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Abstract 18 

Periodic visual stimulation can induce stable steady-state visual evoked potentials (SSVEPs) 19 

distributed in multiple brain regions and has potential applications in both neural engineering 20 

and cognitive neuroscience. However, the underlying dynamic mechanisms of SSVEPs at the 21 

whole-brain level are still not completely understood. Here, we addressed this issue by 22 

simulating the rich dynamics of SSVEPs with a large-scale brain model designed with 23 

constraints of neuroimaging data acquired from the human brain. By eliciting activity of the 24 

occipital areas using an external periodic stimulus, our model was capable of replicating both 25 

the spatial distributions and response features of SSVEPs that were observed in experiments. 26 

In particular, we confirmed that alpha-band (8-12 Hz) stimulation could evoke stronger SSVEP 27 

responses; this frequency sensitivity was due to nonlinear entrainment and resonance, and could 28 

be modulated by endogenous factors in the brain. Interestingly, the stimulus-evoked brain 29 

networks also exhibited significant superiority in topological properties near this frequency-30 

sensitivity range, and stronger SSVEP responses were demonstrated to be supported by more 31 

efficient functional connectivity at the neural activity level. These findings not only provide 32 

insights into the mechanistic understanding of SSVEPs at the whole-brain level but also 33 

indicate a bright future for large-scale brain modeling in characterizing the complicated 34 

dynamics and functions of the brain. 35 

 36 

Key words: steady-state visual evoked potential (SSVEP), large-scale brain model, network 37 
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1. Introduction 39 

When our brain is stimulated by a periodic visual flickering input, a nonlinear and stimulus-40 

locked response appears in visual processing brain regions. This neuronal response is the so-41 

called steady-state visual evoked potential (SSVEP), and appropriately periodic visual stimuli 42 

can induce strong SSVEP responses with high signal-to-noise ratios (Pastor et al., 2003; Vialatte 43 

et al., 2010). This feature allows SSVEPs to serve as a stable paradigm to build a brain-44 

computer interface (BCI) and estimate the characteristics of task-related neural activity 45 

(Morgan et al., 1996; Vialatte et al., 2010; Yu Zhang et al., 2013, 2015). Although SSVEPs are 46 

believed to originate in the visual cortex located in the occipital lobe, experimental studies have 47 

revealed that this evoked neural activity can be widely observed in high-level visual processing 48 

brain regions, such as the frontal and parietal lobes (Di Russo et al., 2007; Pastor et al., 2003). 49 

These findings indicate that the emergence of SSVEPs should involve multiple regions broadly 50 

distributed in the brain and that SSVEP responses might thus be modulated by fundamental 51 

properties of brain networks. Additionally, SSVEPs have also been found to exhibit strong 52 

frequency sensitivity; moreover, in particular, they respond optimally to a suprathreshold 53 

stimulus at the alpha frequency band (8-12 Hz) (Norcia et al., 2015; Xu et al., 2013). However, 54 

despite accumulating experimental data, the biophysical mechanisms of both the frequency 55 

sensitivity of SSVEPs and the regulation of SSVEP responses in the brain remain largely 56 

unexplored. 57 

Recent studies using computational modeling have provided deep insights into the 58 

mechanistic understanding of complicated brain dynamics and functions (Gosak et al., 2018; 59 

Parastesh et al., 2021). In this filed, most of theoretical investigations on SSVEPs tried to 60 

reproduce nonlinear SSVEP dynamics at the neural circuit level (Labecki et al., 2016; Yang et 61 

al., 2019). Using a neural-field model of the cortex and thalamus, Roberts and Robinson showed 62 

the fundamental spectral properties of our brain when prompted by periodic visual stimuli 63 

(Roberts & Robinson, 2012). This physiologically based model not only explains the 64 

entrainment and harmonic behaviors of SSVEP responses but also predicts rich nonlinear 65 

dynamics in response to stimuli with high suprathreshold amplitudes. Further investigation 66 

revealed that several key features of SSVEP spectra can be captured by a simplified neural mass 67 

model consisting of excitatory and inhibitory neural populations. Using such an ideal model, it 68 

has been indicated that the harmonic and subharmonic components of SSVEPs are a natural 69 

consequence of the nonlinearities of neural populations (Labecki et al., 2016). Moreover, recent 70 

computational studies also suggested that the response of SSVEPs can be modulated by the 71 

interactions between different brain regions. By constructing a laminar cortical model that is 72 

composed of the primary visual cortex (V1) and the secondary visual cortex (V2), we have 73 

shown that SSVEP modulation is implemented by alpha oscillation in a complementary manner 74 

at different spatial levels (Yang et al., 2019). In particular, it is found that interlaminar coupling 75 

contributes to the laminar-specific organization of the evoked response following the opposite 76 

rules in the intracortical and intercortical drive (Yang et al., 2019), which unifies experimental 77 

observations that originally seemed contradictory (Koch et al., 2008; Morgan et al., 1996). To 78 

our knowledge, however, these modeling studies mainly focused on local neural circuits and 79 
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did not consider exploring large-scale brain dynamics of SSVEPs using computational models 80 

under realistic connectivity constraints. 81 

Remarkably, the rapid development of large-scale brain modeling offers a powerful approach 82 

to reveal the neural mechanisms of specific cognitive functions or stimulus-induced activity at 83 

the whole-brain level (Breakspear, 2017; Gosak et al., 2018; Ponce-Alvarez et al., 2015; Shine 84 

et al., 2018). As pioneering work, a model of the large-scale macaque cortex was developed to 85 

explore spatiotemporal features of spontaneous cortical dynamics with anatomical constraints 86 

(Honey et al., 2007, 2009). During the resting state, this model exhibited several rich and 87 

interrelated spatiotemporal structures at multiple time scales, thus indicating that functional 88 

connectivity (FC) may be significantly shaped by brain structure. To further promote model 89 

performance, theoretical researchers have proposed constructing large-scale brain models by 90 

combining both the FC and structural connectivity (SC) acquired using magnetic resonance 91 

imaging (MRI) techniques (Gustavo Deco et al., 2019; Demirtaş et al., 2018). In particular, 92 

functional MRI (fMRI) data have been widely considered a condition of constrained 93 

optimization during model establishment. Such inverse-based models are capable of 94 

reproducing important features of large-scale brain dynamics, mainly because they link the 95 

structural and functional organization of the brain together (Cabral et al., 2017; G. Deco et al., 96 

2014). Importantly, it has also been shown that the dynamic features of these large-scale brain 97 

models are governed by parameters with appropriate biophysical interpretation (Joglekar et al., 98 

2018; Schirner et al., 2018). This fact allows several critical dynamical behaviors generated by 99 

large-scale models to be verified in well-designed experiments. Therefore, such large-scale 100 

brain modeling techniques have unique advantages that bridge system-level neural dynamics 101 

and specific cognitive functions or stimulus-induced activity in the brain. 102 

In this study, we investigated the dynamic mechanisms of SSVEPs by constructing a large-103 

scale brain model with human SC and FC data. To this end, the model was optimized with an 104 

iterative-fitting strategy proposed by Deco et al (G. Deco et al., 2014). By stimulating the model 105 

with periodic visual input in early-stage visual processing brain regions (i.e., the occipital lobe), 106 

we found that the stimulus-evoked potential could be propagated within our optimized model 107 

and SSVEP responses could also be detected in high-level visual processing areas, such as 108 

several regions in the frontal lobe. In particular, SSVEPs were optimal in response to a 109 

suprathreshold stimulus in the alpha band, and such frequency sensitivity of SSVEPs was 110 

thought to be a consequence of entrainment and resonance (Herrmann et al., 2016; Lab 111 

Notbohm et al., 2016). Additionally, the performance of SSVEP responses was also 112 

significantly related to the network properties, and a better SSVEP performance corresponded 113 

to a higher stimulus-evoked FC efficiency at the neural activity level. Our results thus provide 114 

a new perspective to understand the nonlinear responses of SSVEPs within the whole brain 115 

framework.  116 

2. Model and Methods 117 

2.1 Empirical structural and functional connectivity 118 

A standard MRI dataset consisting of both empirical structural connectivity (SC) and 119 
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functional connectivity (FC) was employed to establish the large-scale brain model (G. Deco 120 

et al., 2014; Hagmann et al., 2008). Briefly, the SC and FC data in this MRI dataset were derived 121 

from five healthy right-handed male human participants (age 29.4 ± 3.4 years) and were 122 

acquired with a Philips Achieva 3T MRI system. For each subject, diffusion spectrum imaging 123 

