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Summary:  20 

Sequences of saccadic eye movements are instrumental in navigating our visual 21 

environment. While neural activity has been shown to ramp up to a threshold before single 22 

saccades, the neural underpinnings of multiple saccades is unknown. To understand the 23 

neural control of rapid saccade sequences, we recorded from the frontal eye field (FEF) of 24 

macaque monkeys while they performed a sequential saccade task. We show that concurrent 25 

planning of two saccade plans brings forth processing bottlenecks, specifically by decreasing 26 

the growth rate and increasing the threshold of saccade-related ramping activity. The rate 27 

disruption affected both saccade plans, and a computational model wherein activity related to 28 

the two saccade plans bilaterally and asymmetrically inhibited each other, predicted the 29 

behavioral and neural results observed experimentally. Borrowing from models in 30 

psychology, our results demonstrate a capacity-sharing mechanism of processing bottlenecks, 31 

wherein multiple saccade plans in a sequence, compete for the processing capacity by 32 

perturbation of the saccade-related ramping activity. Finally, we show that in contrast to 33 

movement related neurons, visual activity in FEF neurons is not affected by the presence of 34 

multiple saccade targets, indicating that for perceptually simple tasks, inhibition amongst 35 

movement-related neurons mainly instantiates capacity sharing. Taken together, we show 36 

how psychology-inspired models of capacity sharing can be mapped onto neural responses to 37 

understand the control of rapid saccade sequences.  38 

 39 
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Introduction:  42 

Saccadic eye movements shift the fovea from one point to another, serially sampling 43 

our visual surroundings, and aiding consequent behavior. Proper planning and execution of 44 

saccade sequences is essential for performing everyday tasks such as reading. Despite 45 

extensive research on the neural basis of planning individual saccades, the neural 46 

mechanisms underlying the sequencing of multiple saccades remain largely unknown. 47 

Previous research has shown that sequential saccades can be processed in parallel (Basu and 48 

Murthy, 2020; Becker and Jürgens, 1979; Bhutani et al., 2012; Bhutani et al., 2013; McPeek 49 

et al., 2003; McPeek and Keller, 2002; McPeek et al., 2000; Minken et al., 1993; Phillips and 50 

Segraves, 2010; Port and Wurtz, 2003; Ray et al., 2004; Sharika et al., 2008; Shen and Paré, 51 

2014; Tian et al., 2000; Wu et al., 2013). Sequential saccade studies have shown that as the 52 

temporal gap between the targets (TSD; target step delay) decreases, the latency of the 53 

response to the second stimulus increases markedly, as if the brain inherently cannot process 54 

two simple decisions at the same time (Pashler, 1994; Marois and Ivanoff, 2005; Ray et al., 55 

2012; Ray et al., 2004; Ruthruff et al., 2001). The bottlenecks associated with parallel 56 

programming of multiple saccade plans form the basis of this study. 57 

Various theoretical frameworks have been proposed to explain how closely spaced 58 

action plans interfere with each other. Single-channel bottleneck models propose that a 59 

central, decision-making stage constitutes the bottleneck, wherein the central stages of 60 

multiple plans can only proceed serially and cannot be ‘co-active’ (Pashler, 1994; Ruthruff et 61 

al., 2001; Welford, 1967; Welford, 1952). For a sequence of two saccades, the first plan is 62 

likely to reach the central stage first, and thus the saccade 2 plan must ‘wait’ till central 63 

processing of the first is over (Fig. 1A). In contrast, capacity-sharing models argue that the 64 

decision-making stages of both plans can proceed in parallel, albeit with differential rates. 65 

The concept of the brain’s ‘capacity’ corresponds to the brain’s general information 66 

processing capabilities (Broadbent, 1971; Gopher and Navon, 1980; Kahneman, 1973; 67 

McLeod, 1977), independent of task type. The capacity-sharing models predict that because 68 

of its temporal precedence, the first saccade plan will get the major share of the capacity and 69 

the second saccade plan will get a smaller fraction, thus delaying the onset of the second 70 

response (Fig. 1B; Navon and Miller, 2002; Tombu and Jolicœur, 2003).  71 

The neural mechanisms of processing bottlenecks in sequential saccade planning are 72 

not known. To investigate the neural architecture of saccade-related bottlenecks, we recorded 73 

neural activity from the frontal eye field (FEF) of macaque monkeys performing a sequential 74 
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saccade task. FEF is a good candidate region to study the neural imprints of processing 75 

bottlenecks since it is a higher-order control center for goal-directed saccadic planning 76 

(Sendhilnathan et al., 2021; Sendhilnathan et al., 2017, 2020). Further, the activity of FEF 77 

movement neurons follow the dynamics of accumulator models and resemble the central 78 

capacity-limited stage observed in computational models of dual-task studies (Hanes and 79 

Schall, 1996; Ray et al., 2012; Sigman and Dehaene, 2005). Finally, FEF movement neurons 80 

can encode two saccade plans in parallel (Basu and Murthy, 2020), and thus, any limitations 81 

arising during the concurrent programming of saccades may be found in the activity of 82 

movement-related neurons in the FEF. Our results show that FEF movement neurons 83 

constitute a bottleneck locus—the processing of saccadic sequences is slowed down by 84 

reducing the speed of activity growth or by increasing movement activation threshold. Such 85 

adjustments were observed for both the first and second saccade plans, indicating that a 86 

capacity-sharing mechanism might underlie temporal delays seen during the sequencing of 87 

multiple actions. 88 

 89 

Results: 90 

Two monkeys, a Macaca radiata (J) and a Macaca mulatta (G) performed a 91 

sequential saccade ‘FOLLOW’ task (Fig. S1; see methods), where the majority (70%) of the 92 

trials were ‘step trials’ in which they had to perform a rapid sequence of saccades to two 93 

targets in the order of their presentation. The remaining 30% of the trials were ‘no-step’ 94 

trials, wherein a single visual target was presented, and the monkeys had to make a single 95 

saccade to it. The two types of trials were randomly interleaved. The temporal gap (target 96 

step delay or TSD) between the first and second target onsets in step trials was randomly 97 

chosen among 17 ms, 83 ms, and 150 ms (Basu and Murthy, 2020). 98 

 99 

Behavioral evidence of processing bottlenecks during sequential saccades 100 

In the scheme of single-channel bottleneck models, the second plan shows the 101 

hallmark of processing bottlenecks: increase in latencies with decrease in TSD, whilst the 102 

saccade 1 latencies (RT1) stay unaffected (Fig 1C left). However, unlike the single-channel 103 

bottleneck model, where plan 1 may be assumed to get 100% of the capacity, the capacity-104 

sharing model predict that the latencies of the first saccade (RT1) will also increase as it only 105 

gets a part of the full available capacity (Fig 1C right).  106 
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To ensure that the behavioral data are matched to the neural data, we analyzed trials in 107 

which saccades were made into the response field (RF; see methods). That is, for RT1, the 108 

first saccade was made into the RF, and for RT2, the second saccade was made into the RF. 109 

Both RT1 and RT2 slowed down as the TSD decreased, indicating a capacity-sharing 110 

mechanism (Fig. 1D; RT1: Kruskal-Wallis, χ2 (2, 240) = 17.85, p < .001, η2 = 0.07; RT2: 111 

Kruskal-Wallis, χ2 (2, 233) = 158.37, p < .001, η2 = 0.67). While the effect on RT1 was 112 

typically much smaller than that on RT2, the increases in saccade latencies with decreasing 113 

