SUPPLEMENTARY INFORMATION Diverse DNA modification in marine prokaryotic and viral communities

6	Satoshi Hiraoka ^{1*} , Tomomi Sumida ¹ , Miho Hirai ² , Atsushi Toyoda ³ , Shinsuke Kawagucci ² , Taichi
7	Yokokawa ² , and Takuro Nunoura ¹

- 10 *Correspondence should be addressed to:
- 11 <u>hiraokas@jamstec.go.jp</u>

- 14 This PDF file includes:
- 15 Supplementary notes S1 to S2
- 16 Supplementary references
- 17 Supplementary figures S1 to S10.
- 18 Supplementary tables S1 to S4.

21 Supplementary notes

22

23 Note S1. In vitro assay of MTases that possess GAWTC specificity.

24The REase digestion assays of MTases detected from Alphaproteobacteria P-MAGs and predicted to recognize the 25 GAWTC motif showed notable plasmid cleavage patterns associated with incubation temperature after MTase expression 26 (Figures S7a-d). To better understand the MTases, CM15mP111_3240 was chosen as a representative for further in vitro 27 assays as an alternative to in vivo methylation. The CM15mP111_3240 gene is 367 aa long with a molecular weight of 42.6 28 kDa, similar to M.CcrMI (359 aa with 39.7 kDa). Initial purification efforts of the protein with N-terminal His-tag constructed using PCR and protein elution according to the previous studies of M.CcrMI (1-4); however, it resulted in mild 29 30 insolubilization, possibly due to the high concentration of imidazole (300 mM). Alternative approaches including on-column 31 tag digestion, which involves cleavage of either N- or C-terminal His-tags with human rhinovirus 3C (HRV 3C) protease 32 cleavage site (Leu-Glu-Val-Leu-Phe-Gln-Gly-Pro) were then conducted, but SDS-PAGE analysis also showed significant 33 insolubilization. Therefore, we used the initial approach accompanied with a five-fold dilution of aliquots with storage buffer 34 immediately after protein elution (50 mM imidazole, final concentration) to avoid insolubilization. This strategy resulted in a 35 significantly higher amount of purified protein with high purity, as confirmed using SDS-PAGE.

36 CM15mP111 3240 MTase appeared to partially block HinfI cleavage under low salt concentrations (0-150 mM 37 NaCl), as expected when GAWTC sites were specifically methylated (Figure S8a). In contrast, substantially no additional 38 inhibition was observed when more than 250 mM NaCl was supplied, indicating that high salt concentrations affect enzymatic 39 activity. The assays of thermal sensitivity showed positive enzymatic activity at 5–35 $^{\circ}$ C (especially fairly active at 15–25 $^{\circ}$ C), 40 but not at >35 °C (Figure S8b). These profiles strongly support our hypothesis that MTase recognizes GAWTC and causes 41 methylation. The temperature-activity profile was concordant with the marine water temperature at the sampling sites (Figure 42 S1b), suggesting that MTase was thermally optimized in an epipelagic environment. Out of the optimal conditions, we found 43 that HinfI cleavage was further inhibited beyond merely GAWTC methylation after MTase reaction with higher enzymatic 44 and glycerol concentrations (Figure S8c). This indicates that abnormal conditions lead to relaxing the sequence recognition 45 of MTase, resulting in the promiscuous extension of its specificity from GAWTC to GANTC. This phenomenon was similarly 46 observed in the number of REases known as 'star activity', and has also been reported for various MTases (5-11). Hence, the 47 remarkable inhibition of HinfI cleavage observed in the *in vitro* assay (Figures S7a-d) could be explained by the artificially induced overexpression of the protein lead star activity, which caused the peculiar methylation block against REase digestion. 48 49 Taken together, CM15mP111_3240 MTase, as well as the other three homologs (i.e., CM15mP30_3110, CM15mP57_4380, 50 and CM15mP70_4410), likely possess GAWTC specificity as a canonical motif and exhibit off-target GANTC methylation 51 under non-optimal conditions such as high enzymatic and glycerol concentrations.

53 Note S2. In vivo assay of MTases that possess GADTC specificity

Based on the metaepigenomic analysis, a methylated motif $G\underline{A}DTC$ was detected with a high modification ratio (75.4–81.6%) from four Alphaproteobacteria P-MAGs (i.e., CM1_5m.P124, CM1_5m.P118, CM1_5m.P20, and CM1_5m.P56) (Data S3). However, modification ratio analysis showed not absent but weak $G\underline{A}CTC$ methylation (29.6– 35.4%) on the P-MAGs (Figure S6), suggesting that the responsible MTase did not strictly recognize $G\underline{A}DTC$ modification rather than still possess a weak affinity for $G\underline{A}CTC$. Among the P-MAGs, one MTase gene that showed the highest sequence similarity to those with $G\underline{A}NTC$ specificity was found in CM1_5m.P20. Thus, as described above, we hypothesized that CM15mP20_30 MTase possesses novel $G\underline{A}DTC$ specificity with weak $G\underline{A}CTC$ affinity.

