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Abstract 
Motivation: Mass spectrometry imaging (MSI) provides rich biochemical information in a label-free manner and 
therefore holds promise to substantially impact current practice in disease diagnosis. However, the complex 
nature of MSI data poses computational challenges in its analysis. The complexity of the data arises from its large 
size, high dimensionality, and spectral non-linearity. Preprocessing, including peak picking, has been used to 
reduce raw data complexity, however  peak picking is sensitive to parameter selection that, perhaps prematurely, 
shapes the downstream analysis for tissue classification and ensuing biological interpretation. 
Results: We propose a deep learning model, massNet, that provides the desired qualities of scalability, non-
linearity, and speed in MSI data analysis. This deep learning model was used, without prior preprocessing and 
peak picking, to classify MSI data from a mouse brain harboring a patient-derived tumor. The massNet architecture 
established automatically learning of predictive features, and automated methods were incorporated to identify 
peaks with potential for tumor delineation. The model’s performance was assessed using cross-validation, and 
the results demonstrate higher accuracy and a 174-fold gain in speed compared to the established classical 
machine learning method, support vector machine.  
Availability and Implementation: The code is publicly available on GitHub. 
 
Introduction 
 
Mass spectrometry imaging (MSI) is a rapidly growing technology that can provide spatial mapping of a wide range 

of biomolecular classes (such as proteins, metabolites, and lipids) simultaneously and directly from a tissue section 

in a label-free manner (McDonnell and Heeren, 2007). These make MSI a promising discovery tool with the 

potential to impact the accuracy and speed of cancer diagnosis and complement the current practice of anatomic 

pathology (Norris and Caprioli, 2013; Dewez et al., 2020). In support providing information that can complement 

anatomic pathology, MSI can detect molecular alterations in diseased tissues prior to the manifestation of 

observable morphological changes  (Addie et al., 2015; Abdelmoula et al., 2016; Randall et al., 2020). Recent 

developments have also enabled automated multi-modal integration between MSI and histology (Abdelmoula et 

al., 2014; Patterson et al., 2018; Race et al., 2021). Such multi-modal integration can harness complementary 

molecular and anatomical information from biological systems, enabling, for example, a better understanding of 

molecular mechanisms and pathology of various diseases (Chaurand et al., 2004; Veselkov et al., 2014), more 

informed drug metabolite distribution (Castellino et al., 2011; Randall et al., 2018), and more sensitive surgical 

guidance (Santagata et al., 2014; Eberlin et al., 2014). 

  

Matrix-assisted laser desorption ionization (MALDI) is a promising sample introduction technique for the 

development of diagnostic applications based on mass spectrometry imaging (Calligaris et al., 2015; Drake et al., 
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2017; Basu et al., 2019; Huizing et al., 2019). Acquisition of spectral data from different molecular classes depends 

largely on the tissue preparation and matrix selection (Carreira et al., 2015). MSI data acquisition is done through 

laser scanning of a tissue surface for desorption and ionization of molecules using a predefined spatial resolution 

grid, which defines pixel dimensions. The mass-to-charge ratio (m/z) and relative intensity of the released ions are 

detected by a mass analyzer. Each pixel then provides a mass spectrum that would be considered a high 

dimensional data point for machine learning purposes. The quality and complexity of mass spectral data depend 

upon the mass analyzer. Fourier-transform ion cyclotron resonance mass spectrometry imaging (FT-ICR MSI) 

offers the highest mass resolving power (Bowman et al., 2020). Such ultra-high mass resolution technology 

significantly improves the mass identification accuracy, but at the cost of concomitant increases in data complexity 

and volume (L A McDonnell et al., 2010). 

