
  

 

Comprehensive analyses of RNA-seq and genome-

wide data point to enrichment of neuronal cell type 

subsets in neuropsychiatric disorders 
 

Olislagers M1*, Rademaker K1, Adan RAH1,2,3, Lin BD1,4# & Luykx JJ1,4,5*# 

 

1
 Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center 

Utrecht 
2
 Institute of Neuroscience and Physiology, Sahlgrenska Academy 

3 Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of  

 Gothenburg 
4 Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht 
5
 Outpatient Second Opinion Clinic, GGNet Mental Health 

 

*To whom correspondence should be addressed. E-mail: j.luykx@umcutrecht.nl (Jurjen J. Luykx), 

mitchellolislagers@gmail.com (Mitchell Olislagers).  
# Shared supervision.  

 

Keywords: Cell type enrichment; GWAS; single-cell RNA sequencing; LDSC; MAGMA; DEPICT; FUMA

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.442982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442982
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1

Abstract  

Neurologic, psychiatric and substance use disorders share a range of symptoms, which could be the 

result of shared genetic background. Many genetic loci have been identified for these disorders 

using genome-wide association studies, but conclusive evidence about cell types wherein these loci 

are active is lacking. We aimed to uncover implicated brain cell types in neuropsychiatric traits and 

to assess consistency in results across RNA datasets and methods. We comprehensively employed 

cell-type enrichment methods by integrating single-cell transcriptomic data from mouse brain 

regions with an unprecedented dataset of 42 human genome-wide association study results of 

neuropsychiatric, substance use and behavioral brain-related traits (n=12,544,007). Single-cell 

transcriptomic datasets from the Karolinska Institute and the 10x Genomics dataset were used. Cell 

type enrichment was determined using Linkage Disequilibrium Score Regression, Multi-marker 

Analysis of GenoMic Annotation, and Data-driven Expression Prioritized Integration for Complex 

Traits. The largest degree of consistency across methods was found for implication of pyramidal cells 

in schizophrenia and cognitive performance. For other phenotypes, such as bipolar disorder, two 

methods implicated the same cell types, i.e. medium spiny neurons and pyramidal cells. For autism 

spectrum disorders and anorexia nervosa, no consistency in implicated cell types was observed 

across methods. We found no evidence for astrocytes being consistently implicated in 

neuropsychiatric traits. We provide comprehensive evidence for a subset of neuronal cell types 

being consistently implicated in several, but not all psychiatric disorders, while non-neuronal cell 

types seem less implicated.  
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Introduction 

It is well documented that several neuropsychiatric disorders, including substance use disorders 

(SUDs), share symptoms, which could be the result of shared genetic underpinnings
1,2

. Much of the 

heritability (h
2
) of genetically complex or polygenic brain disorders -e.g. schizophrenia (SCZ), 

Parkinson’s disease and alcohol use disorder- is due to common genetic variation3. In addition, 

genome-wide association studies (GWASs) have deepened the understanding of such disorders, 

unravelling thousands of associated loci4,5. However, elucidating disease mechanisms has remained 

challenging. One reason is missing heritability, meaning the gap between twin-based and SNP-based 

h2 estimates, which may result from limited statistical power, GWASs not probing associations with 

rare variants, epigenetics, genomic interactions, and structural genomic alterations
6
. Another reason 

is that over 90% of identified variants are located within non-coding regions of the genome, 

indicating that regulatory elements -e.g. promoters, enhancers and insulators- may explain part of 

the underlying genetic mechanisms in some polygenic disorders4,7. Due to extensive linkage 

disequilibrium (LD), it is also challenging to identify a causal variant within a given associated locus4.  

 

To overcome gaps between associated and causal genetic association, their functional effects and 

ultimately the biological pathways, extensive research has been performed to identify brain tissues 

having a role in neuropsychiatric disease. Functional genomic studies using macroscopic brain 

samples point to enrichment in phylogenetically conserved areas of the brain in psychiatric disorders 

and brain-related behavioral phenotypes, whereas enrichment in neurological disorders is typically 

found for fewer brain regions3. However, identification of specific cell types within brain tissues is 

considerably less well studied. Specific cell types that are associated with SCZ and anorexia nervosa 

(AN) have previously been identified by integrating GWAS findings with mouse single-cell RNA 