(DSI) was performed to track white matter tracts; then, the empirical SC matrix was constructed 124 

with the anatomical landmarks of 66 gray matter cortical regions, which are listed in Table 1 125 

(G. Deco et al., 2014; Hagmann et al., 2008). Theoretically, each SC element represents the 126 

connectivity density between a pair of cortical regions. The average empirical SC matrix among 127 

all subjects was the connectivity matrix used to couple different brain regions. However, we set 128 

the connection of a region to itself to 0 in the connectivity matrix because the effect of internal 129 

interactions was already considered in the microcircuit structure for each brain region (see 130 

below).  131 

We used the empirical FC matrix as the gold standard to optimize the large-scale brain model. 132 

For each subject, blood oxygenation level-dependent (BOLD) signals (20 mins) were obtained 133 

in the resting- state using the same 66 cortical regions described above (Buxton & Frank, 1997). 134 

A global mean signal was regressed out from the BOLD signals before the FC was calculated. 135 

Then, the resting-state FC matrix was constructed for each subject by measuring the Pearson's 136 

correlation of BOLD signals among different brain regions. We averaged the resting-state FC 137 

matrix across all subjects as the final empirical FC matrix in the present study ( for details; see 138 

Honey et al., 2009). 139 

2.2 Large-scale computational model of the brain 140 

To explore the dynamic mechanisms of SSVEPs at the whole-brain level, we established a 141 

large-scale model of the brain composed of 66 cortical regions. Regions in the model were 142 

initially coupled by the empirical SC matrix. As schematically shown in Fig. 1A, the 143 

microcircuit of each brain region was assumed to be a local network of excitatory and inhibitory 144 

populations, and their dynamic behaviors were characterized by Wilson-Cowan equations. The 145 

dynamics of our large-scale brain model are described as follows: 146 

{
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(1) 147 

where 𝑗 indexes different brain regions, 𝑟𝐸,𝐼
𝑗

 represents the mean firing rate of the excitatory 148 

(E) and inhibitory (I) populations of the 𝑗 -th region, 𝜏𝐸,𝐼
𝑗

  denotes the corresponding time 149 

constants, and 𝜉𝑗(𝑡) is Gaussian white noise with zero mean and standard deviation 𝜎𝐸,𝐼
𝑗

 for 150 

excitatory and inhibitory neural populations in the 𝑗 -th region. The transduction function 151 

𝜙(𝑥) = 𝑥/(1 − 𝑒−𝑥) is employed to convert the current 𝑥 to the firing rate. In our model, the 152 

synaptic inputs within the microcircuit (i.e., 𝐽𝐸𝐸𝑟𝐸
𝑗
, 𝐽𝐸𝐼𝑟𝐼

𝑗
, 𝐽𝐼𝐸𝑟𝐸

𝑗
, and 𝐽𝐼𝐼𝑟𝐼

𝑗
) are governed by 153 

four synaptic coupling variables 𝐽𝐸𝐸, 𝐽𝐸𝐼, 𝐽𝐼𝐸, and 𝐽𝐼𝐼. A background input 𝐼𝑏
𝑗
 was fed to each 154 

excitatory population to maintain spontaneous brain activity. Each excitatory population also 155 
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received the global synaptic input from other brain regions according to the function 𝐼𝑔
𝑗
=156 

𝐺 ∑ 𝑊𝑖𝑗𝑟𝐸
𝑖

𝑖 , where the outer sum runs over interconnections onto the particular region 𝑗, 𝑊𝑖𝑗 157 

is an element of the SC matrix representing the coupling between the regions 𝑖 and 𝑗, an 𝐺 158 

is a global coupling factor (also termed as global-scale coupling) that requires optimization. In 159 

addition, excitatory populations in several specific visual areas were driven by an external 160 

stimulus 𝐼𝑠𝑡𝑖
𝑗

 to induce a stimulus-evoked brain state. 161 

Note that our model was first optimized with an iterative-fitting strategy (see below) in the 162 

resting state, and then the optimized large-scale brain model was used to investigate the 163 

dynamic mechanisms of SSVEPs in the stimulus-evoked state. When the brain received a 164 

uniform flash stimulus, SSVEPs could be recorded in a variety of visual areas (Rager & Singer, 165 

1998). To excite SSVEP responses in the model, we injected periodic visual input as an external 166 

stimulus into the occipital-related regions, including the lateral occipital cortex (LOCC), 167 

pericalcarine cortex (PCAL), lingual gyrus (LING) and cuneus (CUN). In simulations, this 168 

external periodic stimulus was modeled as the square wave described by: 169 

𝐼𝑠𝑡𝑖
𝑗
=
𝐴 + 𝐴 ∙ sgn[sin(2𝜋𝑓𝑡)]

2
(2) 170 

Here, A and f represent the amplitude and frequency of the stimulus, and sgn(∙) is the sign 171 

function. Additionally, we have demonstrated the similar SSVEP responses can be also elicited 172 

by other types of external periodic stimuli, such as the flicking input with a sinusoidal wave 173 

profile (Supplementary Fig.1). 174 

In simulations, stochastic differential equations were integrated by using the Euler-175 

Maruyama method with a time step of 0.1 ms. Unless mentioned otherwise, the default values 176 

of the model parameters chosen are those presented in Table 2. 177 

2.3 Model optimization with an iterative-fitting strategy 178 

We employed an iterative-fitting strategy to optimize the large-scale brain model in the 179 

resting state (G. Deco et al., 2014). This optimal strategy is based on enhancing the original SC 180 

matrix by adding new links for pairs of nodes according to the corresponding FC between those 181 

nodes (G. Deco et al., 2014). Before the iterative-fitting process, we first constructed the large-182 

scale brain model with the empirical SC matrix (Fig. 1B) and searched for an optimal global 183 

coupling factor 𝐺 by maximizing the correlation between the empirical FC (Fig. 1B) and the 184 

simulated FC. To compute the simulated FC, we ran each simulation for 500 s to generate data 185 

for a sufficient period of time at the neural activity level and removed the first 20 s of data 186 

before analysis. Then, the Balloon-Windkessel hemodynamic model (Supplementary Text 1) 187 

was used to convert the neural activity of the excitatory population into the simulated BOLD 188 

signal (Buxton & Frank, 1997; Buxton et al., 1998; Friston et al., 2003). The simulated BOLD 189 

signal was downsampled to a low frequency (2 Hz) to have temporal resolution comparable 190 

with that of the empirically measured fMRI recordings. For each simulation, the simulated FC 191 

was obtained by computing the Pearson’s correlation of the simulated BOLD signals among 192 

different brain regions. We averaged the simulated FC over 5 trials as the final simulated FC. 193 
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An initial optimization is performed for our model by varying the global coupling factor 𝐺, 194 

and the optimal strength of 𝐺  is identified by maximizing the correlation between the 195 

empirical FC and the simulated FC (Fig. 1B). After this initial optimization, an initial simulated 196 

FC could be determined at an optimal strength of the global-scale coupling 𝐺 under constraints 197 

of empirical structural and functional connectivity (Fig. 1B).  198 

With the iterative-fitting strategy, we tried to further improve the similarity between the 199 

empirical and simulated FC by adding a few links to the empirical SC. To do this, the maximal 200 

value of the empirical FC matrix was normalized to 1, and an initial tolerance level was set to 201 

1 to control the iterative process. We started the iterative-fitting algorithm with conditions under 202 

the normalized empirical FC as well as an initial simulated FC based on the empirical SC at the 203 

optimal strength of 𝐺  (Fig. 1C). The iteration process can be mathematically described as 204 

follows: we defined the matrix of the simulated FC and normalized empirical FC as 𝑠𝐹𝐶 and 205 

𝑒𝐹𝐶, respectively. At each iteration step, we needed to identify all connections in the simulated 206 

FC and normalized empirical FC satisfying the judgement condition of |𝑒𝐹𝐶𝑖𝑗 − 𝑠𝐹𝐶𝑖𝑗| > 𝑇. 207 