 

The complexity of raw MSI data poses challenges for classical machine learning approaches, where prone to the 

curse of dimensionality-related issues and slow processing (Alexandrov, 2020). These complexities can be 

described in terms of massive dimensionality (e.g. 10! − 10" m/z values) and a large number of spectra—that 

can exceed one million spectra per image, depending on both spectral and spatial resolutions—which can reduce 

clustering and classification quality (Van Der Maaten et al., 2009). MSI data preprocessing such as peak picking 

has been a fundamental step that, to avoid the aforementioned limitations, preceded the analysis routines of 

classical machine learning (L A McDonnell et al., 2010). This fundamental preprocessing step aims to significantly 

reduce the original data dimensionality through identification of as many relevant peaks as possible while 

minimizing the noise. However, the available implementations of currently established peak picking approaches 

are highly sensitive to the selection of parameters that require expert optimization (e.g. peak shape, signal-to-

noise ratio, Full-Width-Half-Maximum, peak frequency, baseline subtraction and spectral smoothing) (Donnelly et 

al., 2019; Murta et al., 2021). In addition, the computational performance of peak picking approaches 

implemented in widely used commercial software is typically quadratic (Alexandrov, 2012), resulting in slow 

analysis that can take several hours or even a few days depending on mass resolving power and the number of 

mass spectra processed. A faster alternative but less sensitive approach is to base the peak picking analysis on the 

mean spectrum (Alexandrov, 2012). McDonnell et al. showed that peak picking on the base peak spectrum, which 

displays the maximum intensity of each m/z value across the dataset, could improve results compared to the 

analysis of the mean spectrum (Liam A. McDonnell et al., 2010), although this analysis is still depended upon 

expert optimization of peak picking parameters. Spectral preprocessing and the effect of parameters selection do 

not only impact the downstream analysis (e.g. dimensionality reduction, clustering and classification) but can also 

affect the overall biological interpretation (Seddiki et al., 2020; Murta et al., 2021). 
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Deep learning methods have revolutionized many application areas of biomedical imaging (Ronneberger et al., 

2015; Esteva et al., 2017; Hosny et al., 2018). Unlike well-established classical approaches that require feature 

engineering (Calligaris et al., 2015; Balluff et al., 2015), deep learning can perform automatic learning of predictive 

features (Lecun et al., 2015). Deep learning techniques offer scalability, non-linearity and efficiency that can 

accommodate the complexity of MSI data (Abdelmoula et al., 2020; Thomas et al., 2016; Inglese et al., 2017). For 

example, convolutional neural networks (CNN) were successfully applied to preprocessed and peak picked MSI 

data for tumor classification (Behrmann et al., 2018; van Kersbergen et al., 2019; Guo et al., 2020). Recently, CNN 

methods revealed promising results when applied on small scale MSI data without prior processing and (Seddiki 

et al., 2020). Despite the promising results of these CNN architectures, the classification process is sensitive to a 

user defined, hyper parameter at the input layer that is referred to as the receptive field. The receptive field 

defines a convolutional kernel window in these CNN architectures to identify salient mass spectral patterns that 

depend on the selected size of the receptive field (Behrmann et al., 2018). Fully connected neural networks (FCNN) 

were applied on MSI data to perform non-linear dimensionality reduction (Thomas et al., 2016; Inglese et al., 

2017; Dexter et al., 2020), and we recently applied FCNN-based architecture to capture spatial patterns and learn 

underlying m/z peaks of interest from large scale MSI data while bypassing conventional preprocessing 

(Abdelmoula et al., 2020).  

 

In this work, we extend our recent deep learning development of msiPL (Abdelmoula et al., 2020) to enable tissue 

classification while avoiding potential bias from the user’s parameter optimization in spectral preprocessing. We 

propose, massNet, a scalable deep learning architecture to perform probabilistic pixel-based classification directly 

from mass spectral data with massive dimensionality (e.g. tens of thousands of m/z values) and without prior 

preprocessing such as peak picking. Unlike classical machine learning methods, massNet is capable of 

automatically learning predictive features from large scale MSI data. We demonstrate our method on a MALDI 9.4 

Tesla FT-ICR MSI dataset from a patient-derived xenograft (PDX) mouse brain tumor model of glioblastoma (GBM). 