(scRNA) brain data: while medium spiny neurons (MSNs), cortical interneurons, hippocampal CA1 

pyramidal cells (pyramidal CA1), and pyramidal cells from the somatosensory cortex (pyramidal SS) 

seem implicated in SCZ8, suggestive findings were reported for enrichment of MSNs and pyramidal 

cells (CA1) in AN9. Recently, more extensive cell type enrichment analysis was performed for 28 

phenotypes using mouse gene expression from the entire central nervous system (CNS)10. In 

psychiatric disorders, enrichment was found for MSNs, cortical interneurons, striatal interneurons, 

neuroblasts, pyramidal cells (CA1), and pyramidal cells (SS)10. In neurological disorders, fewer cell 

types were identified and these were dissimilar across disorders
10

. These cell type enrichment 

analyses have mainly been performed using Linkage Disequilibrium Score Regression (LDSC) and/or 

Multi-marker Analysis of GenoMic Annotation (MAGMA). However, in this landmark and other 

studies, MAGMA versions <1.08 have been employed8-10, of which it was recently reported that its 

SNP-level P-value aggregation into gene-level P-values might result in type-I errors11. In addition, cell 

type enrichment in SUDs and several other disorders, such as anxiety disorders, has to the best of 

our knowledge not been studied. 

 

Here, we systemically investigated cell type enrichment in an extensive set of brain-related 

phenotypes by integrating mouse scRNA brain data from the Karolinska Institute (KI) and 10x 

Genomics with summary statistics from 42 phenotypes related to neuropsychiatry, SUDs, and brain-

related behavior. Our goals were to perform cell type enrichment for a more comprehensive set of 

brain-related traits than previously studied and to assess consistency in results across a wider array 

of methods. We went beyond previous studies by systematically performing cell type enrichment 

analyses using the most recent releases of different methods that rely on different assumptions and 
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algorithms, i.e. LDSC, MAGMA v1.08, Data-driven Expression Prioritized Integration for Complex 

Traits (DEPICT) and Functional Mapping and Annotation (FUMA). We found evidence for a subset of 

neuronal cell types being consistently implicated in several, but not all psychiatric disorders, while 

non-neuronal cell types seem less implicated.  
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Methods 

GWAS summary statistics 

Our goals were to identify salient cell types that are implicated in more brain-related traits than 

previously studied and to assess consistency in results across methods. Brain-related GWAS 

summary statistics from predominantly European samples were obtained from publicly available 

sources. A total of 41 summary statistics from brain-related phenotypes (Table 1, Table S1) were 

obtained, among which 11 psychiatric disorders (486,142 cases and 1,002,695 controls), 11 

neurological disorders (186,171 cases and 2,278,970 controls), and 8 substance use disorders 

(case/control: 11,569 cases and 34,999; cohorts with continuous substance use data: n=3,683,037). 

All psychiatric and neurologic disorders for which summary statistics were available had also been 

included in the Brainstorm project3. Substance use disorders were added because of the high 

comorbidity
12,13

 and genetic covariance
14

 with psychiatric traits. Eleven well-powered (N>250,000) 

brain-related behavioral/quantitative phenotypes (n=4,166,895) were additionally selected. Because 

of the association between BMI and brain structure, we considered BMI a brain-related trait15. 

Finally, to discriminate cell types that were specific to the brain, height (n=693,529) was included as 

a non-brain-related anthropomorphic trait.  

 

Table 1. Phenotype descriptions 

 Phenotype Cases Controls Total 

number of 

participant

s 

Source Ancestry 

Psychiatric 

disorders 

Attention-

deficit/hyperactivity 

disorder (ADHD) 

19,099 34,194 53,293 PGC European 

Anorexia nervosa (AN) 16,992 55,525 72,517 PGC European 

Anxiety disorders 7,016 14,745 21,761 ANGST European 

Autism spectrum 

disorder (ASD) 

18,382 27,969 46,351 PGC European 

Bipolar disorder (BIP) 20,352 31,358 51,710 PGC European 

Cross disorders 162,151** 

 

276,846**  438,997** PGC European 

Major depressive 

disorder (MDD) 

170,756  329,443  500,199 PGC European 

Obsessive-compulsive 

disorder (OCD) 