When 𝑒𝐹𝐶𝑖𝑗 > 0 , the SC links for those identified connections were updated with the 208 

following rule: 𝑆𝐶𝑖𝑗 = 0.15 ∙ 𝑒𝐹𝐶𝑖𝑗 . In the case of 𝑒𝐹𝐶𝑖𝑗 ≤ 0 , the corresponding SC links 209 

were redefined as 𝑆𝐶𝑖𝑗 = 0  when it was zero in the original matrix; otherwise, 𝑆𝐶𝑖𝑗  was 210 

scaled down to a minimum value of weights (0.0005) as described in the original matrix (G. 211 

Deco et al., 2014). Then, the large-scale brain model was reoptimized by maximizing the 212 

correlation between the empirical FC and the simulated FC with the newly generated SC versus 213 

the global coupling factor 𝐺. The above process was iterated several times by reducing the 214 

tolerance level (𝑇 = 𝑇 − 0.025) and was stopped when the tolerance level equals to 0.025. It 215 

is worth noting that the stopped tolerance level should be larger than 0 due to the condition of 216 

|𝑒𝐹𝐶𝑖𝑗 − 𝑠𝐹𝐶𝑖𝑗| > 𝑇. Using this iterative-fitting strategy, the maximum fit between the optimal 217 

simulated SC and FC could be identified at an appropriate tolerance level (Fig. 1C). Under this 218 

condition, the correlation between the empirical and simulated FC achieved its maximal value, 219 

and the corresponding tolerance level is a judgement criterion for our model optimization. 220 

Compared with intrahemispheric connectivity, the anatomical structure of the brain derived 221 

from the DSI data would miss a relatively larger number of long-range interhemispheric 222 

connections. As reported previously (G. Deco et al., 2014), the iterative self-consistency 223 

enhancement of SC based on empirical fMRI data mainly increases the interhemispheric 224 

connections between homologous areas and can significantly promote the performance of the 225 

large-scale brain model. 226 

2.4 Data analysis 227 

We used several measurements to quantify SSVEP performance. Since SSVEPs are a fast 228 

stimulus-evoked response in the brain, high-temporal resolution data are required for capturing 229 

the rapid dynamics of SSVEPs. Therefore, in addition to model optimization, all other data 230 

generated by our model were analyzed at the neural activity level. For each experimental 231 

condition, we ran simulations of 20 trials with different random seeds. For each trial, the 232 

simulation was carried out for 500 s with stochastic initial conditions, and the first 20 s of data 233 

were removed before analysis. The rest of the data were resampled to 250 Hz, which is 234 

comparable to the sampling rate of real electroencephalography (EEG) recordings. These 480-235 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.02.05.429877doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429877


8 
 

s-long data epochs were further divided into 48 segments, with each segment lasting for 10 s. 236 

In the following studies, we used all 48 data segments recorded to analyze SSVEP responses 237 

and randomly chose 5 data segments when measuring network properties and network 238 

synchronization. For each experimental condition, we calculated the segment-averaged results 239 

for each trial and then reported the data across 20 trials as the final results. 240 

2.4.1 Analysis of SSVEP responses 241 

To measure the performance of SSVEP responses to the periodic driven stimulus, both the 242 

power and signal-to-noise ratios (SNRs) were estimated with the power spectral analysis for 243 

specific areas within the occipital and frontal lobes. These brain areas are highly associated 244 

with early and late stages of visual processing, and the SSVEPs have been widely observed in 245 

these regions. In this analysis, we computed the power spectrum density of neural activity in 246 

these visual-related regions by using the fast Fourier transform (FFT) method (Srinivasan et al., 247 

2006). The SSVEP power 𝑆(𝑓0) was simply defined as the corresponding amplitude of the 248 

power spectral density at the stimulus frequency 𝑓0 . Then, the SNR value of the stimulus-249 

evoked response was calculated as follows: 250 

SNR = 20 ∙ log10 [
𝑆(𝑓0)

𝑁(𝑓0)
] , (3) 251 

where 𝑓0 is the stimulus frequency and 𝑁(𝑓0) =
1

14
∑ [𝑆(𝑓0 − 0.1 × 𝑖) + 𝑆(𝑓0 + 0.1 × 𝑖)]
7
𝑖=1  252 

represent the average power near the stimulus frequency 𝑓0  (1.4 Hz band centered on the 253 

stimulus frequency but excluding the stimulus frequency itself ; the frequency resolution is 0.1 254 

Hz). Additionally, to visualize the features of neural activity in both the time and frequency 255 

domains, time-frequency analysis was performed with the wavelet method for several areas 256 

located in the occipital and frontal lobes. The classical Morlet wave was used as the wavelet 257 

basis function, and the default bandwidth parameter and wavelet center frequency were fixed 258 

at 0.5 Hz and 1 Hz, respectively. 259 

2.4.2 Analysis of network properties 260 

To quantify the SSVEP performance at the network level, we constructed the weighted brain 261 

networks under the resting state and stimulus-evoked state. For both types of brain states, we 262 

measured the FC among different regions at the neural activity level with coherence, which was 263 

defined as follows (Nunez et al., 1997): 264 

𝐶(𝑓) =
|𝐶𝑥𝑦(𝑓)|

2

𝐶𝑥𝑥(𝑓)𝐶𝑦𝑦(𝑓)
. (4) 265 

Here 𝐶𝑥𝑦(𝑓) is the cross-spectrum between the neural activity of excitatory populations 𝑥(𝑡) 266 

and 𝑦(𝑡)  from different brain regions, and 𝐶𝑥𝑥(𝑓)  and 𝐶𝑦𝑦(𝑓)  are the corresponding 267 

autospectra at frequency 𝑓. 268 

Several measurements were employed to assess network properties under different brain 269 

states. These network properties have been widely used in previous studies on brain network 270 
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analysis and include the clustering coefficient, characteristic path length, global efficiency, and 271 

local efficiency (Newman, 2003; Watts & Strogatz, 1998). In this study, we used the Brain 272 

Connectivity Toolbox (www.brain-connectivity-toolbox.net) to calculate these network 273 

properties, with their detailed mathematical descriptions provided below. 274 

To evaluate the degree of network collectivization, we calculated the clustering coefficient 275 

of the weighted brain network as follows: 276 

𝐶 =
1

𝑁
∑

∑ (𝑤𝑖,𝑗𝑤𝑖,ℎ𝑤𝑗,ℎ)
1/3

𝑖,ℎϵ𝑁

𝑘𝑖(𝑘𝑖 − 1)
𝑖ϵ𝑁

, (5) 277 

where 𝑁 is the number of nodes in the network, 𝑤𝑖,𝑗 indicates the weight between nodes 𝑖 278 

and 𝑗, and 𝑘𝑖 is the degree of node 𝑖.  279 

The characteristic path length 𝐿 is defined as the average of the shortest path length 𝐿𝑖𝑗 280 

between any two nodes in the network. Mathematically, this measurement can be computed as: 281 

𝐿 =
1

1
𝑁(𝑁 − 1)

∑ ∑ 1/𝐿𝑖,𝑗
𝑁
𝑗≠𝑖

𝑁
𝑖=1

. (6)
 282 

Moreover, we estimated both the global and local efficiency of brain networks under the 283 

resting state and stimulus-evoked state. Global efficiency is defined as (Latora & Marchiori, 284 

2001): 285 

𝐸global =
1

𝑁(𝑁 − 1)
∑∑1/𝐿𝑖,𝑗

𝑁

𝑗≠𝑖

𝑁

𝑖=1

. (7) 286 

Theoretically, a smaller shortest path length (or a larger clustering coefficient) corresponds 287 

to a higher global efficiency with a relatively faster information transfer between nodes in the 288 

network. Compared with global efficiency, local efficiency reflects the extent of integration 289 

between the immediate neighbors of the given node (Achard & Bullmore, 2007). By definition, 290 

local efficiency could be obtained by averaging the local efficiencies of all nodes in a network 291 