The model stability was evaluated using 5-fold cross validation, and the classification speed and robustness were 

assessed on a test set using various established machine learning metrics such as receiver operating characteristic 

curve (ROC), accuracy, recall, precision and F1-score. Moreover, the classification performance of massNet was 

benchmarked by comparison to support vector machine (SVM) a widely-used classical machine learning method. 
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Materials and Methods 
 
MALDI FT-ICR MSI Data 

MALDI FT-ICR MSI data acquisition was performed on tissue sections from four different intracranial GBM PDX 

models, see Figure 1. This MSI data and acquisition process were previously published in another study from our 

group (Randall et al., 2020). Briefly, 8 GBM tissue sections of 12 µm thickness were prepared and analyzed using 

a 9.4 Tesla SolariX mass spectrometer (Bruker Daltonics, Billerica, MA) in the positive ion mode with spatial 

resolution of 100 µm. The MSI data was exported from SCiLS lab 2020a (Bruker, Bremen, Germany) in the 

standardized format imzML (Race et al., 2012) and converted to the HDF5 format (Folk et al., 2011) for deep 

learning analysis. 

Microscopy Imaging and Tumor Annotation 

Four tissue sections consecutive to those used for the MSI analysis were thaw mounted onto glass slides for 

hematoxylin and eosin (H&E) staining. The H&E images were acquired using a Zeiss Observer Z.1 microscope 

equipped with 20x Plan-APOCHROMAT lens and AxioCam MR3 camera. The tumor regions in these H&E images 

were annotated by an expert pathologist and the annotations were manually transferred to annotate the MSI 

data as demonstrated in (Randall et al., 2020), see Figure 1.  

 

Deep Learning Architecture of massNet 

The hyperspectral image from MSI encompasses a set of high-dimensional data points $ = &'
($), '(&), … , '(')*, 

where + is the total number of spectra (or pixels) and each spectrum is a  ,-dimensional point '(() ∈ .)  where , 

is the total number of m/z variables. The pixel-wise annotation of the hyperspectral image is represented by a 

binary vector / = {1$, 1&, … , 1'}, where 1( ∈ [0,1]*  is the ground truth class label of spectrum '(() which belongs 

to one of the total two class labels 5 which are here normal and tumor. Our proposed massNet architecture shown 

in Figure 2 aims to learn a predictive function ℱ that would establish the relationship between each spectrum 

'
(()and its associated class label 1(  as depicted in equation (1), 

 

	18( = ℱ(ℋ, '
(()))   (1)    

 

where	18( ∈ [0,1]*  is a probabilistic estimate of the predicted class labels 5 that is computed based on the 

optimized artificial neural network hyper-parameter set ℋ. Class prediction of normal and tumor for a given 

spectrum '(() can then be respectively represented as  <(+) ∈ 18(
+,$ and 1 − <(+) = 	<(=) ∈ 18(

+,&. The 

massNet architecture has two main modules to optimize the hyper-parameter set ℋ, namely the variational 
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autoencoder (VAE) and probabilistic classification modules. The VAE module aims to learn a non-linear manifold 

of the original complex MSI data through optimizing two functions: a probabilistic encoder <∅(>|') and a 

probabilistic decoder <.(>|') for data reconstruction. The learned non-linear manifold represents a latent 

variable > ∈ ./; A ≪ , which is of lower dimensions (A) and assumed to be sampled from a normal distribution 

(Coombes et al., 2005) as such >	~	+DE∅('), F∅(')G. The VAE parameters ∅ and J are optimized based on 

maximizing the variational lower bound (ℒ) that is given in equation (2). For more information on VAE we refer 

readers to Kingma et al. (Kingma and Welling, 2013). 

ℒ#$, &; ((")) = −	-. /0$#12((")) ∥ 4%(1)6 +	8&!'1((("))9log 4%#(
(")21)=.		(2) 

 

The second module of massNet performs probabilistic classification, which is activated with a sigmoid function 

(K(L) = $
$01!"), where L is an arbitrary variable at the output layer. This classifier module is parametrized by a 

hyper-parameter M and consists of two fully connected hidden layers and an output layer of two classes (normal 

and tumor), see Figure 2. These two hidden layers are activated based on a rectified linear unit (ReLU) and take 

their input from the optimized latent variable (>) of the VAE. The classification result is based on optimizing a loss 

function of the binary cross entropy (Ε), shown in equation (3), to maximize the similarity between the real and 

predicted class labels. Finally, the hyper-parameters ℋ,  given in equation (1), consist of hyper-parameters from 

these two optimized modules ℋ = {∅, M}.  