2,688 7,037 9,725 PGC European 

Post-traumatic stress 

disorder 

23,212 151,447 174,659 PGC European 

Schizophrenia (SCZ) 40,675 64,643 105,318 PGC European 

Tourette syndrome 4,819 9,488 14,307 PGC European 

Substance 

use 

disorders 

Alcohol use N/A N/A 121,604 PGC European 

Alcohol dependence 11,569 34,999 46,568 PGC European 

Drinks per week N/A N/A 941,280 GSCAN European 

Cannabis use N/A N/A 162,082  PGC European 
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Age smoking initiation N/A N/A 341,427 GSCAN European 

Ever smoked regularly N/A N/A 1,232,091 GSCAN European 

Cigarettes per day N/A N/A 337,334 GSCAN European 

Smoking cessation N/A N/A 547,219 GSCAN European 

Neurological 

disorders 

Amyotrophic lateral 

sclerosis 

20,806 59,804 80,610 AVS European 

Alzheimer's disease 71,880 383,378 455,258 PGC European 

Epilepsy 15,212 29,677 44,889 ILAE Multi-

ancestry 

Generalized epilepsy 3,769* 29,677* 33,446* ILAE Multi-

ancestry 

Focal epilepsy 9,671* 29,677* 39,348* ILAE Multi-

ancestry 

Stroke 40,585 406,111 446,696 MEGASTROKE European 

Ischemic stroke 34,217* 406,111* 440,328* MEGASTROKE European 

Large artery stroke 4,373* 406,111* 410,484* MEGASTROKE European 

Cardioembolic stroke 7,193* 406,111* 413,304* MEGASTROKE European 

Small vessel stroke 5,386* 406,111* 411,497* MEGASTROKE European 

Parkinson’s disease 37,688 1,400,000 1,437,688 IPDGC-

PDWBS-SGPD 

European 

Behavioral/q

uantitative 

Body mass index (BMI) N/A N/A 681,275 GIANT European 

Chronotype N/A N/A 449,734 SDKP European 

Excessive daytime 

sleepiness 

N/A N/A 452,071 SDKP European 

Sleep duration N/A N/A 446,118 SDKP European 

Short sleep duration 106,192* 

 

305,742* 411,934* SDKP European 

Long sleep duration 34,184* 

 

305,742* 339,926* SDKP European 

Insomnia N/A N/A 453,379 SDKP European 

Intelligence N/A N/A 269,867 CTGLAB European 

Educational 

attainment 

N/A N/A 766,345 

 

SSGAC European 

Cognitive performance N/A N/A 257,828 SSGAC European 

Neuroticism N/A N/A 390,278  CTGLAB European 

Non-brain-

related 

control 

Height N/A N/A 693,529 GIANT European 

Total  683,882 3,316,664 12,544,007   

Detailed descriptions, including references, are listed in Table S1. 

*Sample count of a phenotype that is part of larger group. 

**May include sample overlap with AN, ADHD, ASD, BIP, MDD, OCD, SCZ and Tourette syndrome. 

Abbreviations: PGC, Psychiatric Genomics Consortium; ANGST, Anxiety Neuro Genetics STudy, GSCAN; GWAS and 

Sequencing Consortium of Alcohol and Nicotine use, AVS; ALS Variant Server, ILAE; International League Against Epilepsy, 

IPDGC; International Parkinson’s Disease Genomics Consortium, SGPD; Systems genomics of Parkinson’s disease 
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consortium, PDWBS; Parkinson’s disease web based study, SDKP; Sleep Disorder Knowledge Portal, CTGLAB; Complex Traits 

Genetics Lab, SSGAC; Social Science Genetic Association Consortium. 

 

Single cell RNA sequencing datasets 

All cell type enrichment analyses were conducted using the KI dataset
8,16-18

 and the 10x Genomics 

dataset
19

. These datasets were selected because they cover brain regions that are generally 

accepted to be involved in the pathogenesis of brain-related disorders20. Additionally, their high 

coverage may enable the identification of different cell types. Detailed information about the 10x 

Genomics dataset, regarding quality control, necessity of a randomized representative subset of cells 

and cell type identification are reported in the Supplementary Methods.  

