannot be regularly loaded onto chromosomes in plants depleted 476 

with any of the axis-associated factors, which, however, in other way round are not impacted 477 

in the asy1 mutant (Chambon et al., 2018; Chelysheva et al., 2005; Ferdous et al., 2012; 478 

Lambing et al., 2020a; Lambing et al., 2020b). This supports the notion that the assembly of 479 

SC occurs downstream of axis formation. In line with this, we observed a delayed unloading 480 

of ASY4 than ASY1 at later prophase I chromosomes (Supplement Fig. S8). Interestingly, 481 

heat-destabilized ASY1 and ASY4 signals occur at a very close frequency, which additionally 482 

co-localize on the chromosomes in both diploid and tetraploid Arabidopsis (Fig. 9) (Ning et 483 

al., 2021). The instability of lateral element of SC under high temperatures therefore is 484 

probably owing to an impacted axis formation. Since SYN1 keeps stable under the high 485 

temperatures, it is plausible that heat stress specifically targets the ASY4 and/or 486 

ASY3-mediated bridge structure that organizes and anchors the lateral element of SC to 487 

chromosome axis. Whether the aggregated and/or dotted ASY1 and ASY4 loading are 488 

somehow preferentially distributed at specific chromosome regions remain further 489 

investigation. 490 

 491 

Supplemental materials 492 

 493 

The following files are available in the online version of this article. 494 

Supplement Figure S1. FISH analysis of somatic cells in autotetraploid Col-0 plants. 495 

Supplement Figure S2. Orcein staining of meiosis-staged flower buds in autotetraploid Col-0 496 

plants stressed by 32°C. 497 

Supplement Figure S3. Meiotic cell wall formation in heat-stressed autotetraploid Col-0 498 

plants. 499 

Supplement Figure S4. Meiotic spread of autotetraploid Col-0 plants. 500 

Supplement Figure S5. Quantification of meiocytes with immunostaining of ASY1 and ASY4 501 

in autotetraploid Col-0 plants. 502 

Supplement Figure S6. Immunolocalization of ASY1 in meiocytes of autotetraploid Col-0 503 

plants. 504 

Supplement Figure S7. Immunolocalization of ASY4 in meiocytes of autotetraploid Col-0 505 

plants. 506 

Supplement Figure S8. Co-immunolocalization of ASY1 and ASY4 in meiocytes of 507 

autotetraploid Col-0 plants. 508 

 509 

Materials and methods  510 

 511 

Plant materials and growth conditions 512 

 513 

Autotetraploid and diploid Arabidopsis thaliana Columbia-0 (Col-0) plants, and the syn1-1 514 

(SALK_137095), rad51 (SAIL_873_C08), spo11-1-1 (Grelon et al., 2001) and dmc1 515 

(SALK_056177) (Sanchez-Moran et al., 2007) mutants were used in the study. The 516 

autotetraploid Col-0 plants were generated as reported (De Storme and Geelen, 2011). Seeds 517 
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were germinated in soil for 6-8 days and seedlings were transferred to soil and cultivated with 518 

a 16 h day/8 h night, 20°C, and 50% humidity condition. For temperature treatments, young 519 

flowering plants were transferred to a humid chamber with a 16 h day/8 h night and incubated 520 

at 32 and/or 37°C, respectively, for 24 h. All the treatment started from 8:00-10:00 AM. 521 

Meiosis-staged flower buds were fixed by carnoy’s fixative or paraformaldehyde upon the 522 

finish of treatments. 523 

 524 

Generation of antibodies 525 

 526 

The anti-AtSYN1 antibodies were raised in rabbits by referring to (Bai et al., 1999); the 527 

anti-AtASY1 antibodies were generated in rabbits and mouses, respectively, against the 528 

amino acid sequence SKAGNTPISNKAQPAASRES of AtASY1 conjugated to KLH; the 529 

anti-AtZYP1 antibody (rat) was generated against the amino acid sequence 530 

GSKRSEHIRVRSDNDNVQD of AtZYP1 conjugated to KLH. 531 

 532 

Immunolocalization of MR proteins and ɑ-tubulin 533 

 534 

Immunostaining of ɑ-tubulin and MR proteins was performed as reported (Chelysheva et al., 535 

2010; Liu et al., 2017; Wang et al., 2014). Antibodies against ZYP1 (rabbit and/or rat) (Ning 536 

et al., 2020), DMC1 (rabbit) (Ning et al., 2020) and γH2A.X (rabbit) (Lambing et al., 2020b) 537 

were diluted by 1:100; antibodies against ɑ-tubulin (rat) (Lei et al., 2020), ASY1 (rabbit 538 

and/or mouse), ASY4 (rabbit) (Ning et al., 2020) and SYN1 (mouse) were diluted by 1:200; 539 

antibody against CENH3 (rabbit) (Abcam, 72001) was diluted by 1:400; antibody against 540 