 

O(1, 18) = 	−[1(log(18) + (1 − 1) log(1 − 18)] (3) 

 

Data Visualization and Feature Localization 

Uniform Manifold Approximation and Projection (UMAP) is a non-linear dimensionality reduction method for data 

visualization in a single map representation in which it preserves both local and global data structures from higher 

dimensional space (McInnes et al., 2018).  UMAP has been found promising in visualizing different types of omics 

data (Becht et al., 2019). The UMAP algorithm was applied on the learned A −dimensional latent variable (>) to 

enable data visualization in a two-dimensional space. Of note, applying the UMAP on the latent variable instead 

of the original hyper-dimensional MSI data is a more efficient way to avoid the curse of dimensionality (Van Der 

Maaten et al., 2009). 
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The classification predictions were spatially reconstructed to gain insight into the molecular interpretability of the 

predicted classes. This enabled the predicted class labels to be mapped back into the image space to reveal spatial 

patterns associated with each of the predicted classes. Pearson correlation was then applied on each of these 

spatial patterns and the identified peaks from the VAE module using the msiPL method (Abdelmoula et al., 2020). 

The highly co-localized m/z peaks are those that achieved the highest Pearson correlation coefficient (T ≥ 0.7).  

 

Model Evaluation 

The model’s learning stability was evaluated using 5-fold cross validation on the training set (80% training and 

20% validation), and the best model was finally applied and assessed on an independent test set. The classification 

speed and robustness were assessed on a test set using various established machine learning metrics such as 

receiver operating characteristic curve (ROC), accuracy, recall, precision and F1-score. Moreover, the classification 

performance of massNet was benchmarked by comparison to support vector machine (SVM) a widely-used 

classical machine learning method. 

 

 

Results 
Hyperparameters and implementation details of the massNet architecture 

The massNet architecture, shown in Figure 2, consists of an input layer (W(2), five hidden layers 

(ℎ$, ℎ+3)1 , ℎ4, ℎ5, ℎ!), and two output layers (W367$, W367&). The input layer (W(2) takes its input signal from total-

ion-count (TIC) normalized mass spectra. The VAE module has three hidden layers (ℎ$, ℎ+3)1 , ℎ4) and an output 

layer (W367$). The lower dimensional latent variable (>) is captured at the Code layer (ℎ+3)1),  which is then used 

by the generative model for spectral data reconstruction at the output layer (W367$). The Code layer (ℎ+3)1) also 

provides an input to the classification module which has two fully connected hidden layers (ℎ5, ℎ!) and eventually 

yields a probabilistic estimate of class prediction at the output layer (W367&). The layer size of each W(2 and W367$ 

is equivalent to the number of m/z variables, whereas the size of W367& is equivalent to the number of class labels. 

The size of hidden layers is a user tunable parameter, and it was empirically set as (ℎ$ = 512, 	ℎ+3)1 = 5, 	ℎ4 =

512	, ℎ5 = 128, ℎ! = 128) in which the VAE parameter settings were adopted from our former msiPL method 

(Abdelmoula et al., 2020). The rectified linear unit (ReLU) was used as an activation function for all layers except 

for the two output layers (W367$, W367&) which were activated using the sigmoid function. The proposed neural 

network architecture was regularized using batch normalization and dropout to stabilize the learning process, 

fasten the convergence, and significantly  reduce overfitting (Srivastava et al., 2014; Ioffe and Szegedy, 2015). A 

20% dropout was added to the two hidden layers of the classification module. The cost function was optimized 
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based on minibatch processing (batch size = 100) using the adaptive stochastic gradient descent method of Adam 

optimization (with default learning rate = 0.001) and the total number of epochs for VAE and classification 

modules were respectively 100 and 30. The architecture was implemented in python using the publicly available 

deep learning platforms of Keras (Chollet, 2017) and tensorflow (Abadi et al., 2016), and it was trained on a PC 

workstation (Windows 10, Intel Xenon 3.3GHz, 64-bit Windows,  and NVIDIA TITAN XP Graphics Card). 