𝐺.  292 

𝐸local =
1

𝑁
∑𝐸i−local

𝑁

𝑖∈𝐺

(𝐺𝑖), (8) 293 

with 294 

𝐸i−local =
1

𝑁𝐺𝑖
∑𝐸global

𝑁𝐺𝑖

𝑖∈𝐺𝑖

𝐺𝑖, (9) 295 

where 𝐺𝑖  denotes the subgraph comprising all nodes that are immediate neighbors of node 𝑖, 296 

and 𝑁𝐺𝑖 is the number of nodes in 𝐺𝑖.  297 
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2.4.3 Measurement of network synchronization 298 

The synchronization of neural activity among different brain regions is believed to play a 299 

crucial role in highly efficient neuronal information and cognitive processing (Della Rossa et 300 

al., 2020; Melloni et al., 2007; Parastesh et al., 2021). In this study, we also compared the 301 

synchronization of neural activity generated by our large-scale brain model under different 302 

brain states. Based on the mean-field theory, the synchronization factor R for the network can 303 

be mathematically calculated as: 304 

𝑅 =
< 𝐹2 > −< 𝐹 >2

1
𝑁
∑ (< 𝑟𝑖

2 > −< 𝑟𝑖 >
2)𝑁

𝑖=1

, (10) 305 

where 𝑟𝑖 is the mean firing rate of the excitatory population of the 𝑖-th region, 𝑁 is the total 306 

number of brain regions, 𝐹 = ∑ 𝑟𝑖 𝑁⁄
𝑁
𝑖=1  is the average neural activity across all brain regions, 307 

and the symbol <∙>  represents the mean of the variable over time. Theoretically, the 308 

synchronization factor 𝑅  is within the range [0, 1] , and a larger 𝑅  indicates a relatively 309 

higher level of synchronous neural activity among different brain regions. 310 

3. Results 311 

3.1 Optimization of the large-scale brain model 312 

In this study, we investigated the dynamic mechanisms of SSVEPs using a large-scale brain 313 

model. As a preliminary step, we optimized the model with constraints of realistic human 314 

imaging data, and allowed it to generate simulated BOLD signals that can be comparable with 315 

real fMRI recordings. For this purpose, initial optimization was performed for the model by 316 

using the empirical SC and FC (Fig. 1B). At an optimal global-scale coupling of 𝐺 = 3.41, 317 

simulated FC derived from our large-scale brain model showed the best match with empirical 318 

FC (red square in Fig. 1B). Under this condition, the correlation between simulated and 319 

empirical FC achieved the maximal value of 0.41. To further improve the fit between simulated 320 

and empirical FC, we introduced an iterative-fitting strategy proposed in a previous study (G. 321 

Deco et al., 2014), which is systematically summarized in Fig. 1C. At the initial tolerance level 322 

of 𝑇 = 1, we started this iterative-fitting strategy with the best fitted FC corresponding to the 323 

original empirical SC. During the iteration process, additional links were added into the SC 324 

matrix to reduce the tolerance level, and the new simulated SC was updated at each step. At a 325 

relatively low level of tolerance (𝑇 = 0.125), the large-scale brain model exhibited the best 326 

performance at an optimal simulated SC (Fig. 2A). To achieve this optimal fit, we observed that 327 

the optimal global-scale coupling of 𝐺 was fixed at 3.01. By comparing simulated SC with 328 

empirical SC, we identified approximately 10.28% and 21.25% newly added intrahemispheric 329 

and interhemispheric connections within the optimal simulated SC matrix (Figs. 2B and 2C). 330 

To our surprise, the correlation between the optimal simulated and empirical FC was improved 331 

to 0.82 (Figs. 2A and 2C). Our results further demonstrate the superiority of the iterative-fitting 332 

strategy, showing that the optimized model can best reproduce the large-scale brain dynamics 333 

by adding a certain number of new links to the SC derived from the DSI data. 334 
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3.2 Typical SSVEP responses can be elicited in a large-scale brain model 335 

To examine whether the optimized large-scale brain model can capture the fundamental 336 

features of SSVEP responses, we excited the occipital lobe (LOCC, PCAL, LING, and CUN) 337 

with an external periodic stimulus and detected SSVEP responses in both these occipital regions 338 

and several frontal-related regions (frontal pole (FP), pars orbitalis (PORB), lateral 339 

orbitofrontal cortex (LOF), and medial orbitofrontal cortex (MOF)) (Fig. 3A and Table 1). From 340 

a functional perspective, the occipital lobe is involved primarily in the early stage of visual 341 

processing, whereas the abovementioned frontal regions are believed to participate in higher 342 

visual processing. In this work, the external periodic stimulus was generated by a square wave 343 

with default parameter values (amplitude 0.5 nA and frequency 10 Hz). 344 

In Figs. 3B and 3C, we show typical examples of neural activity and the corresponding time-345 

frequency spectrogram for different occipital and frontal regions, respectively. For each time-346 

frequency spectrogram, a remarkable power increase could be observed near the driving 347 

frequency of the external periodic stimulus. This indicated that SSVEPs could be elicited in 348 

both the occipital and frontal regions, two main sources of SSVEPs observed in experimental 349 

studies. Consistent with experimental studies, brain regions distributed in the occipital lobe 350 

showed much stronger SSVEP responses than frontal-related regions (Ding et al., 2006; Morgan 351 

et al., 1996; Srinivasan et al., 2007). This is not surprising because SSVEPs are believed to be 352 

originally elicited in the occipital area, and its propagation through nerve fibers may lead to a 353 

notable reduction in evoked power. Further power spectrum analysis with FFT not only 354 

revealed an obvious power peak located at 10 Hz for each region but also demonstrated distinct 355 

SSVEP performance in the occipital-related regions (Figs. 3D and 3E). Compared with other 356 

occipital regions, the LOCC was a mid-level visual processing area and displayed relatively 357 

lower SSVEP power (Fig. 3D). In addition, more complicated features of the SSVEP spectra, 358 

including odd harmonic components, could also be observed in these occipital regions (Fig. 359 

3D). Theoretically, this might be because the square wave input contains only odd harmonics. 360 

However, due to signal attenuation during the propagation process, such complicated spectral 361 

features of SSVEP responses disappeared in the frontal lobe (Fig. 3E). Overall, the above results 362 

confirmed that the large-scale brain model can reproduce the fundamental dynamic features of 363 

SSVEP responses. 364 

3.3 Impacts of an external periodic stimulus on SSVEP responses 365 

Previous experimental studies have documented that the performance of SSVEP responses 366 

could be greatly impacted by the physical properties of periodic visual stimuli (Ding et al., 2006; 367 

Morgan et al., 1996). As important nonlinear SSVEP dynamics, it has been specifically reported 368 

that responses of SSVEPs in the occipital and frontal cortex are strongly sensitive to the 369 

frequency of visual stimuli (Di Russo et al., 2007; Labecki et al., 2016; Srinivasan et al., 2006). 370 

Using our large-scale brain model, we studied the dependence of SSVEP performance on the 371 

stimulus frequency of the external periodic visual input. In Figs. 4A and 4B, we depicted both 372 

the power and SNR of SSVEPs as a function of the stimulus frequency for different occipital 373 

regions. With increasing stimulus frequency, we found that both the SSVEP power and the SNR 374 
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value first rose and then dropped. For each brain region, their maximal values were achieved at 375 

an intermediate stimulus frequency. In agreement with experimental observations (Ding et al., 376 

2006; Xu et al., 2013), our large-scale brain model correctly predicted that these occipital 377 

regions would show optimal responses to external periodic stimuli in the alpha frequency band 378 

(8-12 Hz). This nonlinear SSVEP behavior is the so-called frequency sensitivity, and similar 379 

findings were also observed in the frontal regions (Figs. 4C and 4D). However, in comparison 380 

with the occipital lobe, both SSVEP power and SNR values observed in these frontal regions 381 

showed significantly lower magnitudes at different stimulus frequencies (Mann–Whitney U test, 382 

𝑝 < 0.001 ). In addition, the frequency-sensitivity range was slightly reduced during the 383 

propagation of evoked neural activity. Such a reduction resulted in a relatively narrow 384 

frequency-sensitivity range for regions distributed in the frontal lobe (Fig. 4D). 385 