 

Overview of cell type enrichment analyses 

To identify cell types underlying various phenotypes, we employed four methods (Figure 1). LDSC 

was first used to estimate SNP-h
2
 and bivariate genetic correlations across all traits. Then, LDSC

21
 

was used to test whether the 10% most cell type-specific genes, based on the specificity metric Sg,c 

described above, were enriched in h2. MAGMA (version 1.08)8,22 was used to identify whether gene-

level association of summary statistics either linearly increased with cell type expression specificity 

or whether the top 10% specific gene-level association of the summary statistics were associated 

with cell type expression specificity. DEPICT was used to identify genes from associated GWAS loci 

that were significantly enriched in certain cell types. By comparing cell type enrichment results of 

LDSC, DEPICT and MAGMA, we evaluated the relative stringency of each method. Finally, external 

scRNA datasets were used to conduct additional cell type enrichment analyses, using FUMA. To 

allow comparison of all enrichment methods, we compared the P-values that refer to the strength of 

association of a given cell type with a given phenotype, as not all methods provide an enrichment 

score. KI level 1, KI level 2 and 10x Genomics cell types were identified as significant after passing a 

Bonferroni corrected significance level of P<0.05/(24*42), P<0.05/(149*42) and P<0.05/(16*42), 

respectively. We then counted the number of methods pointing to significant enrichment of specific 

cell types and report that number for both KI levels and 10x Genomics as our main outcome 

measure. Phenotypes implicating similar cell types were then identified by hierarchal clustering. We 

discuss these methods more elaborately below.  
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Figure 1. Overview of the approach of dataset integration as inputs for enrichment methods, in 

order to detect implicated brain cell types for various phenotypes. 

Two mouse brain transcriptomic datasets (10x Genomics, KI) have the data format Sg,c of cell-type specificity 

for genes, which was calculated by dividing expression of gene G in cell type C by expression of G in all cell 

types of a given dataset. Custom cell type identification was performed for 10x Genomics (16 detected cell 

types), while existing annotation was re-used for KI (first level of 24 cell types and second level of 149 cell (sub-

)types). The datasets were integrated with genome-wide association study (GWAS) data, and these were the 

input for cell type enrichment methods DEPICT, MAGMA and LDSC. External human and mouse brain 

transcriptomics data were used in cell type enrichment method FUMA, so that enriched cell types from any of 

the other three methods could be compared to FUMA-enriched cell types. Finally, LDSC was also used to 

estimate SNP-based heritability for each GWAS phenotype and to calculate genetic correlations across all 

phenotypes. 
 
Cell type enrichment using LDSC 

Human orthologs were obtained using the One2One R package that is incorporated in the 

MAGMA_Celltyping R package
8
. SNPs were annotated to the human genome (hg19, version 33) of 

the GENCODE project23. Binary annotations files were created for each chromosome, containing 11 

sub-annotations. In the first sub-annotation, SNPs that mapped to genes without a human ortholog 

were coded as 1. The other 10 sub-annotations represented the SNPs in specificity deciles for a 

particular cell type in increasing order (1 = SNP belongs to a sub-annotation). These specificity 

deciles were obtained by restructuring the specificity metric Sg,c, described in the Methods (“Single 

cell RNA sequencing dataset quality control and preparation”) using the ‘prepare.quantile.groups’ 

function in the MAGMA_Celltyping package8. LD scores were then calculated for each annotation file 

using a 1 centimorgan (cM) window, 1000 Genomes Project Phase 3 files24 and restricted to 
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1,217,311 Hapmap3 SNPs. For each summary statistics dataset, we generated munged summary 

statistics by applying previously described quality control steps25 (Supplementary Methods), 

implemented in the LDSC ‘munge_sumstats.py’ script. Finally, SNP-h2 was partitioned, using the 

munged summary statistics, 1000 Genomes Project Phase 3 MAF files and both the 1000 Genomes 

Project phase 3 baseline model and all sub-annotations as independent variables. For the regression 

weights, we used the LD weights calculated for HapMap3 SNPs, excluding the MHC region (chr6: 25-

34 Mb) using the ‘overlap-annot’ to account for SNPs grouped into multiple deciles. In addition to 

the settings described above, we performed sensitivity analyses, including removing the HapMap3 

SNPs restriction, using only SNPs that pass a genome-wide significance threshold, changing the 

software version and changing the reference genome version to determine differences in KI-derived 

cell type enrichment results in SCZ. To allow comparison of all enrichment methods, cell type 

enrichment figures show the P-value associated with the most specific decile for each cell type as 

not all methods provide an enrichment score.  