61 The REase digestion assay of MTase showed that TfiI cleavage was almost completely inhibited at all temperatures 62 tested, indicating that MTase possesses GAWTC specificity (Figure S7e). In contrast, the HinfI cleavage showed extra upper bands at 5 °C, which were not observed in other MTases with GAWTC specificity under the same conditions (Figures S7a-63 d), and complete inhibition at >10 °C, similar to the MTase with GANTC specificity (Figure S7f). However, this profile was 64 65 consistent with the hypothesized GADTC specificity: GAGTC hemimethylation (where GAGTC is methylated while 66 complementary GACTC is not methylated) is sufficient for blocking HinfI cleavage (12). Indeed, re-sequencing analysis of 67 E. coli in which the MTase gene was transferred successfully recalled GADTC methylated motifs from the cells incubated at 68 5 °C, whereas GANTC was detected in the cells incubated at 15 °C (Table S4). Taken together, although the molecular 69 mechanism is still unclear, these results suggest that CM15mP20_30 MTase recognizes GADTC as canonical and possesses 70 weak GACTC specificity, which may be affected by external conditions such as temperature.

71 72

73 Supplementary references

- J. R. Horton, C. B. Woodcock, S. B. Opot, N. O. Reich, X. Zhang, X. Cheng, The cell cycle-regulated DNA adenine
 methyltransferase CcrM opens a bubble at its DNA recognition site. *Nat. Commun.* 10, 4600 (2019).
- R. F. Albu, T. P. Jurkowski, A. Jeltsch, The *Caulobacter crescentus* DNA-(adenine-N6)-methyltransferase CcrM
 methylates DNA in a distributive manner. *Nucleic Acids Res.* 40, 1708–1716 (2012).
- O. Konttinen, J. Carmody, S. Pathuri, K. Anderson, X. Zhou, N. Reich, Cell cycle regulated DNA methyltransferase:
 Fluorescent tracking of a DNA strand-separation mechanism and identification of the responsible protein motif. *Nucleic Acids Res.* 48, 11589–11601 (2020).
- C. B. Woodcock, A. B. Yakubov, N. O. Reich, *Caulobacter crescentus* cell cycle-regulated DNA methyltransferase uses a
 novel mechanism for substrate recognition. *Biochemistry*. 56, 3913–3922 (2017).

5. J. G. Borgaro, N. Benner, Z. Zhu, Fidelity undex determination of DNA methyltransferases. *PLoS One.* **8**, e63866 (2013).

- 84 6. H. M. Cohen, D. S. Tawfik, A. D. Griffiths, Promiscuous methylation of non-canonical DNA sites by HaeIII
 85 methyltransferase. *Nucleic Acids Res.* 30, 3880–3885 (2002).
- B. Bandaru, J. Gopal, A. S. Bhagwat, Overproduction of DNA cytosine methyltransferases causes methylation and C → T
 mutations at non-canonical sites. *J. Biol. Chem.* 271, 7851–7859 (1996).
- 88 8. J. D. Taylor, A. J. Goodall, C. L. Vermote, S. E. Halford, Fidelity of DNA recognition by the EcoRV
- 89 restriction/modification system in vivo. *Biochemistry*. **29**, 10727–10733 (1990).
- 90 9. C. P. J. Woodbury, R. L. Downey, P. H. von Hippel, DNA site recognition and overmethylation by the Eco RI methylase.
 91 *J. Biol. Chem.* 255, 11526–11533 (1980).
- T. Friedrich, M. Fatemi, H. Gowhar, O. Leismann, A. Jeltsch, Specificity of DNA binding and methylation by the M.FokI
 DNA methyltransferase. *Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.* 1480, 145–159 (2000).

- 94 11. C. Beck, S. Cranz, M. Solmaz, M. Roth, A. Jeltsch, How does a DNA interacting enzyme change its specificity during
- 95 molecular evolution? A site-directed mutagenesis study at the DNA binding site of the DNA-(adenine-N6)-
- 96 methyltransferase EcoRV. *Biochemistry*. **40**, 10956–10965 (2001).
- M. Nelson, C. Christ, I. Schildkraut, Alteration of apparent restriction endonuclease recognition specificities by DNA
 methylases. *Nucleic Acids Res.* 12, 5165–5173 (1984).
- 99
- 100