In reality, the performance of the SSVEP responses can also be influenced by the amplitude 386 

of the external periodic stimulus. As shown in Fig. 5, positive relationships were observed 387 

between SSVEP responses (i.e., SSVEP power and the SNR value) and stimulus amplitude in 388 

both the occipital and frontal regions. When the external stimulus was weak, the model 389 

generated spontaneous neural activity that was comparable to real electrophysiological 390 

recordings. Under this condition, only weak SSVEP responses were detected in the occipital 391 

regions (Figs. 5A and 5B). For a large stimulus amplitude, the dynamics of these occipital 392 

regions responded well to the external periodic stimulus, thus inducing relatively stronger 393 

SSVEP responses (Figs. 5A and 5B). Due to strong interactions among brain regions, evoked 394 

neural activity in these occipital regions could be transmitted to the frontal lobe through nerve 395 

fibers in a reasonably strong manner. Consequently, large values of both SSVEP power and 396 

SNRs were observed in the frontal regions (Figs. 5C and 5D). 397 

3.4 Dynamical nature of the frequency sensitivity of SSVEPs 398 

Exploring the dynamic nature of frequency-sensitivity behavior can deepen our mechanistic 399 

understanding of SSVEPs. Intuitively, we hypothesized that the frequency sensitivity of 400 

SSVEPs may be caused by both the entrainment and resonance due to the cooperation of 401 

intrinsic brain oscillations and external periodic stimuli. In physics, entrainment reflects that 402 

the natural oscillation of an internal oscillator perturbed by an external periodic stimulus 403 

becomes synchronized to the periodic driven force, whereas resonance describes the 404 

phenomenon of increased amplitude that occurs when the frequency of a periodically applied 405 

stimulus is equal or close to an intrinsic frequency of the system on which it acts. To examine 406 

whether our hypothesis is true, we simulated large-scale brain dynamics in the resting state and 407 

stimulus-evoked state. In Fig. 6A, we compared the average power spectral density of the whole 408 

brain between the resting state (black dotted line) and stimulus-evoked state (colored lines). At 409 

the resting state, the brain dynamics generated by the model showed relatively strong powers 410 

in the alpha band, which matched well with the frequency-sensitivity range (8-12 Hz) of 411 

SSVEPs. When the model is driven by an external periodic stimulus, the peak frequency of 412 

neural oscillations is shifted to the stimulus frequency (colored lines). Further analysis showed 413 

that the collective neural activity among different brain regions exhibited relatively strong 414 

synchronization when the stimulus frequency was in the alpha band (Fig. 6B). This evidence 415 
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indicates the occurrence of neuronal entrainment and such entrained oscillation tends to be 416 

weakened provided that the stimulus frequency and intrinsic oscillation frequency are 417 

mismatched. Moreover, we also observed the increased amplitude of neural oscillations in the 418 

occipital lobe when the stimulus frequency of the external periodic input is close to the intrinsic 419 

oscillation frequency of the resting-state brain dynamics (Supplementary Fig. 2). This implies 420 

that resonance may also contribute to the origin of SSVEPs and, under such condition, the 421 

strongest SSVEP power can be detected at the whole-brain level (yellow line in Fig. 6A). To a 422 

certain extent, such resonance-induced enhancement in SSVEP response might also impact the 423 

frequency sensitivity of SSVEPs. Overall, these findings supported our hypothesis that the 424 

frequency sensitivity of SSVEPs might be determined by the combined effects of neuronal 425 

entrainment and resonance. 426 

A naturally arising question is whether the frequency-sensitivity range of SSVEPs can be 427 

modulated by endogenous factors in the brain. We argue that this is possible because such a 428 

frequency-sensitivity range should be changed with the intrinsic oscillation frequency of the 429 

brain. To test this notion, we illustratively varied the intrinsic oscillation frequency of the large-430 

scale brain model by tuning the default time constant of excitatory neural populations 𝜏𝐸 (Figs. 431 

6C and 6D). This parameter determines how quickly the firing rate of an excitatory neural 432 

population decays to the baseline level of spontaneous brain activity. Theoretically, the increase 433 

in the time constant of excitatory neural populations slowed down the model dynamics and thus 434 

resulted in a low intrinsic oscillation frequency. For both occipital and frontal lobes, such a 435 

decreasing effect on intrinsic oscillation frequency shifted the frequency-sensitivity range of 436 

SSVEPs toward the left, corresponding to a stimulus within a low-frequency regime (Figs. 6C 437 

and 6D). By reducing the time constant of excitatory neural populations, the opposite results 438 

were obtained because of the emergence of a high intrinsic oscillation frequency (Figs. 6C and 439 

6D). Indeed, a similar frequency-sensitivity modulation of SSVEPs could also be observed by 440 

tuning the time constant of inhibitory neural populations (data not shown) or other endogenous 441 

factors that impact the intrinsic oscillation frequency. These results provide evidence that the 442 

frequency-sensitivity range of SSVEPs may change together with the intrinsic oscillation 443 

frequency of the brain. 444 

3.5 Network properties contribute to the performance of SSVEP responses  445 

Given that SSVEPs are regulated by multiple brain areas, we performed graph analysis for 446 

brain networks under both resting and stimulus-evoked states. Figs. 7A and 7B show the 447 

clustering coefficient and characteristic path length of the evoked brain networks, respectively, 448 

at each stimulus frequency (red lines). For comparison, we also plotted these two network 449 

measurements for the resting-state brain networks in Figs. 7A and 7B (blue lines). A bell-shaped 450 

curve was observed for the clustering coefficient (Fig. 7A), whereas the characteristic path 451 

length exhibited an inverted bell-shaped curve (Fig. 7B). Slightly different from SSVEP 452 

responses, the large clustering coefficients and small characteristic path lengths mainly 453 

appeared in the low alpha band (8-10 Hz). At all frequency points, we found that the stimulus-454 

evoked brain networks displayed stronger clustering coefficients and smaller characteristic path 455 

lengths than those of the resting-state brain networks. According to complex network theory, 456 
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this implied that the evoked brain state may be endowed with a higher small-worldness, thus 457 

exhibiting a more efficient FC with high parallel information transfer at the neural activity level. 458 

Further examination showed that both global and local efficiency exhibited bell-shaped curves; 459 

brain networks evoked by stimuli also presented higher global and local efficiency than the 460 

global and local efficiency observed in the resting state (Figs. 7C and 7D). For both types of 461 

brain networks, global and local efficiency also achieved their optimal performance when the 462 

stimulus frequency was near 9.5 Hz (Figs. 7C and 7D), further supporting that the frequency 463 

sensitivity of SSVEPs is determined by the intrinsic oscillation frequency of the brain at the 464 

network level. 465 

To gain a better mechanistic understanding of SSVEPs, we also assessed the differences in 466 

FC between the stimulus-evoked state and the resting state at the neural activity level by a two-467 

sample Student’s t-test with a significance level of 𝑝 < 0.05  (familywise error (FWE) 468 

correction). Compared with resting-state brain networks, no significant decreases in 469 

connections were found in networks in the stimulus-evoked state (Fig. 8A). For both low and 470 

high stimulus frequencies, enhanced connections in the stimulus-evoked state mostly appeared 471 

between the occipital and temporal lobes (see 6 Hz and 14 Hz; Fig. 8A). Under this condition, 472 

the evoked neural activity could not be well transmitted to other brain lobes, thus causing weak 473 

SSVEP responses in the frontal lobe (Figs. 4C and 4D). For an appropriate stimulus frequency 474 

of 9.5 Hz, we identified a broad enhancement in connectivity within the whole brain (Fig. 8A). 475 

This resulted in highly efficient FC at the neural activity level corresponding to better SSVEP 476 

performance. There might be two possible contributors to this observation: increased neural 477 

activity and enhanced network synchronization. By comparing activation between these two 478 

brain states, we found that the average firing rates of most brain regions were not changed 479 

dramatically in the stimulus-evoked brain state (Fig. 8B). Significantly increased neural activity 480 

was only observed for occipital regions because of the direct provocation by the external 481 

periodic stimulus (Fig. 8B). Our observation thus provided evidence to rule out the first 482 

contributor. Accordingly, such high-efficiency FC was supposed to be a result of the enhanced 483 

synchronous neural activity among brain regions (Fig. 6B and Figs. 7A-7D). 484 

Indeed, our real brain cannot always work under its optimized condition corresponding to 485 

optimal global-scale coupling (i.e., 𝐺 = 3.01 for the tolerance level of 𝑇 = 0.125), but it is 486 

highly possible to operate near this optimal point due to several factors, such as neural plasticity 487 

and individual variability. Obviously, different global-scale couplings will lead to distinct 488 