 

Cell type enrichment using MAGMA 

MAGMA
8
 version 1.08 was used to identify whether gene-level association of summary statistics 

linearly increased with cell type expression specificity or whether the top 10% specific gene-level 

association of the summary statistics were associated with cell type expression specificity. The 

analysis was restricted to Hapmap3 SNPs and the MHC region was excluded. The KI and 10x 

Genomics specificity metric Sg,c were transformed into 41 bins using the ‘prepare.quantile.groups’ 

from the MAGMA_Celltyping R package. Mouse genes were then mapped to human orthologs. A 

10kb upstream and 1.5kb downstream window was used to include SNPs surrounding GWAS hits to 

compute single gene-level P-values. The association tests were performed with the 

‘calculate_celltype_associations’ function in linear and top 10% mode. The top 10% mode is more 

specific as it only takes into account the top 10% most specific gene-level P-values, whereas the 

linear mode provides more power by taking into account gene-level P-values in all binned fractions 

in a linear regression model. As a sensitivity analysis, MAGMA was also run unrestricted to HapMap3 

SNPs and including the MHC region to determine their effects on cell type enrichment results for SCZ 

using both the KI and 10x Genomics dataset. The analyses were additionally performed in MAGMA 

(version 1.07b) to detect the implications of the recently corrected statistical foundation in the ‘snp-

wise mean model’ of version 1.07b that is used to aggregate SNP-level P-values into a gene-level test 

statistic11. 

 

Cell type enrichment using DEPICT 

DEPICT26 (version 1, release 194) was used to identify cell types wherein genes from associated loci 

were significantly enriched using the specificity metric Sg,c. Only SNPs that passed a significance 

threshold (P<1x10
-5

) were included in the analysis. As DEPICT does not allow more than 1,000 

associated SNPs to be included in the analysis, a stricter significance threshold was applied for body 

mass index (BMI) (P<5x10-8), educational attainment (P<5x10-8) and height (P<1x10-15) to reduce the 

number of associated SNPs that pass the significance threshold. Default parameters were used for 

the remaining settings. To evaluate the effect of restricting to HapMap3 SNPs on KI-derived cell type 

enrichment, DEPICT was run both restricted and unrestricted to HapMap3 SNPs for SCZ as a 

sensitivity analysis. Additionally, the MHC region was excluded.  
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Additional cell type enrichment analyses using additional mouse and human scRNA datasets 

To confirm our cell type enrichment findings and to investigate whether these findings could be 

replicated using human data, additional cell type specificity analyses were performed using 

FUMA27,28 (version 1.3.6a), which applies MAGMA (version 1.08) to test for positive relationships 

between cell type expression specificity of various external mouse (n=11) and human (n=7) scRNA 

datasets (Table S2) and associated SNPs that are aggregated to a gene-level P-value. The scRNA 

datasets originate from various regions of the brain, such as cortices (cerebral, frontal, 

somatosensory), basal ganglia (striatum, substantia nigra, globus pallidus), hippocampus, cerebellum 

and hindbrain. SNPs that passed the genome-wide significance threshold (P<5x10-8) were included in 

the analyses. Because no SNPs were independently associated with obsessive-compulsive disorder 

(OCD) and small vessel stroke, a lenient significance threshold (P<1x10-5) was applied for OCD and 

small vessel stroke. Conditional pair-wise analyses were applied both per dataset and across 

datasets to identify independently associated cell types.  
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Results  

Cell type-specific gene expression in the 10x Genomics dataset 

In the quality control of a randomized representative subset (n=108,844) of the 10x Genomics 

dataset, 8,408 cells and 6,419 non-expressed genes were removed from further analyses (Figure S1-

S3). Altogether, the subset consisted of a matrix with 21,579 genes and 100,436 cells with 16 cell 

clusters (Table S3-S4). All cell clusters were subsequently mapped to biological brain cell types by 

specifically expressed marker genes (Figure S4).  

 

LDSC, MAGMA and DEPICT sensitivity analyses and quality control 

For cell type enrichment analyses using LDSC, we initially adopted the same parameters that were 

previously described
8
. Additionally, to optimize the cell type enrichment pipeline we tested various 

settings (Figure S5, Table S5). The parameters described in the methods section ‘LDSC to target cell 

types’ provided cell type enrichment results that were most consistent with DEPICT and MAGMA. 