TSD corroborated with previously well-established evidence of processing bottlenecks in 114 

concurrent action planning. Our behavioral data, thus, supports the presence of a capacity-115 

sharing bottleneck as opposed to the single-channel bottleneck as the first saccade plan does 116 

not stay unaffected. 117 

 118 

Movement-related activity during single saccades: 119 

Previous work has shown that the pattern of activity of FEF movement neurons are 120 

correlated with stochastic accumulation, which is widely used in computational models of 121 

saccadic reaction times (Boucher et al., 2007; Hanes and Schall, 1996; Ratcliff et al., 2007; 122 

Woodman et al., 2008) and are directly linked to saccade initiation times (Huerta et al., 1986; 123 

Langer and Kaneko, 1990; Segraves, 1992). Since reaction time lengthening is the main 124 

behavioral evidence of processing bottlenecks, movement neurons are well projected to carry 125 

neural correlates of the same. To confirm whether movement-related activity in FEF adheres 126 

to an accumulation-to-threshold model of reaction time, we first studied the no-step single-127 

saccade trials. We divided these trials into fast, medium, and slow reaction time groups and 128 

we measured the parameters of accumulator models from the movement activity (Fig. S2A). 129 

The reaction time grouping was obtained by partitioning reaction times in each session using 130 

the mean reaction time of that session (see methods). The main parameters of accumulator 131 

models, i.e., baseline, onset, growth rate, and threshold activity were measured for the three-132 

reaction time conditions (fast, medium, slow), for each neuron (Fig. S2C-F; see methods). 133 

Consistent with the earlier studies (Hanes and Schall, 1996), adjustments in the rate of growth 134 

of activity of the movement neuron population predicted reaction times in the no-step trials: 135 

across the movement neuron population, the slope of  the best fitting line for growth rate 136 

variation in the reaction time groups was significantly different from zero (Zrate = -4.27, p < 137 

.001; Fig. S2E). Further, the slopes for the growth rate were negative, indicating that fast 138 

reaction times were preceded by a steeper rate of growth of movement activity and vice 139 

versa. While the growth rate varied with reaction time, the threshold did not (Zthreshold = -0.98, 140 
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p = .323; Fig. S2F), corroborating with the established reaction time models of accumulation 141 

to a fixed threshold. The slope distributions of other accumulator measures like baseline, and 142 

onset, were not statistically significant from zero (Zbaseline = -2.04, p = 0.05; Zonset = 1.92, p = 143 

0.054).  144 

 145 

Processing bottlenecks underlie the representation of sequential saccades: 146 

Using a computational model, Sigman and Dehaene (2005) had shown that evidence 147 

accumulation, representing a central decision process, constituted a bottleneck in dual-tasks, 148 

while the perceptual stage and the execution stage did not. Based on the mapping between 149 

accumulator models and movement neuron dynamics, four possible hypotheses (Fig. S2A) 150 

can explain how the activity of FEF movement neurons coding for the second saccade might 151 

bring about the systematic increase of the latency of the second saccade (RT2) with decrease 152 

in TSD that characterizes processing bottlenecks. The lengthening of reaction time may be 153 

due to (1) lowering of the baseline firing rate with shorter TSDs (2) delaying of the onset of 154 

the activity related to the second saccade with shorter TSDs (3) reduced growth rate of the 155 

activity with shorter TSDs (4) and an increase of the saccade threshold firing rate with larger 156 

TSDs.  157 

Fig. 2 schematically shows the possible modulations of the accumulation process in 158 

the planning stage (P) and the corresponding movement neuron activity. The accumulation 159 

process is represented as a noisy integrator accumulating visual evidence till it reaches the 160 

threshold. In the single-channel bottleneck model, RT1 is unaffected, and thus the dynamics 161 

of the integrator and the corresponding neural activity will be unchanged across the three 162 

TSDs (Fig. 2A). For RT2, the single-channel bottleneck model posits a postponement of the 163 

central stage, thus the onset of the accumulating process and of the neural activity will get 164 

delayed as the overlap between the two saccade plans increases from long to short TSD (Fig. 165 

2B). According to the capacity-sharing model, the first and second saccade plans can proceed 166 

in parallel; thus, there is no ‘waiting period’ for the accumulation process of the second 167 

plan—the onset of neural activity will be similar across TSDs for both first and second 168 

saccade. However, since both motor plans share the limited processing capacity, the central 169 

stages of both plans will be lengthened. This may be brought about by a decrease in the rate 170 

of integration from long to short TSD, or an increase in the decision threshold. At the level of 171 

neural activity, the rate of ramping up of movement-related activity may slow down, or the 172 

threshold firing rate for saccade onset may increase to account for the increase in saccade 173 

latencies with decrease in TSD. Critically, the rate and/or threshold modulation will be 174 
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present for both saccade plans according to the capacity-sharing model, although the effect 175 

may be lesser for the first plan as the corresponding increase in RT1 is also less (Fig. 2C & 176 

Fig. 2D). While we have presented polarized scenarios for the two bottleneck models, it is 177 

possible that at the population level, there would a combination of the factors mentioned. 178 

To assess which of the above possibilities explain the increase in RT2, we analyzed 179 

the neural activity in trials where the second saccade was made into the RF (RFin trials; see 180 

methods) for all three TSDs (Fig. 3A; see Fig S3 for single neuron example). Across the 181 

population, the rate of neural activity growth slowed down from long to short TSD, and the 182 

activity ramped up to a higher firing rate threshold. We measured each of the four 183 

accumulator parameters: baseline, onset, rate, and threshold (averaged across trials of the 184 

same TSD) for the three TSD conditions, for each neuron (Fig. 3B; see methods) using linear 185 

regression. The slopes from all the movement neurons were compared using a Wilcoxon 186 

signed-rank test. Across the movement neuron population, the slopes of the rate and the 187 

threshold, as a function of TSD were significantly different from zero (Zrate = 4.27, p < .001; 188 

Zthreshold = -2.67, p < 0.01; Fig. 3B). Further, the slopes for the rate of activity growth were 189 

positive, indicating that the rate of activity grew faster at longer TSDs, where presumably the 190 

effect of processing bottlenecks was the least among the three TSD conditions. Threshold 191 

slopes were significantly negative, indicating that as the TSD increased, the threshold 192 

required for initiation of the second saccade was reduced at the population level. However, 193 

the slope distributions of other accumulator measures like baseline, and onset, were not 194 

statistically significant from zero (Zbaseline = -0.62, p = 0.53; Zonset = 0.86, p = 0.17). Thus, 195 

processing bottlenecks at the level of FEF movement neurons were characterized by 196 

multifaceted adjustments in the rate and threshold of the activity related to S2. 197 

 While the classical evidence of processing bottlenecks is indexed by the increase in 198 

RT2, RT1 may also be affected according to the capacity-sharing scheme of processing 199 

bottlenecks (Fig. 1B). We tested whether movement-related activity encoding first saccade 200 

remained unchanged as would be expected in the single-channel bottleneck scheme, or 201 

changed systematically, across TSDs as the capacity-sharing model predicted. To address this 202 

issue, we performed the same analyses as before but for the condition in which the first 203 

saccade was made into the RF (RFout trials; Fig 3C; see Fig S3 for single neuron example). 204 

At the population level, rate perturbation occurred with decrease in TSD in the first plan, 205 

mirroring the modulation observed for the second plan (Wilcoxon signed-rank test for slopes 206 

of rates, Zrate = 3.62, p < .001; Fig 3D). However, unlike the second plan, threshold activity 207 
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did not show a significantly decreasing relation with TSD (Zthreshold = 1.16, p = 0.25;). Slope 208 

distributions of other accumulator measures like baseline, and onset, were not statistically 209 

significant from zero (Zbaseline = 0.85, p = 0.39; Zonset = 1.04, p = 0.29; Fig 3D). Thus, rate 210 

perturbation constituted a major mechanism through which the ramping up of activity of FEF 211 

movement neurons was controlled during parallel planning of sequential saccades.  212 