 

UMAP visualization of the VAE latent variable reveals separation between normal and tumor spectra 

The deep learning model was optimized on a training set acquired by MALDI FT-ICR MSI from 4 different 

intracranial GBM PDX models, as demonstrated in the left column of Figure 1. This training set encompasses mass 

spectra with 85,062 m/z variables that were collected from two different classes of normal and tumor tissue types 

with total number of spectra 10,024 and 3,644 respectively. The VAE model optimization revealed stable 

convergence distribution in 100 epochs with random shuffling of data batches (Supplementary Figure S1) and a 

total running time of 55.7 minutes. The optimized model captured the latent variable (>) of 5-dimensions at the 

Code layer (Supplementary Figure S2) which was then used to efficiently reconstruct the original TIC-normalized 

MSI data with a total mean squared error (MSE) of 5.69 × 108!, see Figure 3.a. The UMAP visualization of the 

latent variable in two-dimensional space revealed separation of mass spectra from normal and tumor tissues as 

shown in Figure 3.b. The UMAP features were also colored based on different GBM models to reveal inter-tumor 

heterogeneity and visualizing the learning efficiency in capturing similarities based on the molecular phenotype 

and assess potential batch effect (Figure 3.b). 

 

Pre-trained VAE enables optimization of the classification module 

The pre-trained and optimized VAE provides input to the classifier module through the latent variable that was 

captured at the Code layer (ℎ+3)1). The classification module was optimized in 30 epochs which also included 

random shuffling of data batches and the total running time of 6.43 minutes. To avoid potential overfitting and 

provide unbiased estimate of out-of-sample error (i.e. on test data), the model was evaluated using 5-fold cross 

validation. For each of the cross-validation folds, the entire training dataset (shown in Figure 1. a-b) was randomly 

divided into 80% training and 20% validation. The robustness and evaluation of the different cross-validation 

models are shown in Supplementary Table S1, in which the best model with maximum accuracy and minimum 

loss values was eventually selected to be further independently evaluated on the withheld test set. The best model 

was benchmarked by comparison to SVM where both models showed comparable performance but massNet was 

faster, see Supplementary Table S2. Of note, the total running time shown in Supplementary Table S2 for 

optimizing the overall massNet model included the running time for both the VAE and the classification modules. 
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Rapid and efficient classification performance on MALDI MSI test set of large dimensions 

The optimized massNet model was evaluated on the withheld test set of MALDI FT-ICR MSI data from 4 different 

intracranial GBM PDX models as demonstrated in the right column of Figure 1. This test set encompasses mass 

spectra with 85,062 m/z variables that were collected from two different classes of normal and tumor tissue types 

with total number of spectra 9,798 and 2,861 respectively. The optimized VAE module took 61.8 seconds to 

analyze the entire test set as such the latent variable was captured (Supplementary Figure S3) and the original 

TIC-normalized MSI test data were reconstructed with an overall MSE of 5.61 × 108!, see Figure 3.c. The UMAP 

visualization of the 5-dimensional latent variable revealed separation between molecularly distinct phenotypes of 

normal and tumor tissues, as shown in Figure 3.d. 

The optimized massNet took about 29.88 seconds to provide spectral-wise probabilistic prediction of the entire 

test set. The robustness of this ultra-fast classification (compared to SVM, see Table 1) is supported by ROC 

analysis (AUC values for normal and tumor classes were 95.01% and 94.94%, respectively) and the confusion 

matrix which revealed true negative and true positive values of 98% and 83% respectively, as demonstrated in 

Figure 4. This classification performance was further benchmarked by comparison to an SVM classifier using 

different machine learning evaluation metrics shown in Table 1. Of note, both the massNet and SVM models were 

first optimized on the training set and then applied on this test set. The overall performance of massNet was 

slightly higher than SVM with respective accuracy of 95% and 93.45 %, but more significantly, the massNet was 

174 times faster than SVM as shown in Table 1. 