For MAGMA, we found that restricting to HapMap3 SNPs and excluding the MHC region increased 

statistical power to identify associated cell types, whilst not inflating cell types that were not 

associated (Figure S6, Table S6). In addition to MAGMA version 1.08, we also performed cell type 

enrichment analyses using MAGMA version 1.07b (Table S7). We found that, although cell type 

associations follow similar patterns using both versions, the updated SNP-wise mean gene analysis 

model exerts effects on cell type enrichment results, resulting in differently associated cell types 

(Figure S7). However, no consistent unidirectional differences in cell type enrichment results were 

observed. Finally, for DEPICT, we found that not restricting to HapMap3 SNPS increased statistical 

power to identify associated cell types, without an upwards bias for non-associated cell types (Figure 

S8, Table S8). 
 
Cell type enrichment analyses using the 10x Genomics dataset 

Consistent with SNP-h2 estimate patterns (Table S9, Figure S9-10, Supplementary Methods, 

Supplementary Results) and genetic correlations (Table S10, Figure S11-12, Supplementary Methods, 

Supplementary Results), we found that cell type association patterns of neurological disorders were 

distinct from psychiatric, substance use and behavioral association patterns by hierarchal clustering 

(Figure S13-15). For brain-related phenotypes, no cell types in the 10x Genomics dataset were 

identified to which implicated genomic loci consistently mapped using all three methods (Figure S13-

S15, Table S11). By comparing LDSC, MAGMA and DEPICT, we found that MAGMA (linear) was too 

lenient (Figure S16) and susceptible to bias due to sample size (Figure S17). Therefore, MAGMA 

(linear) was excluded from our analyses.  

Two methods provided evidence of neurons as group to be implicated in cross-disorders (8 

psychiatric disorders jointly studied)5. Neurons as a group were, according to two methods, also 

associated with educational attainment, along with certain interneurons. Additionally, neurons as 

group were associated with intelligence. We also found evidence by two methods that implicated 

genomic loci of cognitive performance specifically mapped to certain neuroblasts. Suggestive 

findings are reported in the Supplementary Methods. 
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Cell type enrichment analyses using the KI dataset 

After integrating GWAS findings with the 10x Genomics dataset, the analyses were expanded by 

using the KI dataset, which includes more cell types and thereby improves the resolution of the 

analysis (Figure 2 & 3, Figure S18-S19, Table S12). The largest degree of consistency across methods 

in brain-related traits was found for SCZ and cognitive performance (Figure 2 & 3). Genetic loci that 

are associated with SCZ consistently mapped to excitatory pyramidal cells (CA1) and pyramidal cells 

(SS), while those associated with cognitive performance only mapped to pyramidal cells (SS). For 

SCZ, we found evidence by two methods that MSN were the main implicated inhibitory neurons. 

MSNs and both types of pyramidal cells were found to be associated with cross-disorders by two 

methods, while only pyramidal cells were associated with educational attainment and MSNs and 

pyramidal cells (CA1) were implicated in BIP. Suggestive findings are reported in the Supplementary 

Methods. 
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Figure 2. Cell type enrichment estimated by DEPICT, LDSC and MAGMA (top 10% mode) in selected 

brain-related phenotypes. 

Cell type enrichment results are generated using KI data. Bars represent the mean strength of association (-

log10(P)) of LDSC, DEPICT and MAGMA (top 10%). The red line indicates the Bonferroni threshold 

P<0.05/(24*42). The red line is solid if any of the methods identified any cell type as significantly associated, 

and if none of the methods identified any of the cell types as significantly associated, the red line is dashed. A 

complete overview of cell type enrichment results using KI data, including MAGMA (linear) is available in the 

supplementary information (Figure S18). 
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To identify cell types on a deeper cellular level, the analysis was further expanded by using the KI 

level 2 dataset (Figure S20-S22, Table S13), which includes 149 cell types that were subtypes of the 

cell types identified in the level 1 dataset. We were able to identify subgroups of the KI level 1 cell 

types, allowing the identification of specific gene-expressing cell types (Figure S20-S22, Table S13). 

Using both the KI level 1 and level 2 datasets, we again found that MAGMA (linear) was relatively 

lenient (Figure S23-S24) and prone to inflated results due to sample size (Figure S25). 

 

Figure 3. Overview of enriched cell types of 42 common-variant psychiatric, neurologic and 

behavioral/quantitative GWAS results in the KI dataset. 

Abbreviations: ADHD; attention deficit hyperactivity disorder, ALS; amyotrophic lateral sclerosis, BMI; body 

mass index. 