 213 

State space dynamics and inhibitory control may enable capacity sharing during 214 

sequential saccade planning 215 

To gain deeper insights into neural mechanisms underlying capacity sharing, we 216 

studied the population dynamics underlying the trajectory of neural activity in FEF. First, we 217 

visualized this by performing a principal component analysis (PCA) separately for the 218 

population neural activity (for saccades into RF) aligned to target 1 and target 2 onsets for 219 

each of the three TSDs (Fig 4A). PCA is a commonly used unsupervised learning algorithm 220 

to extract the latent information from the data (see methods). This method allows us to look 221 

at the high dimensional FEF population neural activity in a much lower dimension that 222 

captures the maximum variance of the population. At least ~ 7-8 PCs were required to 223 

explain >99% of the variance for any of the six conditions (three TSDs, two plans; although 224 

there was a trend of fewer PCs explaining more variance as TSD increased). However, the 225 

top three PCs explain >90% variance. Therefore, we visualized a ‘state-space trajectory’ by 226 

plotting the top three PCs versus one another (Fig 4B). Each point on the trajectory indicates 227 

the neural state at each time point.  228 

If planning for the first and the second saccades are processed in parallel but compete 229 

for the same shared space due to limited capacity (according to the capacity sharing model), 230 

we should expect the neural trajectories to span different subspaces at shorter TSDs and span 231 

the same subspace at higher TSDs. That is, in the lowest possible TSD, we should expect the 232 

two subspaces to be completely orthogonal (no overlap) and as the TSD increases and 233 

approaches the reaction time of the first saccade, the subspaces can begin to overlap. 234 

Therefore, in our case with the lowest TSD being 17 ms, we should expect a low degree of 235 

overlap and at TSD = 150 ms (~RT1), we should expect a high degree of overlap. In contrast, 236 

the single-channel bottleneck hypothesis predicts that the subspaces corresponding to the 237 

planning of the first and the second saccades would completely overlap, since the plan 2 238 

would be completely dormant until plan 1 is completed.  239 
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We found that the neural trajectories significantly differed between the planning of  240 

the first and the second saccades for the shortest TSD but became more similar as the TSD 241 

increased (Fig 5D). We quantified the degree of overlap between the subspaces spanned by 242 

these neural trajectories (see methods). At the shortest TSD, the magnitude of overlap 243 

between the signals for planning of the first and the second saccades was 47% and this 244 

increased as the TSD increased from medium (84%) to long TSDs (92%; Fig 4C), aligned 245 

more with the predictions of the capacity sharing model. This result also held true for all 246 

saccade directions (Fig S4). We also confirmed that these differences were related to the 247 

TSDs and not to differences in saccade kinematics, which were similar across TSDs for the 248 

first and the second saccades (Fig S5). 249 

Next, we investigated the mechanism behind the differences in the neural subspace 250 

overlap among different TSDs. We performed two sets of simulations (see methods; S5A-F) 251 

using the accumulator framework (Fig S5H). For each of the two sets, we simulated 40 252 

neurons with 900 trials per neuron (with three types of TSD trials) using a firing rate model 253 

to approximately match the statistical power of our experimental dataset (see methods). We 254 

constructed an inhibition function such that the magnitude of the inhibition inversely varied 255 

with TSD (see methods; Fig S5G).  256 

In the first set of simulations, we introduced a unilateral inhibition (Fig 5A; see 257 

methods). Here, the activities for plan 2 were temporally shifted by plan 1 following the 258 

inhibition curve as a function of TSD. The resulting simulated neural activities (Fig 5B) 259 

resembled the predictions of a single-channel bottleneck model (Fig 2A-B). Very few (~3) 260 

PCs explained >99% of the variance. The state-space neural trajectories were not 261 

significantly different between planning of the first and the second saccades for any of the 262 

TSDs (Fig 5C) as the subspace overlap was 98% between any pair of plans (Fig 5D), as 263 

expected from the single-channel bottleneck model.  264 

In the next set of simulations, we introduced bilateral, asymmetric mutual inhibition 265 

(see methods; Fig 5E). That is plan 1 temporally shifted plan 2 just like before but plan 2 266 

reduced the magnitude of peak firing of plan 1. Hence the nature of inhibition is both bilateral 267 

and asymmetric. The simulations of this model (Fig 5F) resembled the neural data (Fig 3A, 268 

C) and the predictions of a capacity sharing bottleneck model (Fig 2C-D). Here, ~ 7-8 PCs 269 

were required to explain >99% of the variance for the shortest TSD and fewer (~5-6) PCs 270 

were required to explain >99% of the variance for the longest TSD. The neural trajectories 271 

significantly differed for short TSD but were similar for longer TSDs (Fig 5G) and the 272 

degree of subspace overlap between the two plans increased with TSD, consistent with the 273 
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structure present in the neural data (Fig 5H) resembling the experimental data (Fig 4C), as 274 

expected from the capacity sharing model.  275 

 276 

FEF visually-related neurons do not show processing bottlenecks 277 

Previous studies have reported a separation between the visual and motor processing 278 

of FEF neurons with only motor processing affecting reaction time in perceptually simple 279 

tasks (Sato et al., 2001; Thompson et al., 1997; Woodman et al., 2008). Thus, it is plausible 280 

that the responses of visual neurons are not gated by inhibitory bottlenecks. This notion was 281 

tested by analyzing target-related activity in purely visual (Fig 6A) and visuomovement 282 

neurons (Fig 6B).  283 

We analyzed the average target-related response in the 200 ms window following 284 

target onset for each neuron to identify signatures of processing bottlenecks. If target 285 

selection is capacity-limited, then presumably, neural responses encoding saccade targets 286 

appearing in close succession will be inhibited, either due to single-channel bottleneck (only 287 

second target response gets affected) or due to capacity sharing (both first and second target 288 

responses get affected). In contrast to movement-related activity, the average activity in the 289 

target-related period did not vary with TSD (Kruskalwallis: χ2 (2, 129) = 0.47, p = .79 (first 290 

saccade); χ2 (2, 124) = 0.06, p = .97 (S2)) for both saccade plans, suggesting that the visual 291 

processing stage is pre-bottleneck, at least of a perceptually simple task like the FOLLOW 292 

task. 293 

 294 

Discussion: 295 

In this study, we explored the limits of parallel processing involved in saccade 296 

sequences. Processing bottlenecks were found within FEF, the mechanisms being rate 297 

perturbation and threshold modulation in the movement neuron population. Additionally, we 298 

found evidence of processing bottlenecks for both motor plans for the first and the second 299 

saccades, suggesting that the associated bottleneck could be a consequence of capacity 300 

sharing between co-activated movement plans. The notion of such shared and limited 301 

processing was also revealed in the state space dynamics of FEF movement activity, which 302 

showed a potential role for inhibitory control that gated access of concurrent motor plans to a 303 

planning subspace. Our analysis of visual activity did not reflect any consistent modulation 304 
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that could be considered a significant bottleneck.  The major results are discussed and 305 

interpreted in the following sections. 306 

 307 

Processing bottlenecks in sequential saccade planning  308 

Processing bottlenecks and parallel programming represent functionally antithetical 309 

processes, and yet both are essential for optimal saccadic behavior. While parallel 310 

programming allows for rapid execution of a saccade sequence, processing bottlenecks are 311 

likely to arise to check unbridled parallel programming of motor plans, as failure to control it 312 

might lead to errors like averaged saccades or incorrect order of execution of a saccade 313 

sequence (Bhutani et al., 2012; Coëffé and O'regan, 1987; Findlay, 1982; Ray et al., 2012; 314 