SSVEP responses and network properties. To explore the relationships between SSVEP 489 

responses and network properties, we changed the value of 𝐺 around this optimal point in our 490 

large-scale brain model, and calculated the average SSVEP responses across all regions and 491 

different network properties for each fixed 𝐺. In Figs. 9A-9D, we summarized the dependence 492 

of network properties on the average SSVEP responses. The clustering coefficient, global 493 

efficiency, and local efficiency showed significant positive correlations with both SSVEP 494 

power and SNR values (Figs. 9A, 9C, and 9D; two-tailed Student's t-test, 𝑝 < 0.01 ). In 495 

contrast, SSVEP responses were negatively correlated with the characteristic path length of 496 

brain networks (Fig. 9B). These data indicated that stronger SSVEP responses of the brain must 497 
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be supported by more efficient FC that is composed of locally and nonlocally distributed brain 498 

regions. 499 

4. Discussion 500 

SSVEPs have been widely used in both neural engineering and cognitive neuroscience, but 501 

their underlying dynamic mechanisms within the brain remain to be elucidated. By using a 502 

large-scale brain model that integrated multimodal imaging data, we provided computational 503 

insights into the mechanistic understanding of SSVEPs at the whole-brain level. Through 504 

simulations, we showed that our model can capture the fundamental features of SSVEPs. Under 505 

suitable conditions, notable SSVEP responses were detected in both the occipital and frontal 506 

lobes, and the performance of SSVEPs was largely impacted by the physical properties of 507 

periodic visual stimuli. In particular, we observed that SSVEPs responded optimally to an 508 

external periodic stimulus at a specific frequency-sensitivity range of 8-12 Hz (alpha band). 509 

Further detailed graph analysis not only revealed that the stimulus-evoked brain network 510 

displayed relatively high levels of efficiency and synchronization in a similar frequency-511 

sensitivity range but also confirmed that efficient FC at the neural activity level supports 512 

stronger SSVEP responses. Together, these findings contribute to a better understanding of 513 

nonlinear SSVEP dynamics in the brain. 514 

The dynamic response of our brain to external periodic input is fundamental for neural 515 

information processing (Burkitt et al., 2000; Vialatte et al., 2010). Here, our modeling results 516 

indicated that the response of SSVEPs showed the best performance for flickering visual 517 

stimulation within 8-12 Hz. Notably, this is in good agreement with previous experimental 518 

studies, showing that the largest SSVEP response is elicited by low-frequency visual 519 

stimulation in the alpha band (Herrmann et al., 2016; Keitel et al., 2014; Spaak et al., 2014). 520 

Our theoretical analysis further revealed that the dynamic nature of the frequency sensitivity of 521 

SSVEPs can be attributed to combined effects of nonlinear entrainment and resonance, and the 522 

strongest SSVEP response occurs when the stimulus frequency is near the intrinsic oscillation 523 

frequency of the brain. As a prominent rhythm of the brain in a resting state, neural oscillations 524 

at the alpha band (~10 Hz) are known to be involved in many types of perceptual or cognitive 525 

functions (Herrmann et al., 2016; Pfurtscheller, 2003; Spaak et al., 2014). In particular, alpha-526 

band neural oscillations have been widely detected in EEG recordings across a variety of brain 527 

regions, especially during wakeful relaxation with closed eyes (Birca et al., 2006). This suggests 528 

that the alpha-dominated rhythm may be the intrinsic neural oscillations of our brain, thus 529 

offering a physiological basis in support of the frequency-sensitivity phenomenon observed in 530 

SSVEPs. 531 

However, it should be noted that, although several previous modeling studies have also 532 

implicated that both entrainment and resonance might serve as a possible mechanism in shaping 533 

the frequency response of SSVEPs, most of these studies only used simplified models to 534 

simulate the dynamics of local neural populations (Herrmann et al., 2016; Labecki et al., 2016; 535 

Notbohm et al., 2016; Roberts & Robinson, 2012). By building a large-scale brain model under 536 

constraints of realistic human data, we provided here the first computational evidence that such 537 
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frequency sensitivity induced by entrainment and resonance can also appear at the whole-brain 538 

level. 539 

Our model further predicts that the frequency-sensitivity range of SSVEPs can be regulated 540 

by changing the intrinsic oscillation frequency of the brain. At the microscopic scale, a real 541 

brain may provide some endogenous mechanisms to automatically adjust intrinsic neural 542 

oscillations (Buzsáki & Draguhn, 2004; Herrmann et al., 2016; Latorre et al., 2019); two of 543 

these mechanisms are discussed as follows. First, one possibility with high plausibility is 544 

directly modulating the intrinsic response properties of neurons. For instance, the decrease in 545 

the time constant of cortical neurons in response to decreasing membrane resistance and 546 

capacitance tends to result in fast intrinsic neural oscillations (Brunel & Wang, 2003). Under 547 

this condition, the frequency-sensitivity range should be shifted toward the high-frequency 548 

regime. On the other hand, the concentrations of several types of neurotransmitters have also 549 

been found to take part in the regulation of neural oscillations (Basar & Güntekin, 2008; 550 

Mariotti et al., 2016). For example, it has been observed that the concentration of gamma-551 

aminobutyric acid (GABA) in the resting state is positively correlated with the frequency of 552 

oscillations in response to visual stimulation in humans (Muthukumaraswamy et al., 2009). 553 

Therefore, changing the concentrations of several specific neurotransmitters may also provide 554 

an alternative approach to modulate the frequency-sensitivity range of SSVEPs. It is worth 555 

noting that a similar frequency-sensitivity phenomenon has been extensively reported in neural 556 

systems and is believed to play functional roles in highly efficient information processing in 557 

the brain (Başar & Güntekin, 2008; Guo et al., 2018). The modulating approaches proposed 558 

here may also contribute to a better understanding of these frequency-sensitivity behaviors 559 

observed in neural systems. 560 

Highly reliable signal conduction in the brain requires efficient FC. Past experimental studies 561 

have revealed that SSVEPs involve both local brain regions and distant, widely distributed brain 562 

regions (Birca et al., 2006; Labecki et al., 2016; Zhang et al., 2013). To a certain extent, this 563 

might lead to the propagation of SSVEPs in the brain being highly impacted by fundamental 564 

properties of cortical networks (Zhang et al., 2013). In the present study, we showed that the 565 

performance of SSVEP responses was related to the efficiency of the functional network in the 566 

stimulus-evoked state. By comparing network properties at different stimulus frequencies, we 567 

identified that the evoked brain state exhibited a relatively highly efficient FC at the neural 568 

activity level when the stimulus frequency was in the low alpha band. In this specific stimulus 569 

frequency region, we found that more enhanced connections existed between the occipital-570 

temporal and frontal regions compared with the connections noted in other stimulus frequencies, 571 

thus ensuring good propagation of SSVEPs in the brain. In addition, our analysis suggested that 572 

the emergence of such highly efficient FC was mainly influenced by the enhanced synchronous 573 

neural activity among brain regions but not by a significant enhancement in neural activation 574 

driven by external periodic stimuli. Using limited specific stimulus frequencies, many 575 

experimental studies have also observed that stronger SSVEP responses correspond to more 576 

efficient functional networks (Thut et al., 2012; Xu et al., 2013). With the assistance of large-577 

scale brain modeling, we further extended this observation to continuous frequency space. We 578 
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highlight these findings because they established the linkage between the frequency sensitivity 579 

of SSVEPs and the high-level performance of stimulus-evoked brain networks in the low alpha 580 

band. 581 

There is a broad consensus that individual differences inevitably exist in many SSVEP 582 

studies. In particular, it has been experimentally observed that the responses of SSVEPs display 583 

substantial variability across subjects (Koch et al., 2008; Labecki et al., 2016; Zhang et al., 584 

2013). In addition, different subjects may show distinct SSVEP peak frequencies. Notably, our 585 

modeling results might provide explainable insights into individual differences observed in 586 

experimental studies. On the one hand, the development of the human brain is highly 587 

susceptible to changes in a complicated environment (Corbetta et al., 2008; Kramer et al., 2004). 588 