Analyses from LDSC, DEPICT and MAGMA (top 10% mode), referred to as ‘methods’ in the graph, show 

enrichment in MSNs and pyramidal cells (CA1) and pyramidal cells (SS) across brain-related phenotypes. The 

largest degree of consistency was found in SCZ and cognitive performance. Phenotypes and cell types are 

grouped by hierarchal clustering Shades of pink are proportional to the mean strength of association (-

log10(P)) of all methods. The color of the frames refers to the number of methods that identified a given cell 

type as significant in a given phenotype, after Bonferroni correction (P<0.05/(24*42)). Grey frames: one 

method (intelligence, excessive daytime sleepiness, ADHD, drinks per week, ever smoked, chronotype, overall 

sleep duration, short sleep duration, MDD). Black frames: two methods (cross-disorders, educational 

attainment, BIP). Red frames: all three methods (human height, cognitive performance, SCZ). 
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Cell type enrichment analyses using additional scRNA datasets 

Finally, we performed additional analyses with FUMA using additional mouse (n=11) and human 

(n=7) gene expression datasets to compare our findings and to assess consistency between rodent 

and human data. Using mouse and human gene expression datasets, we were able to identify at 

least one implicated cell type in 22 phenotypes (Figure S26, Table S14). Using human gene 

expression data, 24 cell types were enriched in at least one phenotype, while those were 70 cell 

types using mouse scRNA data. Consistent with findings from 10x Genomics and KI datasets, 

pyramidal cells from various mouse brain regions, among which pyramidal cells (CA1) and pyramidal 

cells (SS), were implicated in SCZ and cognitive performance. Pyramidal cells were also enriched in 

numerous psychiatric disorders, SUDs and behavioral/quantitative phenotypes. Along with 

pyramidal cells, inhibitory GABAergic and MSNs were consistently enriched in psychiatric disorders, 

SUDs and behavioral/quantitative phenotypes. Using human datasets, enrichment of pyramidal cells 

(CA1) was replicated in SCZ, cognitive performance, intelligence, cross-disorders, and overall sleep 

duration. Additionally, pyramidal cells (CA1) were enriched in cigarettes per day. However, the 

strongest consistent evidence was found for enrichment of GABAergic neurons from the prefrontal 

cortex and midbrain in various psychiatric disorders, SUDs and behavioral/quantitative phenotypes. 

Consistent with findings using 10x Genomics and KI data, fewer enriched cell types in neurological 

disorders were identified, with exclusively enriched human microglia in Alzheimer’s disease and 

human inhibitory GABAergic neurons from the prefrontal cortex and midbrain in generalized 

epilepsy. Generalized epilepsy was the only neurological phenotype in which implicated mouse cell 

types were identified, namely certain pyramidal neurons and certain inhibitory neurons. We thus 

largely replicated the main cell type enrichment findings from the 10x Genomics and KI dataset in 

mouse datasets and in human datasets using FUMA. 
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Discussion  

Here, we provide a comprehensive overview of specific brain cell types implicated in a range of 

brain-related phenotypes using both mouse and human brain scRNA data. We show that results 

from brain-related GWAS data consistently map to excitatory pyramidal neurons (CA1), pyramidal 

neurons (SS) and inhibitory MSNs and less so to glial and embryonic cells. The largest degree of 

consistency across methods and tissue origins (rodent and human) was found for implication of 

pyramidal cells in schizophrenia and cognitive performance. 

 
Our SNP-h

2
 and genetic correlation findings confirm that neurological disorders are genetically 

distinct from one another and from psychiatric and SUDs, as well as from behavioral/quantitative 

phenotypes, which is in line with previous evidence3,10. Consistent with these findings, we found that 

GWAS findings from psychiatric disorders, SUDs and brain-related behavioral/quantitative 

phenotypes, but not neurological disorders, consistently map to excitatory hippocampal pyramidal 

neurons (CA1), excitatory pyramidal neurons (SS) and inhibitory MSNs and much less to glial and 

embryonic cells. Alzheimer’s disease was the only malady targeted here that showed evidence of 

exclusively human glial cells being implicated, underscoring the importance of key transcriptomic 

differences between human and mouse microglial signatures
29

. We replicated our main findings with 

multiple external scRNA datasets using FUMA. This provides further evidence that genetic 

underpinnings of neurological disorders are distinct from those of psychiatric, SUDs and 

behavioral/quantitative phenotypes8,10. Our main findings were based on the identification of cell 

types by LDSC, DEPICT and MAGMA top 10% mode. MAGMA linear mode was omitted because it 

was deemed too lenient and thus prone to type I error inflation. This concurs with previous studies 

reporting that binned MAGMA analyses in linear mode inflate results since the binned scores can 

have strong correlations with the average gene expression across cell types
28

. Also in agreement 

with previous lines of evidence, we confirm that the statistical foundation of the SNP-wise mean 

gene analysis model MAGMA <1.07 may result in biased associations of cell types11. 