SYN1 (rabbit) was diluted by 1:500. The secondary antibodies; i.e. Goat anti-Rabbit IgG 541 

(H+L) Cross-Adsorbed Secondary Antibody Alexa Fluor 555 (Invitrogen, A32732), Goat 542 

anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody Alexa Fluor Plus 488 543 

(Invitrogen, A32731), Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa 544 

Fluor 555 (Invitrogen, A21434), Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary 545 

Antibody, Alexa Fluor 488 (Invitrogen, A11006) and Goat anti-Mouse IgG (H+L) Highly 546 

Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 488 (Invitrogen, A32723) were 547 

diluted to 10 µg/mL. 548 

 549 

Cytology and fluorescence in situ hybridization 550 

 551 

Meiotic chromosome behaviors were analyzed by performing chromosome spreading using 552 

meiosis-staged flower buds fixed at least 24 h by carnoy’s fixative. Flower buds were washed 553 

twice by distilled water and once in citrate buffer (10 mM, pH = 4.5), and were incubated in 554 

digestion enzyme mixture (0.3% pectolyase, 0.3% cellulase and 0.3% cytohelicase) in citrate 555 

buffer (10 mM, pH = 4.5) at 37°C in a moisture chamber for 2.5-3.5 h. Subsequently, 6-8 556 

digested buds were washed in distilled water, and were transferred to a glass slide squashed in 557 

a small amount (4-5 μL) of distilled water followed by adding two rounds of 10 μL precooled 558 

60% acetic acid. The samples were stirred gently on a hotplate at 45°C for 1-2 min, which 559 

thereafter was flooded with precooled carnoy’s fixative. The slides were subsequently air 560 

dried for 10 min, and were stained by adding 8 μL DAPI (10 μg/mL) in Vectashield antifade 561 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442845doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442845


 

14 

  

mounting medium, mounted with a coverslip, and sealed by nail polish. Tetrad analysis by 562 

orcein and/or aniline blue staining was performed by referring to (Lei et al., 2020; Ning et al., 563 

2021). FISH assay was performed by referring to (Lei et al., 2020). 564 

 565 

Microscopy and quantification of fluorescent foci 566 

 567 

Bright-field images and DAPI-stained meiotic chromosomes were pictured using a M-Shot 568 

ML31 microscope equipped with a MS60 camera. Aniline blue staining of meiotic cell walls, 569 

and immunolocalization of ɑ-tubulin and MR-related proteins were analyzed on an Olympus 570 

IX83 inverted fluorescence microscope equipped with a X-Cite lamp and a Prime BSI camera. 571 

Image processing and quantification of fluorescent foci were conducted as previously 572 

reported (Ning et al., 2021). 573 
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Figure 1. Tetrad analysis in heat-stressed autotetraploid Col-0 plants. A, Graph showing the frequency 

of tetrad-staged meiotic products in autotetraploid Col-0 plants incubated under 20°C, 32°C and 37°C, 

respectively. The numbers indicate the frequency of different types of tetrad-staged meiocytes. B-F, 

Tetrad-staged PMCs (B-D) and unicellular-staged microspores (E and F) of autotetraploid Col-0 plants 

grown under 20°C. G-U, Tetrad-staged PMCs (G-S) and unicellular-staged microspores (T and U) of 

autotetraploid Col-0 plants stressed by 37°C. V-Z, Tetrad-staged PMCs from autotetraploid Col-0 

plants stressed by 32°C. Scale bar = 10 μm. 
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Figure 2. Meiotic cell wall formation in heat-stressed autotetraploid Col-0 plants. A-H, Aniline 
blue-stained callosic cell walls in autotetraploid Col-0 plants incubated under control (A and B) and 
high temperature (C-H). Scale bars = 10 μm. 
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Figure 3. Microtubular cytoskeleton in meiocytes of autotetraploid Col-0 plants. A-F, Metaphase I- (A 

and B), metaphase II- (C) and telophase II-staged (D-F) PMCs in autotetraploid Col-0 plants under 

control temperature. G-L, Metaphase I- (G and H), interkinesis- (I), metaphase II- (J) and telophase II-

staged (K and L) PMCs in autotetraploid Col-0 plants under high temperature. White, DAPI; green, ɑ-

tubulin; red, CENH3. Scale bar = 10 μm. 
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Figure 4. Chromosome behaviors in meiocytes of autotetraploid Col-0 plants. A-L, Chromosome 

spreading of Pachytene- (A-D), diakinesis- (E-H) and metaphase Ι-staged (I-L) meiocytes in 

autotetraploid Col-0 plants grown under control temperature. M-T, Chromosome spreading of 

zygotene- (M and N), pachytene- (O and P), diakinesis- (Q) and metaphase Ι-staged (R-T) meiocytes in 

autotetraploid Col-0 plants stressed by 37°C. U-X, Chromosome spreading of pachytene- (U and V), 
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diakinesis- (W) and metaphase Ι-staged (X) meiocytes in autotetraploid Col-0 plants stressed by 32°C. 