During the development of the brain, this factor influences a dynamic change of structure-589 

function relationships for different subjects, thus leading to distinct network efficiency in their 590 

FC. As discussed above, the differences in FC efficiency will thus result in substantial 591 

variability in SSVEP responses across subjects. On the other hand, alpha-band neural 592 

oscillations are believed to contribute the most prominent intrinsic oscillation frequency to the 593 

brain (Keitel et al., 2014; Pfurtscheller, 2003; Spaak et al., 2014). In the literature, it has been 594 

reported that neural oscillations in the alpha band are highly associated with thalamocortical 595 

interactions and that the alpha peak frequency may change with age (Birca et al., 2006; Cantero 596 

et al., 2009). Intriguingly, accumulating data have revealed that different subjects may exhibit 597 

a certain level of individual variability in alpha peak frequency (Haegens et al., 2014). If our 598 

above findings on the frequency sensitivity of SSVEPs can reflect real behavior, such alpha 599 

peak variability may provide a physiological basis for the experimentally observed individual 600 

differences in SSVEP peak frequency. 601 

In the present study, we only focused on the dynamic mechanisms of SSVEPs and did not 602 

involve any cognitive process. Therefore, our model is assumed to be simply driven by the 603 

same external stimulus in bilateral occipital lobes. However, a large number of studies have 604 

provided evidence that several cognitive processes, such as attention, may take part in the 605 

modulation of SSVEP response (Gulbinaite et al., 2019; Hillyard et al., 1997; Keitel et al., 2014; 606 

Keitel et al., 2017; Keitel et al., 2019; Müller et al., 1998; Müller & Hillyard, 2000). In particular, 607 

both the negative and positive attentional modulation of alpha-band SSVEPs have been widely 608 

observed even in the similar experiments (Keitel et al., 2014; Keitel et al., 2017), and such 609 

seemingly contradictory findings can be reconciled with different analyzing approaches (Keitel 610 

et al., 2019). Several previous studies also indicated that effects of attention on SSVEPs can be 611 

observed up to the gamma band, and the sign of attentional modulation of SSVEP amplitude 612 

might be frequency dependent (Gulbinaite et al., 2019; Herrmann, 2001). By introducing well-613 

designed stimulus paradigms, our large-scale brain model could be also used to investigate the 614 

dynamic mechanisms of attentional modulation of SSVEPs and unify distinct experimental 615 

observations in different parameter regimes, another topic that deserves to be explored in the 616 

future studies. 617 

Although our large-scale model of the brain is a powerful tool for reproducing the 618 

fundamental characteristics of SSVEPs at the system level, we must admit that this model is 619 
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idealized and can be extended in several aspects. First, we simulated the dynamics for each 620 

brain region by using a simplified microcircuit structure composed of a group of excitatory and 621 

inhibitory populations. However, the cerebral cortex of the mammalian brain is organized into 622 

layers of specialized neuronal subtypes (Burt et al., 2018; Greig et al., 2013; Miller et al., 2019). 623 

Previous modeling studies have shown that such laminar specification may perform important 624 

functions in signal propagation and modulation between brain regions (D’Souza & Burkhalter, 625 

2017). Therefore, it is reasonable to further construct a more physiological large-scale brain 626 

model with a detailed laminar structure and explore how the cortical laminar structure impacts 627 

the propagation of this evoked neural activity in the brain. Second, we did not incorporate the 628 

transmission delay in our model. Indeed, the transmission delay between two brain regions is 629 

highly dependent upon their distance, which may range from several milliseconds to hundreds 630 

of milliseconds (Kringelbach et al., 2020; Ziaeemehr et al., 2020). In theory, introducing the 631 

distant-dependent time delay into a large-scale brain model will significantly enrich the model 632 

dynamics and influence SSVEP responses, a prediction that deserves to be examined in future 633 

studies. Finally, we ignored the hierarchical organization of the human brain in the model. By 634 

developing a large-scale dynamic model of the macaque neocortex with embedded hierarchy, 635 

previous studies have successfully reproduced the functional hierarchy among visual cortical 636 

areas that could be compared with experimental observations (Mejias et al., 2016). It has also 637 

been proposed that the hierarchical structure may play functional roles in the balance between 638 

integration and segregation by mediating neural gain (Shine et al., 2018). In future studies, it 639 

will be necessary to further explore whether nonlinear SSVEP dynamics can also be modulated 640 

by the hierarchical organization of the brain. 641 

To summarize, we performed a systematic study on the dynamic mechanisms of SSVEPs 642 

with a large-scale brain model constrained by empirical human MRI data. We demonstrated 643 

that such a biophysical-based model could capture the fundamental features of SSVEP 644 

dynamics and reproduce the distributed characteristics of SSVEPs in the brain. Our results 645 

indicated that the dynamic nature of SSVEPs is a consequence of neuronal entrainment and 646 

resonance, and revealed that the efficient stimulus-evoked FC that emerges in a frequency-647 

sensitivity range near the alpha band contributes to the high-level performance of SSVEP 648 

responses. These findings might not only deepen our current understanding of the biophysical 649 

mechanisms of SSVEPs but may also inspire testable hypotheses for future experiments. 650 

Additionally, our study emphasizes that large-scale brain modeling is a promising approach 651 

with a bright future to characterize the dynamics and functions of the brain in continuous 652 

parameter spaces under both normal and abnormal states. Further establishing the large-scale 653 

brain model at the individual level will form the personalized digital twin brain (DTB), which 654 

will greatly promote the applications of virtual brain technology in the studies of individualized 655 

medicine. 656 

Data and Code Availability: 657 

All MRI data used in this study can be downloaded from the Github repository of TVB-data 658 

(https://github.com/the-virtual-brain/tvb-data/tree/master/tvb_data/connectivity). Codes of the 659 
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large-scale brain model were developed by Daqing Guo’s Group at the University of Electronic 660 

Science and Technology of China, and will be also available by request after the acceptance of 661 

this manuscript. 662 
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Figures 910 

 911 

Figure 1. Overview of the large-scale brain model. A: In the large-scale brain model, each brain 912 

region is modeled as a microcircuit that is composed of coupled excitatory (E) and inhibitory 913 

(I) neural populations. The empirical SC is used to define initial connectivity among different 914 

brain regions. The excitatory neural activity can be converted into the simulated BOLD signal 915 

with the Balloon-Windkessel hemodynamic model. As an example, the blue dotted square 916 

represents the BOLD signal transformed from the above neural activity. B: Initial optimization 917 

for the large-scale brain model. After fitting, an initial simulated FC is obtained at an optimal 918 

global coupling factor 𝐺  (red square) under the constraints of empirical SC and FC. C: 919 

Schematic presentation of iterative self-consistency enhancement of SC based on empirical FC. 920 

This strategy begins with an initial tolerance of 1 and stops when the tolerance level is close to 921 

0. A detailed description of this optimization strategy can be found in the Model and Methods 922 

section. With the iterative-fitting strategy, we obtained both the optimal simulated SC and FC 923 

used in this study. 924 
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 925 

Figure 2. Model optimization based on the iterative-fitting strategy. A: The fitting between 926 

empirical and simulated FC with decreasing tolerance 𝑇. The optimal simulated FC is obtained 927 

at an optimal global coupling factor 𝐺 (red square) under the constraints of the new simulated 928 

SC (updated SC at tolerance 𝑇 = 0.125 ). B: The cumulative percentage of new 929 

intrahemispheric (black) and interhemispheric (red) links added to simulated SC with 930 

decreasing tolerance. C: The optimal simulated SC (left panel) and FC (middle panel) matrices 931 

are obtained at a relatively low level of tolerance (𝑇 = 0.125 ) and an optimal global-scale 932 

coupling factor (𝐺 = 3.01 ). The right panel shows correlations between empirical and 933 

simulated FC before and after the iterative-fitting strategy. The red line indicates the correlation 934 

between empirical FC and initial simulated FC (𝑟 = 0.41 ), and the blue line shows the 935 

correlation between empirical FC and optimal simulated FC obtained by using an iterative-936 

fitting strategy (𝑟 = 0.82 ). 𝑟  denotes the correlation coefficient, and the symbol ∗  means 937 

significant at the 99% level (𝑝 < 0.01). Statistical significance was determined by the two-938 

tailed Student's t-test. 939 
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 940 