 

Spatial mapping of predicted scores reveals uncertainty at the tumor margin 

The probabilistic scores of the predicted class labels were spatially mapped to enable their visualization in the 

image space, see Figure 5.a-b. Despite the massNet model being quite accurate in predicting the true class labels 

in most of the tissue regions, it showed a higher level of uncertainty at the tumor margin (Figure 5.c). This could 

reflect that the tumor margin has a convoluted molecular signature likely resulting from mixtures of normal and 

tumor cells compared to either the tumor core or normal tissue types, therefore representing an infiltrative edge. 

This observation is in accordance with other studies that studied mass spectral signatures from tumor margins 

(Calligaris et al., 2014). Identification of m/z peaks that are highly correlated with each of the predicted class labels 

were determined through the Pearson correlation coefficient. This coefficient was computed by correlating each 

of the predicted spatial maps with each of the 772 m/z values that were identified by msiPL. The top 10 correlated 

m/z values correlated with the tumor region were identified and presented in Table 2, whereas the highest 
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correlated values for normal tissue are shown in Supplementary Table S3. The highest correlated peak with the 

tumor class was at m/z 400.9546 ± 0.01 which is elevated in the tumor region. The automated non-linear image 

registration method we recently developed (Abdelmoula et al., 2014) was applied to non-linearly warp this ion 

image and fuse it with an image of the Hematoxylin and Eosin (H&E) stained tissue section, Figure 5.d-e. This 

multi-modal integration can provide a reference system for pathologists to further study and gain more insight 

about the tissue that can go beyond tissue anatomy (Caprioli, 2019). 

 

Discussion 
We presented massNet, a fully connected deep learning architecture for spectral-wise classification of large scale 

MSI data without prior preprocessing and peak picking. The massNet architecture consists of two main modules, 

namely: variational autoencoder (VAE) and classification modules. The VAE module learns a lower dimensional 

latent variable that was used to reconstruct the original MSI data and assess the learning quality of the VAE 

module. That optimized latent variable provides an input to the classification modules which was activated at the 

output layer using a sigmoid function to provide a probabilistic estimate of the predicted class membership. Unlike 

other architectures for MSI data classification, massNet is based on a fully connected artificial neural network and 

does not rely on optimizing a receptive field parameter, which is inherently associated with convolutional artificial 

neural networks and has an impact on the learning process (Behrmann et al., 2018; van Kersbergen et al., 2019; 

Guo et al., 2020). The optimized model showed high accuracy and ultra-fast performance (less than 1 second) on 

the full MSI test data that encompassed a total of 12,659 mass spectra with 85,062 m/z variables. The trained 

massNet model achieved higher accuracy and was 174 times faster than a trained SVM when compared for 

analysis of the same dataset, see Table 1.  

 

While the proposed model showed promising results for binary class classification, the model could be extended 

in future development to enable multi-class classification. We envision a slight change in the massNet architecture 

mainly at the output layer (W367&) in which its size will be defined based on the new number of class labels and it 

must be activated using a different function such as softmax. The ground truth annotations could be defined using 

microscopy images and then mapped into the MSI space using image registration (Heijs et al., 2015). Depending 

on the application and tissue types, different stainings could be investigated to provide increased structural 

annotations compared to the most common H&E staining. MSI and microscopy imaging are complementary 

modalities and annotating the MSI data based solely on annotated histology is an approximation approach which 

might not be optimal especially in case of intra-tumor heterogeneity (Balluff et al., 2015). This is mainly because 
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the MSI data could reveal molecular intra-tumor heterogeneity that is not yet observed in the microscopic image 

(Randall et al., 2020; Jones et al., 2012). 