Viviani and Swensson, 1982; Zambarbieri et al., 1987). In the context of the current study, 315 

we tested whether a single-channel bottleneck (Pashler, 1994) or a capacity-sharing 316 

bottleneck (Kahneman, 1973) best explained our reaction time data since behavioral evidence 317 

of both the models have been found in dual-task paradigms (Arnell and Duncan, 2002; Navon 318 

and Miller, 2002; Pashler, 1994). In our data, we found evidence of increase in both RT1 and 319 

RT2 with TSD, ruling out the single-channel bottleneck model being the exclusive 320 

framework underlying bottlenecks in sequential saccades. Our neural data also suggested a 321 

capacity-sharing mechanism of bottlenecks: the onset of saccade-related activity did not vary 322 

with TSD as predicted by the single-channel bottleneck hypothesis (see Fig. 2), and both 323 

saccade plans showed consistent activity modulations with TSD. A reduction in the rate of 324 

accumulation and an increase in the threshold activity level were seen for the second saccade 325 

plan. In contrast, only changes in the slope of the activity corresponding to the first saccade 326 

were observed, which may account for the more subtle changes in RT1. 327 

                                                                                328 

Inhibitory control underlying processing bottlenecks 329 

We tested whether mutually inhibitory accumulators encoding distinct saccade plans 330 

can mimic capacity sharing, wherein both the saccadic eye movements are executed with 331 

delays, especially for the second saccade. Modelling such a response required two important 332 

conditions: the first condition required that the inhibition be asymmetric, being greater for the 333 

first saccade plan than the second saccade plan, which manifest as greater capacity and faster 334 

information processing for the former compared to the latter. Such an asymmetry is a natural 335 

consequence of the temporal delay allowing for greater activity in the first saccade to inhibit 336 

the second saccade; the second condition required an inhibitory kernel that decreased with 337 

target step delay, such that inhibition from the first accumulator to be greater at shorter delays 338 
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despite being the level of activity in the accumulator being lesser compared to what it would 339 

be at larger target step delays. Such an inhibitory kernel is necessary to match the observed 340 

behavioral data of greater second saccade reaction times as well as the neural data which 341 

showed greater interference for the second saccade motor plans at the shorter TSDs. 342 

Interestingly, using a dynamical systems approach under the assumption of stationarity of 343 

noise across trials (Elsayed et al., 2016), this model of inhibitory control could be also shown 344 

to act as a “queuing” mechanism, in which non-orthogonal neural spaces can simultaneously 345 

allow parallel processing but yet temporarily slow the processing of the second saccade. We 346 

believe that the ability of such inhibition to reconfigure the neural space may reflect the 347 

nonlinear effects of inhibition on the pattern of activity representing accumulator activity that 348 

underlie the saccades. 349 

The simplest and most parsimonious explanation for the location of such a bottleneck 350 

is at the level of FEF via bilateral mutual inhibition (Ray et al., 2009) of competing motor 351 

plans developing in the FEF. This type of inhibitory gating can be brought about by 352 

inhibitory interneurons within the FEF (Markram et al., 2004; Somogyi, 1977). Although 353 

such a form of inhibition is intuitive and can be readily implemented within the proposed 354 

frameworks described for decision-making circuits (Bogacz et al., 2006; Ratcliff and Smith, 355 

2004), implementing an inhibitory kernel that decreases with increasing TSD cannot be easily 356 

implemented in a straightforward manner by mutually inhibitory accumulators. Furthermore, 357 

using an identical task, our previous work has shown that the basal ganglia is causally 358 

involved in the conversion of parallel movement plans into sequential behavior (Bhutani et 359 

al., 2013). Inactivation of the basal ganglia in monkeys with muscimol or impairment of the 360 

basal ganglia in Parkinson’s disease patients resulted in a significantly greater extent of 361 

saccadic errors that develop due to unchecked parallel programming leading to a ‘collision’ 362 

of saccade plans. The results of both these studies can be reconciled by the fact that FEF and 363 

basal ganglia share a closed connection through the cortico-BG-thalamo-cortical loop 364 

wherein the thalamus, a major relay center, receives projections from BG output nuclei, and 365 

in turn projects to multiple cortical regions, including the FEF, which are again routed to the 366 

input nuclei of basal ganglia (Alexander et al., 1986; Middleton and Strick, 2000; Parent and 367 

Hazrati, 1995a, b). Thus , the origin of the bottleneck could also be in the well-established 368 

inhibitory control circuitry of the basal ganglia (Hikosaka et al., 2000) and then re-routed to 369 

the FEF through the basal ganglia-thalamo-cortical loop (Goldman‐Rakic and Porrino, 1985), 370 

which then manifests it various adjustments of movement-related neuronal activity.  371 
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 372 

Neural representations of processing bottlenecks within FEF 373 

Our data show robust signatures of processing bottlenecks involving rate and 374 

threshold adjustments of FEF movement neurons contributing to the observed processing 375 

bottlenecks. Interestingly, similar adjustments of rate have been observed in FEF movement-376 

related neurons when monkeys slow their reaction times to improve their accuracy (Heitz and 377 

Schall, 2012), consistent with movement-related activity reflecting a developing motor plan 378 

that can be adjusted by strategic requirements of the task. However, in contrast to 379 

speed/accuracy adjustments, we did find systematic increases in threshold for the second 380 

saccade with shorter TSDs that together with decreases in accumulation rate, contribute to the 381 

lengthening of reaction times for the second saccade. Interestingly, similar changes in growth 382 

rate for both the first and second saccade, particularly at shorter TSDs, were also observed in 383 

our model of mutually inhibiting accumulators but without any changes in threshold (Fig 5), 384 

raising the possibility that these changes may involve additional processes such as 385 

adjustments in the excitability of superior colliculus neurons from the basal ganglia (Lo and 386 

Wang, 2006; Wurtz and Hikosaka, 1986) that were not modelled here. 387 

   In contrast to the movement neurons, the activity of visual neurons displayed little 388 

evidence of active inhibitory control, suggesting that they are ‘pre-bottleneck’. This is not 389 

surprising since many studies have reported a separation between the visual and motor 390 

processing of FEF neurons with only motor processing affecting reaction time in perceptually 391 

simple tasks, thus it is plausible that the responses of visual neurons are not gated by 392 

inhibitory bottlenecks for our task. However, it can be speculated that in a more perceptually 393 

challenging task, manifestations of processing bottlenecks would show up in the activity of 394 

visual responses as well. Thereby, it can be concluded that movement neurons, which are 395 

thought to be functionally downstream of visual neurons (Woodman et al., 2008), are 396 

subjected to a greater degree of inhibitory control, possibly due to its direct role in saccade 397 

initiation. A similar result was observed in the countermanding (Hanes et al., 1998) and 398 

redirect tasks (Murthy et al., 2009), where movement-related neurons showed the strongest 399 

evidence of inhibitory control that reflected the monkeys’ abilities to withhold or change 400 

saccade plans. Thus, movement-related activity would fall under the ‘post-/peri- bottleneck’ 401 

category while visually-related activity would be ‘pre-bottleneck’, at least for perceptually 402 

simple tasks.  403 

  404 
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METHODS: 677 

  678 
KEY RESOURCES TABLE 679 

REAGENT OR 
RESOURCE 

SOURCE IDENTIFIER 

Experimental models: Organisms/Strains  

Rhesus macaque (Macaca 
mulatta) 

 N/A 

Bonnet macaque (Macaca 
radiata) 

 N/A 

Software and Algorithms 

MATLAB Mathworks https://www.mathworks.com/products/matlab.html 
  

Blackrock Blackrock 
Microsytstems 

https://www.blackrockmicro.com/ 
  

ISCAN eye tracking 
system 

ISCAN http://iscaninc.com/ 
  

   