Green arrows indicate incomplete and/or abnormal pairing of chromosomes; yellow arrows indicate 

abnormal chromosome interactions; and red arrows indicate bivalents, univalents and/or lagged 

chromosomes. Scale bars = 10 μm. 
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Figure 5. Localization of HEI10 on diakinesis chromosomes in autotetraploid Col-0 plants. A, Graph 

showing the number of HEI10 foci per diakinesis-staged meiocyte. One-way ANOVA test was 

performed, and the significance level was set as P < 0.05. *** indicates P < 0.0001. B-D, 

Immunolocalization of HEI10 on diakinesis chromosomes of autotetraploid Col-0 plants incubated 

under 20°C (B), 32°C (C) and 37°C (D), respectively. The yellow stars indicate non-specific foci to 

HEI10. Scale bar = 10 μm. 
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Figure 6. Heat stress reduces abundance of ɤH2A.X and DMC1 on zygotene chromosomes. A-C, 

Immunolocalization of ɤH2A.X on zygotene chromosomes of autotetraploid Col-0 plants under 20°C 

(A), 32°C (B) and 37°C (C), respectively. D, Graph showing the number of ɤH2A.X foci per meiocyte 

in autotetraploid Col-0 plants under 20°C, 32°C and 37°C. E-G, Immunolocalization of DMC1 on 

zygotene chromosomes of autotetraploid Col-0 plants under 20°C (E), 32°C (F) and 37°C (G), 

respectively. H, Graph showing the number of DMC1 foci per meiocyte in autotetraploid Col-0 plants 

under 20°C, 32°C and 37°C. One-way ANOVA test was performed, and the significance level was set 

as P < 0.05. *** indicates P < 0.001; ns indicates P > 0.05. Scale bars = 10 μm. 
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Figure 7. Immunostaining of chromosome axis components in meiocytes of autotetraploid Col-0 plants. 

A and B, Co-immunostaining of SYN1 and ASY1 on zygotene (A) and pachytene (B) chromosomes in 

control plants. C-F, Co-immunostaining of SYN1 and ASY1 on zygotene (C-E) and pachytene (F) 

chromosomes in heat-stressed plants. G and H, Co-immunostaining of SYN1 and ASY4 on zygotene 

(G) and pachytene (H) chromosomes in control plants. I-K, Co-immunostaining of SYN1 and ASY4 on 

zygotene (I and J) and pachytene (K) chromosomes in heat-stressed plants. Yellow arrows indicate 

dotted ASY1 and ASY4 foci. Scale bars = 10 μm. 
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Figure 8. Immunostaining of ASY1 and ASY4 in meiocytes of diploid Arabidopsis thaliana plants. A-F, 

Immunolocalization of ASY1 and ASY4 on prophase I chromosomes of diploid Col-0 plants (A), and 

the syn1 (B and C), spo11-1-1 (D), rad51 (E) and dmc1 (F) mutants. Scale bar = 10 μm. 
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Figure 9. Co-localization of ASY1 and ASY4 in heat-stressed diploid and autotetraploid Col-0 plants. A 

and D, Zygotene-staged meiocytes in diploid (A) and autotetraploid (D) Col-0 plants grown under 

control temperature. B and C, Zygotene- (B) and pachytene-staged (C) meiocytes in heat-stressed 

diploid Col-0 plants. E and F, Zygotene- (E) and pachytene-staged (F) meiocytes in heat-stressed 

autotetraploid Col-0 plants. Yellow arrows indicate co-localization of dotted ASY1 and ASY4 foci. 
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Scale bars = 10 μm. 
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Figure 10. Immunolocalization of SYN1 and ZYP1 in meiocytes of autotetraploid Col-0 plants. A-C, 

Zygotene- (A), middle pachytene- (B) and late pachytene-staged (C) meiocytes in control plants. D-H, 

Early zygotene- (D), middle zygotene- (E), late zygotene- (F), middle pachytene- (G) and late 

pachytene-staged (H) meiocytes in heat-stress plants. Yellow arrow indicates fragmented ZYP1 signals. 

Blue arrows indicate aggregated and/or enlarged ZYP1 foci. Scale bar = 10 μm. 
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