 

The proposed model was applied to the analysis of MALDI FT-ICR MSI data here but the massNet architecture is 

independent of the mass spectral ionization nature and could be applied to the analysis of MSI data from different 

platforms with distinct ionization and mass analyzer technologies. The massNet architecture could also be applied 

to the classification of different tissues and tumor types where the challenging task becomes the establishment 

of ground truth annotation of the MSI data. For instance, the massNet revealed a higher level of uncertainty 

around tumor margins in the binary classification task as shown in Figure 5.b-c. This could reflect distinct molecular 

signatures in the tumor margin area compared to either the tumor core or normal tissue types. Tumor margins 

could therefore either be treated as an independent class or deconvoluted to extract signal from tumor and 

normal cells; however, the ground truth annotation is a challenging task that would require more pathological 

investigation and could be enhanced by integrating with multiplexed immunofluorescence to clearly delineate cell 

types from the tumor and microenvironment. 
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Figure  1 . Tissue sections from 4 intracranial GBM PDX models were divided into training/validation and testing sets: (a) schematic 
distribution of tissue sections from different GBM models, (b) Annotated tumor regions in the MSI datasets which were guided by the H&E 
annotations (c). 
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Figure 2.Deep learning-based architecture of massNet for probabilistic two-class classification of large scale MSI data without prior 
preprocessing and peak picking. The artificial neural network is based on spectral-wise analysis and consists of two modules, namely: 
variational autoencoder for non-linear manifold learning that is captured at the “Code” layer, and two fully connected layers that take input 
from the “Code” layer to yield probabilistic predictions at the output layer using the sigmoid activation. massNet is regularized based on 
batch normalization and drop out to maintain learning stabilization and faster optimization. 
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Figure 3. Performance of the VAE module and non-linear data visualization:  Overlay of the TIC-normalized average spectrum of original 
and reconstructed data for both training (a) and testing (b) datasets. UMAP visualization of the 5-dimensional latent variable captured by 
the VAE model reveals distinction between normal and tumor mass spectra from different GBM models for both training (b) and testing 
(d) dataset. 
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Figure 4. Classification performance on the MALDI FT-ICR MSI test set: (a) Receiver operating characteristic (ROC) curve distribution for 
both normal (blue) and tumor (orange) classes with an AUC of 95.01% and 94.94%, respectively. (b) Confusion matrix showing the 
prediction performance compared to the ground truth labels. 
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Figure 5. Spatial mapping of the classification predictions and multi-modal integration: (a-b) Spatial distribution of the spectral-wise 
probabilistic predictions for normal (a) and tumor (b) classes. (c) Close up visualization of the spatially mapped tumor prediction scores 
reveals a higher level of uncertainty at the interface between normal and tumor (i.e., tumor margins). (d) The H&E microscopy images 
show tumor regions in different GBM models (columns). (e)Multi-modal integration of the H&E images and ion image at m/z 400.9546 ±
0.01 which is highly correlated and elevated in the tumor region. 
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Table 1. Classification performance on the withheld test MALDI FT-ICR MSI dataset 

 Class Spectra # Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Accuracy 
(%) 

Time (min) 

massNet Normal 9,798 95 98 97 95 0.5 
Tumor 2,861 94 83 88 

SVM Normal 9,798 94 98 96 93.45 87.25 
Tumor 2,861 91 79 84 
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Table 2. Top 10 correlated m/z values with the tumor tissue 

m/z 
experimental 

correlation Tentative 
assignment 

Molecular 
formula 

Adduct m/z 
calculated 

Database Error 
(ppm) 

400.9546 0.8160 

Uridine 
monophosphate 

(UMP) 

C9H13N2O9P [M+2K-H]+ 400.9554553 HMDB -2.1 

480.9211 0.8104 

Uridine 
diphosphate 

(UDP) 

C9H14N2O12P2 [M+2K-H]+  HMDB -0.21 

518.8773 0.8074 
      

589.9102 0.7909 
      

545.9591 0.7825 

Adenosine 
triphosphate 

(ATP) 

C10H16N5O13P3 [M+K]+ 545.9589 Metlin 0.36 

567.94086 0.7746 
      

464.9471 0.7673 
      

583.91437 0.7561 

Adenosine 
triphosphate 

(ATP) 