Others 

Tungsten microelectrode FHC https://www.fh-co.com/product/metal-
microelectrodes/ 

  

  680 
 681 
CONTACT FOR REAGENT AND RESOURCE SHARING 682 

Further information and requests for resources and reagents should be directed to and 683 
will be fulfilled by the Lead Contact, Debaleena Basu (basu.debaleena@gmail.com). 684 
  685 
 686 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 687 

The detailed methods pertaining to this dataset has been published in a previous study 688 
(Basu & Murthy 2020; Sendhilnathan et al., 2021). A brief overview is given below.  689 
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 690 

Experimental Animals 691 

Single-unit recordings were done from two adult monkeys (J, male Macaca radiata, 692 

and G, female Macaca mulatta). The animals were cared for in accordance with the animal 693 

ethics guidelines of the Committee for the Purpose of Control and Supervision of 694 

Experiments on Animals (CPCSEA), Government of India, and the Institutional Animal 695 

Ethics Committee (IAEC) of the Indian Institute of Science (IISc.).  696 

 697 

Surgical Procedures 698 

Each monkey underwent two surgeries: first, to implant a titanium headpost for the 699 

purpose of head-fixation during experiments, and second to make an MRI-guided craniotomy 700 

over the FEF and implant a recording chamber (Crist instruments, USA). Training or 701 

recording sessions were conducted only after the monkeys completed surgical recovery. 702 

 703 

METHOD DETAILS 704 

Behavioral tasks: 705 

 Monkeys were trained on two oculomotor tasks: the memory-guided (MG) saccade 706 

task and the FOLLOW saccade task. Trials in the MG task began with a red fixation point 707 

(0.6° × 0.6°) which was presented in the center of a screen. After a variable fixation period 708 

(~300 ms), a gray target stimulus (1° × 1°) was presented peripherally. Post-appearance, the 709 

target disappeared after 100 ms; however, the monkeys were required to fixate for a delay 710 

period of around 1000 ms. The fixation spot was extinguished after the delay period, 711 

following which the monkeys had to make a saccade to the remembered target location. 712 

Correct trials were reinforced with juice rewards. The delay period served to aid the 713 

classification of FEF neurons by isolating the stimulus-related (visual) and saccade-related 714 

(motor) epochs. 715 

 716 

The FOLLOW task (Fig S1) is a modified version of the double-step task (Becker and 717 

Jürgens, 1979; Westheimer, 1954; Wheeless et al., 1966), where single saccade no-step trials 718 

(30%) were randomly interleaved with sequential saccade step trials (70%). Trials started 719 

with fixation, following which a green saccade target (1° × 1°) was presented in one of the 720 
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six possible peripheral locations (eccentricity 12º). The fixation spot was removed at target 721 

onset. In no-step trials, the monkeys had to execute a single, correct saccade to the target. In 722 

step trials a red second target (1° × 1°) appeared after target 1, signaling the monkey to make 723 

ordered sequential saccades. Step trials comprised two targets, the first one being same as in 724 

the no-step trials. After a variable time delay (target step delay (TSD): 17 ms, 83 ms, or 150 725 

ms), a red target was displayed. Monkeys had to make an additional second saccade from 726 

target 1 to target 2 to get rewarded in step trials.  727 

 728 

Response field (RF) identification was done using the MG task. The RF center, and 729 

the two flanking positions were set as ‘RFin’ positions and the three diametrically opposite 730 

positions were considered ‘RFout’ positions. No-step targets and the first target of step trials 731 

could appear at any one of the six RFin and RFout locations. The second target in step trials 732 

was presented in any one of three positions diametrically opposite to the location of the first 733 

target. Based on this scheme, RFin trials refer to trials in which the second target or target 2 734 

was presented in the RF while target 1 was outside RF. RFout trials are those in which target 735 

1 was inside RF and target 2 was outside. Neural activity in RFin trials would mainly encode 736 

the second target or second saccade, while RFout trials would represent the first target or the 737 

saccade. 738 

 739 

Recording setup and procedures: 740 

The tasks were designed and displayed using TEMPO and VIDEOSYNC software 741 

(Reflective computing, St. Louis, MO, USA). A Sony Bravia LCD monitor (42 inches, 60 Hz 742 

refresh rate; 640 × 480 resolution) was used to show the task stimuli to the monkeys. An 743 

infrared eye tracker (ISCAN, Woburn, MA USA) was used to track the pupils throughout the 744 

recording session. 745 

Neural recordings were undertaken using tungsten microelectrodes (FHC, Bowdoin, 746 

ME, USA, impedance 2 - 4 MΩ). A Cerebus data acquisition system (Blackrock 747 

Microsystems, Salt Lake City, UT, USA), which was synchronized to the TEMPO software, 748 

was used to sample and store neuronal data at 30,000 Hz. In each recording session, the MG 749 

task was used to identify and classify FEF neurons. After RF and cell type was identified, the 750 

FOLLOW task was started. 751 

 752 

QUANTIFICATION AND STATISTICAL ANALYSIS 753 
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Data Analysis: 754 

 The collected neural data was sorted offline using the in-built spike-sorting tool of 755 

Cerebus system (Blackrock Microsystems). Saccades were detected from eye position data 756 

using a 30°/s velocity threshold. Analysis of the data was done using MATLAB (MathWorks, 757 

Natick, MA, USA). This study used only trials with correct responses, with at least eight 758 

trials per condition as the inclusion criteria. The final dataset for this study comprised 84 FEF 759 

neurons. A filter mimicking an excitatory post-synaptic potential (EPSP) was used to 760 

convolve spike data (Murthy et al., 2007).  761 

The classification of FEF neurons was done using the MG task. The delay period 762 

separated the visual epoch (90-180 ms after target onset) from the movement epoch (80 ms 763 

window preceding saccade onset). Visual neurons were identified if the activity was 764 

increased in the visual epoch compared to baseline (300-100 ms preceding target onset), 765 

movement neuron displayed higher activity in the movement epoch, and visuomovement 766 

neurons showed increased activity in both the epochs. A visuo-motor index (VMI) was used 767 

to validate the cell classification (Murthy et al., 2007).  768 
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 770 

With the range being from +1 to -1, visual neurons had positive VMIs, while 771 

movement neurons had negative VMIs. Visuomovement neurons yielded intermediate VMIs. 772 

Activity in the single saccade trials of the FOLLOW task was also taken in account for proper 773 

cell classification, as changing task contexts have been shown to influence neuronal activity 774 

profiles (Jagadisan and Gandhi, 2016). 775 

  776 

Accumulator parameters: 777 

Taking cue from accumulator models and previous studies (Woodman et al., 2008), 778 

four main parameters were calculated: (1) Baseline firing rate; (2) Onset of firing rate 779 

increase; (3) Threshold activity required for saccade initiation; (4) Rate of growth of activity 780 

from onset to threshold. These measures of accumulator dynamics were calculated separately 781 

for FOLLOW step trials in which the first saccade went into the RF (RFout) and those in 782 

which the second saccade was towards the RF (RFin). Since correct FOLLOW step trials 783 

always had a sequence of two saccades stepping from an RF-in position to an RF-out position 784 
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or vice versa, the activity in the RFin trials was a mix of RFout and RFin activities. To 785 

specifically analyze activity that contributed only to the second saccades made into the RF, 786 

the mean RF-out activity of no-step trials was used as a reference and subtracted from the 787 

mean activity in RFin step-trials. For single neurons, the parameter calculations were made 788 

from non-normalized, differential activity for RFin trials.  789 

For FOLLOW no-step trials, trials in which the saccade was into the response field 790 

were used for accumulator parameter calculation. Trials in each session were grouped into 791 

fast, medium, or slow reaction time trials based on the average reaction time of that session, 792 

i.e. trials with reaction time less than 30 ms below mean reaction time were considered as fast 793 

trials, those with reaction time more than 30 ms above mean reaction time were slow trials, 794 

and trials around the mean reaction time (± 10 ms) were medium reaction time trials. 795 