Figure 3. SSVEP responses at different occipital and frontal regions. A: Schematic diagram of 941 

the occipital-related regions (LOCC, LING, PCAL and CUN) and frontal-related regions (FP, 942 

PORB, LOF and MOF) evaluated in this study. To simulate flickering visual stimulation, these 943 

occipital regions were assumed to be driven by a square wave with an amplitude of 0.5 nA and 944 

a frequency of 10 Hz. B, C: Examples of typical neural activity and the corresponding time-945 

frequency spectrogram for brain regions distributed in the occipital (B) and frontal lobes (C). 946 

D, E: The average power spectrum of neural activity for regions in the occipital (D) and frontal 947 

(E) lobes. The red triangle denotes the SSVEP peaks occurring at a stimulus frequency of 10 948 

Hz. The large-scale brain model can reproduce the fundamental dynamic features of SSVEP 949 

responses. 950 
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 951 

Figure 4. Dependence of SSVEP responses on stimulus frequency. A, B: SSVEP power (A) 952 

and the SNR value (B) for different occipital regions at different stimulus frequencies. C, D: 953 

SSVEP power (C) and the SNR value (D) for different frontal regions at different stimulus 954 

frequencies. All data are plotted as the mean (curve) ± SD (standard deviation; shaded region). 955 

A typical frequency-sensitivity range of 8-12 Hz is present in each region. The occipital and 956 

frontal regions showed optimal responses to external periodic visual stimuli in the alpha 957 

frequency band (8-12 Hz). 958 
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 959 

Figure 5. The performance of SSVEP responses is influenced by the stimulus amplitude. A, B: 960 

SSVEP power (A) and the SNR value (B) for different occipital regions at different stimulus 961 

amplitudes. C, D: SSVEP power (C) and the SNR value (D) for different frontal regions at 962 

different stimulus amplitudes. All data are plotted as the mean (curve) ± SD (shaded region). 963 

The positive relationships between SSVEP responses and stimulus amplitude can be observed 964 

in both the occipital and frontal regions. 965 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.02.05.429877doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429877


36 
 

 966 

Figure 6. Dynamical nature of the frequency sensitivity of SSVEPs. A: The average power 967 

spectrum density across all brain regions in the resting state (black dotted line) and in different 968 

stimulus-evoked states (colored lines). The blue, orange, yellow, purple, and green lines 969 

represent the average power spectrum at stimulus frequencies of 4 Hz, 8 Hz, 10 Hz, 14 Hz, and 970 

16 Hz, respectively. For comparison, we also plotted the SSVEP power (blue dotted line) as a 971 

function of stimulus frequency in the same figure. B: The synchronization factor 𝑅 for brain 972 

networks at both the resting and stimulus-evoked states under different frequencies. C: The 973 

average SSVEP power (C) and the average SNR (D) for the occipital (left) and frontal (right) 974 

lobes at different stimulus frequencies. Here, different colors in C and D represent different 975 

time constants of excitatory neural populations, and black dots indicate curve peaks.  976 

 977 
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 978 

Figure 7. Network properties of the stimulus-evoked and resting brain states at different 979 

frequency points. A-D: Clustering coefficient (A), characteristic path length (B), global 980 

efficiency (C), and local efficiency (D). Red lines indicate the stimulus-evoked network 981 

properties at the stimulus frequency point, and blue lines represent resting-state network 982 

properties at the corresponding frequency point. All data are plotted as the mean (curve) ± SD 983 

(shaded region). The stimulus- evoked brain networks displayed stronger clustering coefficients, 984 

global efficiency, and local efficiency and smaller characteristic path lengths than those of the 985 

resting-state brain networks. 986 
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 987 

Figure 8. Alterations in connectivity and activation level between the stimulus-evoked and 988 

resting brain states. A: Significant changes in FC at the neural activity level for different 989 

stimulus frequencies (from top to bottom: 𝑓0 = 6 Hz, 9.5 Hz, and 14 Hz). The results were 990 

statistically compared by a two-sample student’s t-test with a significance level of 𝑝 < 0.05 991 

(familywise error (FWE) correction). Orange lines indicate enhanced connections at the 992 

stimulus-evoked state, and no significantly decreased connectivity was identified after FWE 993 

correction. B: Comparison of the average activation level for each brain region between the 994 

resting state and stimulus-evoked state (𝑓0 = 9.5 Hz). Under the appropriate stimulus frequency 995 

of 9.5 Hz, the connectivity within the whole brain was enhanced and the average activation 996 

levels only for regions in the occipital lobe are observed. 997 
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 998 

Figure 9. The correlation between SSVEP responses and stimulus-evoked network properties 999 

for global-scale couplings near its optimal point of 𝐺 = 3.01. In simulations, the global-scale 1000 

coupling 𝐺  gradually changed from 2.7 to 3.2, with a fixed step of 0.05. A-D: Clustering 1001 

coefficient (A), characteristic path length (B), global efficiency (C), and local efficiency (D). 1002 

Blue and red lines represent the SNR value and SSVEP power, respectively. Here, 𝑟 denotes 1003 

the correlation coefficient, and 𝑝 means the significance level of the correlation coefficient. 1004 

Statistical significance was determined by the two-tailed Student's t-test. The clustering 1005 

coefficient, global efficiency, and local efficiency showed significantly positive correlations 1006 

with both SSVEP power and SNR values, whereas the SSVEP responses were negatively 1007 

correlated with the characteristic path length of brain networks. 1008 

 1009 

 1010 

 1011 

 1012 

 1013 

 1014 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.02.05.429877doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429877


40 
 

Tables 1015 

Table 1. Names and abbreviations for the 66 cortical regions used in the present study. Two 1016 

labels (i.e., R and L) refer to the right and left hemispheres, respectively. 1017 

 1018 

 1019 

Region name Abbreviation Label (R) Label (L) 

Bank of the superior temporal sulcus BSTS 12 55 

Caudal anterior cingulate cortex CAC 23 44 

Caudal middle frontal cortex CMF 17 50 

Cuneus CUN 29 38 

Entorhinal cortex ENT 1 66 

Frontal pole FP 4 63 

Fusiform gyrus FUS 5 62 

Inferior parietal cortex IP 10 57 

Inferior temporal cortex IT 9 58 

Isthmus of the cingulate cortex ISTC 31 36 

Lateral occipital cortex LOCC 7 60 

Lateral orbitofrontal cortex LOF 22 45 

Lingual gyrus LING 27 40 

Medial orbitofrontal cortex MOF 26 41 

Middle temporal cortex MT 13 54 

Paracentral lobule PARC 30 37 

Parahippocampal cortex PARH 2 65 

Pars opercularis POPE 18 49 

Pars orbitalis PORB 21 46 

Pars triangularis PTRI 19 48 

Pericalcarine cortex PCAL 28 37 

Postcentral gyrus PSTS 15 52 

Posterior cingulate cortex PC 33 34 

Precentral gyrus PREC 16 51 

Precuneus PCUN 32 35 

Rostral anterior cingulate cortex RAC 24 43 

Rostral middle frontal cortex RMF 20 47 

Superior frontal cortex SF 25 42 

Superior parietal cortex SP 8 59 

Superior temporal cortex ST 14 53 

Supramarginal gyrus SMAR 11 56 

Temporal pole TP 3 64 

Transverse temporal cortex TT 6 61 
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Table 2. The default values of the model parameters used in the simulations. 1020 

Parameters Description Values 

𝜏𝐸
𝑗
 Excitatory synaptic time constants 18 ms 

𝜏𝐼
𝑗
 Inhibitory synaptic time constants 25 ms 

𝐼𝑏
𝑗
 Background current  2 

A Amplitude of the stimulus signal  0.5 

𝜎𝐸
𝑗
 Noise strength of the excitatory population 0.45 

𝜎𝐼
𝑗
 Noise strength of the inhibitory population 0.45 

𝐽𝐸𝐸 Synaptic strength of E → E coupling 1.5 

𝐽𝐸𝐼 Synaptic strength of I → E coupling -2.6 

𝐽𝐼𝐸 Synaptic strength of E → I coupling 3.5 

𝐽𝐼𝐼 Synaptic strength of I → I coupling -2.5 

 1021 

 1022 

 1023 

 1024 

 1025 
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