 
One discrepancy between KI- and 10x Genomics-derived cell types was that neuroblasts were 

commonly enriched for psychiatric and behavioral phenotypes using the 10x Genomics dataset, 

while using the KI dataset, hippocampal and striatal neurons together with interneurons mapped to 

genomic results of the same phenotypes. This discrepancy could be a consequence of a lower 

sequencing depth in the 10x Genomics dataset (approximately 18,500 mapped reads per cell) than in 

the KI dataset (approximately 1.2 million mapped reads per cell). Notably, the minimum sequencing 

depth is generally considered to be between 25,000 and 50,000 mapped reads per cell30. This 

suggests that the relatively low sequencing depth of the 10x Genomics dataset led to overlapping 

cell clusters. Moreover, this could explain why KI-derived cell types were more specific. Additionally, 

although k-means clustering is commonly used for single cell data, selecting the right value of k is 

challenging30. PCA-based clustering methods would be particularly well-suited for low sequencing 

depth31, and for instance could be expanded to initially select significant principal components with 

PCA and use these for subsequent clustering32. 
 

Although we provide new insight with the largest and most comprehensive study of cell type 

enrichment in brain-related disorders, our results should be interpreted in light of inevitable 

limitations. First, we have employed methods that bin gene sets based on the specificity for a 

particular cell type. Using MAGMA, it is possible to test whether the genes specific to a phenotype 
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are enriched in genetic associations of that phenotype while controlling for genetic associations of 

another phenotype10. However, as our main goal was to identify enriched cell types, such 

conditional analyses are beyond the scope of this study. Second, gene expression data were 

obtained from adolescent mice. However, we found that microglia associated with age-induced 

neuroinflammation were exclusively found to be enriched in Alzheimer’s disease using human scRNA 

datasets, whereas no enriched glial cells were identified using mouse scRNA datasets. Therefore, 

mouse gene expression data from not only a spatial, but also a temporal resolution is warranted for 

future research to identify cell types implicated in disease during development. Additionally, 

improved coverage of brain-related regions, such as the entire CNS10, is warranted for future 

research.  

 

The identification of a specific subset of brain cell types being implicated in various brain disorders 

only marks the beginning of elucidating causal biological pathways. One question future research 

should address is what the effects of genetic variants in the noncoding genome are. One way to 

address this question is using an activity-by-contact model33. This model allows for the identification 

of cell type-specific enhancers and their target genes by leveraging single-cell chromatin accessibility 

and enhancer activity data. Additional insight could be obtained by performing cell prioritization 

analyses from human post-mortem brain samples and/or induced pluripotent stem cells from 

individuals with relevant genetic backgrounds using LDSC, MAGMA and DEPICT to identify genes that 

are predicted to be functionally similar to causal genes. Additionally, the recently developed 

computational toolkit CELLECT can provide additional insight in cell type enrichment
34

. CELLECT 

builds upon gene prioritization models, such as LDSC, DEPICT and MAGMA and subsequently 

performs cell type prioritization analyses using a continuous representation of cell type expression, 

rather than binary representation. Finally, statistical power is currently a major challenge in genetic 

studies. Future studies might benefit from multi-trait analysis of GWAS (MTAG)35, which is a method 

for analysis of multiple GWASs, thereby increasing the statistical power of each trait analyzed to 

identify genetic associations. 

 

In sum, by incorporating different tools that rely on different assumptions and algorithms we 

provide robust evidence for a subgroup of neuronal cell types consistently implicated in several 

brain-related phenotypes. We thus provide a framework that furthers the understanding of cell 

types involved in brain-related phenotypes at a cellular level that can serve as a basis for future, 

more hypothesis-driven research. 
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Data availability 

All scRNA datasets used in this study are publicly available. All summary statistics are publicly 

available and the sources are listed in Table S1. We have made our code publicly available at 

https://github.com/mitchellolislagers/cell_type_enrichment_pipeline so that with the advent of new 

GWASs researchers may readily apply our pipeline to new data. 
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