Accumulator parameters were then calculated for the three-reaction time groups. 796 

Baseline activity was measured as the average of the differential activity in the RFin 797 

condition in the 100 ms before the appearance of the first FOLLOW target. Onset was 798 

defined as the time point when FEF activity first exceeded 2 SDs above baseline, provided 799 

that the differential activity ultimately reached 4 SDs and was maintained above 2 SDs for at 800 

least 50 ms for the second saccade plan and 20 ms for the first saccade plan. Threshold 801 

activation was the average firing rate in the RF-in condition in the interval from 10 to 20 ms 802 

before saccade initiation (Hanes and Schall, 1996). Rate of activity growth was measured by 803 

subtracting the threshold-activity level from the onset-activity level and dividing by the time 804 

interval between onset and threshold. This measure was robust against fluctuations in the 805 

rise-profile. To better understand non-linear rise profiles, the rate was also measured by 806 

piecewise regression fits using a sliding window of width 40 ms (for RFin trials) from onset 807 

to threshold and calculating the slopes and intercepts at each point. For population analyses, 808 

difference SDFs of each session were normalized to the peak average activity in the TSD = 809 

17 ms group and for each saccade plan i.e. activity related to second saccade plan was 810 

normalized with respect to TSD 17 activity for second saccades going into the RF and vice 811 

versa for the first saccade plan. In the case of no-step trials, the SDFs were normalized to the 812 

peak activity of the fast trials in each session. 813 

 814 

Principal Components Analysis (PCA): 815 

For analyses based on dimensionality reduction, we performed two steps of data 816 

preprocessing before further analyses. First, we ‘soft normalized’ the neural responses (�) for 817 

each neuron, �, by dividing the neural activity for each neuron (��) by its range �|��| �818 
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 ��/�����
������ (Churchland et al., 2012). Soft normalization preserves the structure of 819 

inter-neuronal variation while normalizing the population response so that neurons with 820 

strong responses could be reduced to approximately unity range, but neurons with weak 821 

responses could be reduced to less than unity range. Second, we mean-centered the responses 822 

of each neuron by subtracting the mean activity of a given neuron across all conditions (���) 823 

from the neural response (|��| � ���). 824 

To identify the signals that best represent the population activity of neurons, we 825 

performed principal component analysis (PCA), a common unsupervised learning algorithm, 826 

on the data. To do this, we constructed two matrices P1 and P2 of size �   � where � is the 827 

time and n is the number of neurons with population response for the first and the second 828 

saccade plans, respectively. We applied PCA to P1 and P2 yielding W1 and W2 respectively, 829 

which are �   ! matrix each, of principal components.  830 

We used a metric to index the degree to which the population response occupied 831 

different neural dimensions on trials with different TSDs. To compute this ‘subspace overlap’ 832 

between the first and the second saccade plans for each TSD, we first defined the variance 833 

captured as ��", $� �  1 �  ��������
���

, where the operator ||X|| means the Frobenius norm of 834 

the matrix X. Then, the subspace overlap was given by: 
�	����

�	����


.  835 

Subspace overlap should be equal to one if the population responses occupied the 836 

same dimensions (i.e., are spanned by the same PCs) on both the saccade plans. And the 837 

subspace overlap should be equal to zero if the population responses occupied mutually 838 

orthogonal dimensions on both the saccade plans.   839 

 840 

Neural Simulations: 841 

         We simulated 40 motor neurons with 900 trials (with three types of TSD trials) using 842 

a firing rate model (Fig S5A) to approximately match the statistical power of our 843 

experimental dataset. We defined the spatial properties of each neuron (tuning curve) through 844 

a cosine function centered on one of the 8 positions which was randomly chosen and called it 845 

the neuron’s RF: 846 

�������'� � � cos�+' �  ,� 

  847 
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where � is the peak firing rate, + defines the width of the tuning curve, ' is a set of 8 target 848 

positions and , is the displacement (Fig S5B). We then defined the temporal properties of 849 

the neurons (Fig S5C) using a skewed Gaussian distribution response kernel: 850 

  851 

!
��
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√20  
�	���
�

�   1 1
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����

��

��

 2� 

      �  �
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���

��   31 � 
� 4��
√

56 852 

 853 

where � � 8000 controls the full width at half maximum of the distribution, 
��-� is the 854 

error function and 9 is the shape parameter that controls the shape of the distribution. To 855 

simulate a noisy accumulator (Fig S5H), we sampled 	 ~ ;�0, 40� and 9 ~ �856 

|;�0, 0.01�|. Note that similar results can be obtained using a response kernel resembling a 857 

Poisson post-synaptic potential function: 858 

 859 

!
��
�� �-� �  =1 � 
���� >   ?
���� @ 
 860 

where A� controls the rate of increase and A� controls the rate of decay.  861 

 862 

We further injected a small noise to the system by convolving the response kernel with 863 

Gaussian noise of B � 0 and C � 1. For each neuron, we multiplied the tuning curve and 864 

the convolved kernel to get the spatiotemporal firing rate for that neuron (Fig S5D). Saccade 865 

onsets were taken as the time when the normalized activity reached a fixed threshold of 1 866 

unit. 867 

 868 

For the simulated data with asymmetric bilateral inhibition, we followed the above 869 

steps (for both plans 1 and 2) until the activity for plan 1 reached y% of its peak response. 870 

This ‘y’ is given by an inhibition function (Fig S5G) which was constructed by dividing the 871 

neural response by the response in no-step trials. To simulate the inhibitory effect of plan 1 872 

on plan 2, we temporally shifted the response for plan 2, to until after the time of first saccade 873 

onset (���), after plan 1 reached y% of its peak response and then interpolated the data in 874 

between using a cubic spline function.  875 
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 876 

���� � D ����,                            if   � G H  ��� � ���� � H��,     if  � I ��� J 
 877 

where H �  ��� KL  maxK�����PP  878 

 879 

To simulate the effect of plan 2 on plan 1, we first normalized plan 2’s response from 880 

0 to 1, then multiplied it by the same inhibition factor, L and then subtracted it from plan 1’s 881 

response.  882 

����� �  ����� �  L Q ���� – minK����P
maxK����P � minK����PT  

 883 

Therefore, the nature of inhibition was asymmetric and, in this way, plans 1 and 2 884 

have the highest bilateral inhibition effect on each other for the shortest TSD and the least 885 

effect for the longest TSD. We estimated all the above hyper-parameters such that the 886 

simulated data closely resembled the experimental data.  887 

For the simulated data with unilateral inhibition, we followed the same steps as above 888 

with the exception of the last step. That is, we modeled the effect of plan 1 on plan 2 by 889 

temporally shifting the plan 2 as described above but we did not account for the effect of plan 890 

2 on plan 1.  891 

After simulating the data, we followed the same data pre-processing step before 892 

dimensionality reduction similar to the experimental data.  893 

  894 

Statistical testing: 895 

 A two-sided Wilcoxon signed-rank test to analyze a single sample set of data. For 896 

group comparisons, the non-parametric Kruskal-Wallis test was used. Trials were considered 897 

to be independent observations as the TSDs on each trial was chosen randomly.  All the 898 

results are presented as mean (± standard error of mean, SEM) and all tests are performed at a 899 

significance level of α = 0.05 unless otherwise mentioned. 900 

 901 

Data and code availability: 902 

All data is available in the main text or the supplementary materials. Raw data and codes are 903 
available upon reasonable request. 904 
  905 
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 924 