C10H16N5O13P3 [M+2K-H]+ 583.9148 HMDB -0.74 

703.57416 0.7534 
SM (34:1)/PE-

Cer (37d/1) 
C39H79N2O6P [M+H]+ 703.5749 Metlin -1.05 

704.5783 0.7532 

This is the 
703.57 C 13 

isotope  

     

 
 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.442938doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442938
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Materials 

 

massNet: integrated processing and classification of spatially resolved mass 
spectrometry data using deep learning for rapid tumor delineation  

 

Walid M. Abdelmoula1,2, Sylwia Stopka1,3, Elizabeth C. Randall3, Michael Regan1, Jeffrey N. Agar4, Jann N. 
Sarkaria5, William M. Wells3,6, Tina Kapur3, and Nathalie Y.R. Agar1,3,7,* 

 

 

1Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 
02115, USA. 

2Department of Software and Image Analysis, Invicro LLC, Boston, MA 02210, USA 

3Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, 
USA. 

4Department of Chemistry and Chemical Biology, Northeastern University, 412 TF (140 The Fenway), 
Boston, MA 02111, USA.  

5Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester MN 55902, USA. 

6Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA. 

7Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, 
USA. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.442938doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442938
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure S1. Convergence distribution of the VAE module for 100 epochs (i.e. iterations), and the loss represents the optimization 

of the VAE’s cost function that consists of a summation of two functions, namely:  Kullback-Leibler divergence and binary cross 

entropy. 
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Figure S2.: Latent variable of 5-dimensional representation (column) that was captured at the VAE’s code layers for different 

GBM models (rows) of the MALDI FT-ICR MSI training set. This variable provides a compressed representation of the original MSI 

data and colormap was arbitrary chosen to reveal structures.  
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Figure S3. Latent variable of 5-dimensional representation (column) that was captured at the VAE’s code layers for different GBM 

models (rows) of the MALDI FT-ICR MSI test set. This variable provides a compressed representation of the original MSI data and 

colormap was arbitrary chosen to reveal structures.  
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Table S1. Evaluation of the classification module using 5-fold cross validation on training/validation set 

 1st fold 2nd fold 3rd fold 4th fold 5th fold 

Training Accuracy 1.0 1.0 1.0 1.0 1.0 

Validation Accuracy 0.99707 1.0 1.0 1.0 1.0 

Training Loss 1.848 × 10!" 5.474 × 10!# 3.1 × 10!# 3.31 × 10!# 3.345 × 10!# 

Validation Loss 8.259 × 10!$ 1.9 × 10!" 3.488 × 10!# 3.725 × 10!# 4.48 × 10!# 

 

 

Table S2. Classification performance on the training MALDI FT-ICR MSI dataset 

 class Spectra #  Precision (%) Recall (%) F1-score (%) Accuracy (%) Time (min) 

massNet Normal 10,024 100 100 100 100 62.2 

Tumor 3,644 100 100 100 

SVM Normal 10,024 98 99 98 97.76 97.95 

Tumor 3,644 96 96 96 
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Table S3. Top 10 correlated m/z peaks with the normal tissue 

m/z 
experimental 

correlation Tentative 
assignment 

Molecular 
formula 

Adduct m/z 
calculated 

Database Error 
(ppm) 

725.5082 0.761263 PA (36:1) C39H75O8P [M+Na]+ 725.5091 Metlin -1.24 

548.5403 0.720929 
Cer (36:1) C36H71NO3 [M+H-

H2O]+ 
548.5407 Metlin -0.73 

552.5069 0.719354       

551.5034 0.717812 
DG (32:0) C35H68O5 [M+H-

H2O]+ 
551.5039 Metlin -0.91 

553.5097 0.713048       

325.76852 0.700972       

530.5297 0.698111       

699.48376 0.696757 
PE-Cer 
(d34:1) 

C36H73N2O6P [M+K]+ 699.4838 Metlin -0.06 

580.5383 0.696229       

579.53467 0.692547       
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