 925 
 926 

Figure 1. Behavioral predictions for processing bottlenecks during the planning of 927 
sequential saccades 928 

 929 
A. Single-channel bottleneck framework. Each task is made up of three stages. The visual stage (V) can be 930 
carried on in parallel with stages of another task, but the central planning stage, P, can only proceed singly. In a 931 
two-saccade sequence, the stages of the first saccade plan proceed to completion unabated leading to its 932 
execution (E). For the second plan however, if the second target closely follows the first (low TSD condition), 933 
the central planning stage, P2, is postponed till P1 is complete. Such a postponement does not occur in the long 934 
TSD condition, where the two saccade plans are well-separated, thereby leading to an increase of RT2 from long 935 
to short TSD. 936 
 937 
B. Capacity-sharing bottleneck framework. In this framework, the P stages of multiple plans can proceed in 938 
parallel and access the brain’s limited processing capacity simultaneously. In the low TSD condition, P1 and P2 939 
concurrently ‘share’ the capacity, resulting in slower progress of the saccade plans. This leads to lengthening of 940 
both RT1 and RT2 in the low TSD condition, the effect on RT2 being greater as the second saccade plan gets a 941 
smaller share of the central capacity. 942 
 943 
C. Predictions of reaction time vs TSD for single-channel bottleneck framework (left) and capacity-sharing 944 
bottleneck framework (right). RT2 increases with decrease in TSD for both frameworks, whereas RT1 increase 945 
is predicted only by the capacity-sharing model. 946 
 947 
D. Behavioral data for reaction time vs TSD. Data shows trials in which the first (for RT1) or second (for RT2) 948 
saccade was into the response field. Both reaction times increased significantly with decrease in TSD. 949 
 950 
 951 
 952 
 953 
 954 
 955 
 956 
 957 
 958 
 959 
 960 
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 961 
 962 
 963 

 964 
 965 
Figure 2. Neural activity predictions for processing bottlenecks during the planning of 966 

sequential saccades 967 
 968 
A. Hypothesized neural activity for saccade plan 1 in the single-channel bottleneck framework: Bottom: After 969 
the first visual target is presented (vertical broken line; T1), there is an initial visual processing stage (V1) which 970 
is often of constant duration for all plans. The planning stage (P1) for the first saccade is represented as a noisy 971 
integrator, accumulating activity till the motor threshold (horizontal solid line) is reached and the saccade is 972 
executed (E1). Top panel: The corresponding neural activity is shown as the ramping up of FEF movement 973 
neuron activity till saccade onset (S1). The activities corresponding to three different TSDs are shown in three 974 
different colors. 975 
 976 
B. Hypothesized neural activity for saccade plan 2 in the single-channel bottleneck framework. The onset of the 977 
accumulation process and the ramping up of the neural activity will shift later with decrease in TSD to account 978 
for RT2 elongation (same format as A; T2: onset of second target; V2: visual processing stage for target 2, P2: 979 
planning stage for saccade 2; E2: execution stage for plan 2; S2: onset of second saccade). 980 
 981 
C. Hypothesized neural activity for saccade plan 1 in the capacity-sharing bottleneck framework. The onsets of 982 
the integrators and the movement neuron activity do not change with TSD on account of parallel programming 983 
of the two saccade plans. Increase in saccade latencies at shorter TSDs maybe brought about by a decrease in 984 
the growth rate from long to short TSD. Same format as A. 985 
 986 
D. Hypothesized neural activity for saccade plan 2 in the capacity-sharing bottleneck framework. Same as C, 987 
with the addition of threshold modulation and a greater degree of rate adjustment with TSD to constitute the 988 
larger increase in RT2 from long to short TSD. Same format as A. 989 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 8, 2021. ; https://doi.org/10.1101/2020.12.04.411454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.411454


990 
Figure 3. Activity for FEF movement neurons during sequential saccades 991 

A. Top: Population activity of FEF movement neurons when the second saccade went into the response field, 992 
aligned on second target onset (T2).  Mean saccade onset times (S2) for the short, medium, and long TSD 993 
conditions are shown as vertical, colored lines with s.e.m error bars. Right: same as left but activity aligned to 994 
the second saccade onset. Shading indicates mean ± SEM. 995 
 996 
B. Population histogram of slopes of each measure of accumulator dynamics (baseline, onset, growth rate and 997 
threshold) as a function of TSD for FEF movement neurons. Asterisks denote cases where the distribution of 998 
movement neuron slopes was significantly different from zero (Wilcoxon signed-rank test, *** p < .001, ** p < 999 
.01). 1000 
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 1025 
 1026 

Figure 4: Extent of subspace sharing explains processing bottlenecks during the 1027 

planning of sequential saccades 1028 

 1029 
A.  Normalized mean population neural responses aligned to target 1 (T1) and target 2 (T2) for short, medium 1030 
and long TSD trials (n.u. = normalized unit); same as Fig 3A and 3C. 1031 
 1032 
B.  Cumulative percent variance explained by the first 10 PCs for target (T1) (black) and target 2 (T2) (color) 1033 
related responses for short (left), medium (center) and long (right) TSD trials. 1034 
 1035 
C.  Subspace overlap between a pair of conditions. S, M and L indicate short, medium and long TSDs, and 1 1036 
and 2 indicate the saccade plan number. 1037 
 1038 
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 1056 

Figure 5: Only simulations with bilateral, asymmetric inhibition capture the empirical 1057 
data’s population dynamics 1058 

A.     Schematic of the simulation with bilateral inhibition. Top row: simulated neural activity for the 1059 
first saccade plan and bottom row: simulated neural activity for the second saccade plan (see Fig 1060 
S6 and methods; n.u. = normalized unit). 1061 

B.     Normalized mean population neural responses, for data simulated with bilateral inhibition, 1062 
aligned to target 1 and target 2 for short, medium and long TSD trials. 1063 

C. First three PCs plotted against each other for target 1 (black) and target 2 (color) related responses 1064 
for short (left), medium (center) and long (right) TSD trials. Filled circle markers indicate the starts 1065 
of the respective trajectories. 1066 

D.     Subspace overlap between a pair of conditions. S, M and L indicate short, medium and long TSDs, 1067 
and 1 and 2 indicate the plan number. 1068 

E.  Same as A, but for simulation with unilateral inhibition (see methods). 1069 
F. Same as B, but for simulated data with unilateral inhibition. 1070 
G.     Same as C, but for simulated data with unilateral inhibition. 1071 
H.   Same as D, but for simulated data with unilateral inhibition. 1072 
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 1084 

Figure 6. Processing bottlenecks in FEF V and VM neurons 1085 

 1086 
A.   A representative FEF visual neuron aligned to target onset (T) and saccade onset (S) in a memory-1087 

guided task for saccades into the RF (yellow) and saccades out of RF (into aRF; black). 1088 
B.   A representative FEF vismov neuron aligned to target onset (T) and saccade onset (S) in a 1089 

memory-guided task for saccades into the RF (yellow) and saccades out of RF (into aRF; black). 1090 
C.   FEF visual and vismov neuron population activity encoding for different TSD conditions (short, 1091 

medium, long), aligned to target 2 onset. Mean saccade onset times for the TSD conditions are 1092 
shown as vertical colored lines with s.e.m error bars. Inset: Kruskal–Wallis box plots for average 1093 
activity in the visual epoch (gray shaded area) for the three TSDs. Shading indicates mean ± SEM. 1094 

D.   Same as C but for neural activity aligned to target 1. 1095 
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 1119 
Figure S1. Schematic of the FOLLOW task (related to Fig 1) 1120 

 1121 
A. A representative no-step trial. The trial starts with the appearance of a central fixation point (FP), followed by 1122 
the presentation of the green target (T1) at any one of the six possible peripheral locations. The monkey had to 1123 
make a single saccade (S1) to the target to get a juice reward. In the representative framework, the processes 1124 
leading to the culmination of a saccade are simplified to consist of three stages: visual encoding of stimuli(V), 1125 
central planning (P), and saccade execution (E). RT refers to the reaction time. 1126 
 1127 
B. A representative step trial. Similar to no-step trials, a step trial started with central fixation, after which a 1128 
green target (T1) appeared. A second red target (T2) was then presented after T1. A variable delay separated the 1129 
first and the second target onsets (target step delay; TSD). The monkey had to make a sequence of two saccades 1130 
(S1, S2) to the two targets in order of their appearance to get rewarded in step trials. The abbreviations used are 1131 
the same as in A, but for two saccades. 1132 
 1133 
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  1134 
Figure S2. Population activity of FEF movement neurons in no-step trials (related to Fig 3) 1135 

  1136 
A. Schematic of possible adjustments of neural activity related to processing bottlenecks. The lengthening of the 1137 
reaction time may be due to four possible adjustments according to accumulator dynamics. Each schematic 1138 
shows a noise-free, simplistic accumulation process, starting from the baseline and reaching up to the threshold 1139 
for saccade initiation. Representative reaction time distributions are plotted above each of the schematics. 1140 
Lowering of baseline activity, delaying the onset of activity, slowing down the rate of growth, and increasing 1141 
the threshold level can either singly or in combination, bring about increased reaction times. 1142 
  1143 
B. Left: FEF movement neuron population activity encoding for different reaction times (short: green, medium: 1144 
gray, long: red), aligned to target onset (vertical broken line) . Mean saccade onset times for all the reaction time 1145 
conditions are shown as vertical colored lines with s.e.m error bars. Right: same as left but activity aligned to 1146 
saccade onset (vertical broken line). Shading indicates mean ± SEM. 1147 
  1148 
C. Illustration of the measurement of accumulator parameter: baseline. Left: Schematic of a spike density 1149 
function of a representative neuron aligned to target onset showing the baseline value. Middle: The baseline was 1150 
calculated for short, medium and long reaction times for a representative neuron and the slope of the best fit was 1151 
calculated. Right: Histogram of distribution of slopes measured this way for all the neurons was compared with 1152 
zero (vertical broken line). 1153 
  1154 
D. Same as C but for measurement of onset. 1155 
  1156 
E. Same as C but for measurement of growth rate. 1157 
  1158 
F. Same as C but for measurement of threshold. 1159 
 1160 
 1161 
 1162 
 1163 
 1164 
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 1165 
 1166 

 1167 
 1168 

Figure S3: Single neuron example for processing bottlenecks (related to Fig 3) 1169 

A. A representative FEF movement neuron aligned to target onset (T) and saccade onset (S) in a 1170 
memory guided task for saccades into the RF and saccades out of RF. 1171 
B. Left: Neural activity, a representative neuron encoding for different TSD conditions (short, medium, 1172 
long TSD), aligned to target 2 onset. Right: same as left but activity aligned to S2 onset. 1173 
C. Same as B but for neural activity aligned to target 1 (left) and saccade 1 (right). 1174 
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 1194 
 1195 

 1196 
 1197 

Figure S4: Population dynamics for all target positions (related to Fig 4) 1198 

A.     Soft-normalized mean population neural responses towards all six target positions (3 towards RF, 1199 
shown in warm colors and 3 out of RF, shown in cold colors; see inset for colors), aligned to target 1200 
1 (left) and target 2 (right) for short TSD trials (n.u. = normalized unit). 1201 

B.     Same as A, but for medium TSD trials. 1202 
C.     Same as A, but for long TSD trials. 1203 
D.     First three PCs for each target position shown in A, plotted against each other for target 1 1204 

(left) and target 2 (right) related responses for short TSD trials. Filled circle markers indicate the 1205 
starts of the respective trajectories. 1206 

E.     Same as D, but for medium TSD trials shown in B. 1207 
F.      Same as D, but for long TSD trials shown in C. 1208 

 1209 
 1210 
 1211 
 1212 
 1213 
 1214 
 1215 
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 1216 

Figure S5: Saccade kinematics with different TSDs (related to Fig 4) 1217 

A.     Saccade 1 trajectories, towards RF (filled, broken circle), during short, medium and long TSD 1218 
trials from a representative session. The central cross denotes the fixation point. 1219 

B.     Mean saccade 1 velocity profiles for short, medium and long TSD trials (thick lines) superimposed 1220 
on saccade 1 velocity profiles from individual trials (thin lines). Shading indicates mean ± SEM. 1221 

C.     Peak saccade 1 velocities from each session for short, medium and long TSD trials. P values: 1222 
short-medium: 0.81, ranksum test; medium-long: 0.60, ranksum test. 1223 

D.     Saccade 1 main sequence for short (left), medium (center) and long (right) TSD trials. The overlaid 1224 
contours represent the density of data. 1225 

E.     Saccade 2 trajectories, towards RF (filled, broken circle), during short, medium and long TSD 1226 
trials from the same representative session as A. 1227 

F.      Same as B, but for saccade 2. 1228 
G.  Same as C, but for saccade 2. P values: short-medium: 0.92, ranksum test; medium-long: 0.80, 1229 

ranksum test. 1230 
H.   Same as D, but for saccade 2. 1231 

 1232 
 1233 
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 1235 
 1236 
 1237 
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 1239 

Figure S6: Data simulation process, reaction time and neural activity profiles (related to 1240 
Fig 5) 1241 

A.     Schematic illustration of the simulation. 1242 
B.     Tuning curves (peak firing rates as a function of target positions) for all the simulated neurons. 1243 

One representative neuron’s tuning curve is highlighted in purple. 1244 
C.     Response kernels (activity as a function of time) for all the simulated neurons. Same representative 1245 

neuron’s stimulus kernel is highlighted in purple. 1246 
D.     Multiplication of tuning curves and stimulus kernels and addition of noise results in the 1247 

simulated neuron’s activity for each of the 8 target positions. Activity towards the 8 target 1248 
positions is shown for the same representative neuron as above. 1249 

E.     Distribution of RF positions (argmax(tuning curve)) of the simulated neurons shows a uniform 1250 
spread of RFs across the simulated neurons. 1251 

F.      Distribution of peak firing rate (max(tuning curve)) of the simulated neurons shows a 1252 
unimodal distribution with a mean ~ 37 sp/s. 1253 

G.  Probability of inhibition as a function of TSD 1254 
H.   Bottom: Example simulation for one session, for RF position, following the simulation pipeline 1255 

shown in A. Top: reaction time distribution obtained from the simulation. 1256 
I. Top: The same reaction time distribution from H, but uniformly divided into fast, medium and 1257 

slow reaction times. Bottom: Average neural activity from the simulation in H, divided into fast, 1258 
medium and slow reaction time conditions as explained above. 1259 

J.    Same FEF neural data from Fig S2B (divided into fast, medium and slow reaction time). 1260 
K.    Top: reaction time distributions of two monkeys for short, medium and long TSD trials for plan 1 1261 

(left) and plan 2 (right). Bottom: Same as Fig 3C; right: Same as Fig 3A. 1262 
L.   Top: reaction time distributions from the simulations with bilateral inhibition in the same format as 1263 

above. Bottom: Same as Fig 5F. 1264 
M.  Top: reaction time distributions from the simulations with unilateral inhibition in the same format 1265 

as above. Bottom: Same as Fig 5B. 1266 
 1267 
 1268 
 1269 
 1270 
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