101 Supplementary figures

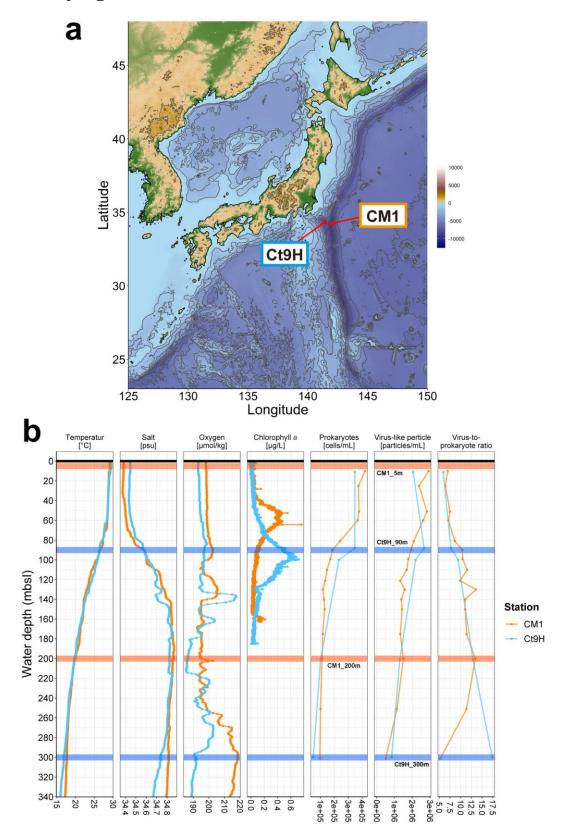
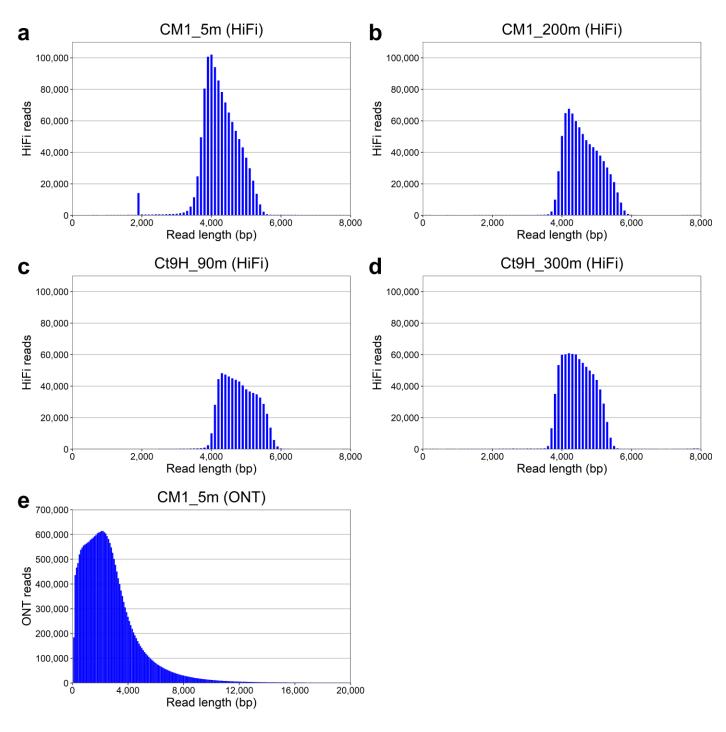



Figure S1. Hydrographic characteristics of the sampling sites. a Map of the Japanese archipelago. The red points indicate the sampling sites. b Vertical profiles of chemical concentrations and abundances of prokaryotic cells and virus-like particles. Profiles of water temperature, salinity concentration, dissolved oxygen concentration, and chlorophyll *a* concentration were measured *in situ*. Orange and blue represent CM1 and Ct9H sampling sites, respectively. The horizontal lines represent depths where the seawater samplings were conducted; 5 and 200 mbsl at CM1 site, and 90 and 300 mbsl at Ct9H site.

109

Figure S2. Frequency distribution of the length of sequencing reads. Read lengths were binned in 100-bp increments. **a**–**d** HiFi reads from PacBio Sequel. The SMRT libraries were size-selected at a 5-kb length. **a** We noted a small peak at 2 kb in CM1_5m, which likely reflected SMRT bell templates that unexpectedly collapsed either of the terminal hairpin adapters, although this may not significantly affect further sequencing reads and modification analyses. **e** ONT reads from Oxford Nanopore GridION. Reads ranging from 0–20 kb in length are presented. ONT libraries with short DNA fragment sizes were filtered out through the AMPure purification process in advance of the sequencing.

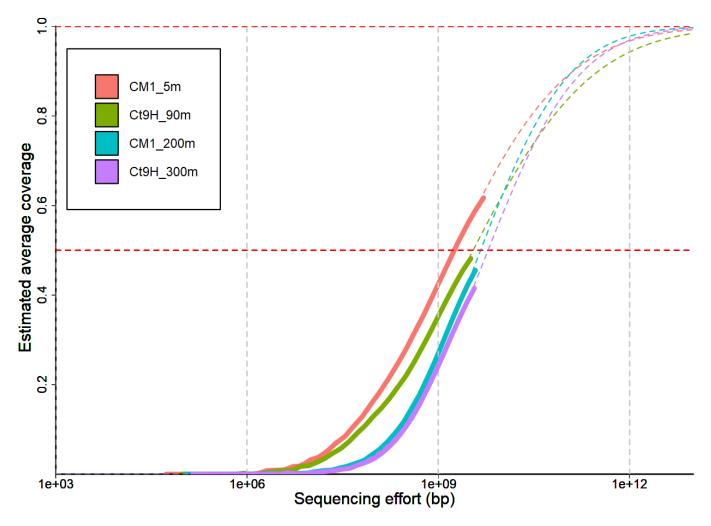


Figure S3. Estimated metagenomic coverage of HiFi reads. The dashed curves indicate the fitted models of the Nonpareil curves. The red horizontall dashed lines indicate 50% and 100% coverage.

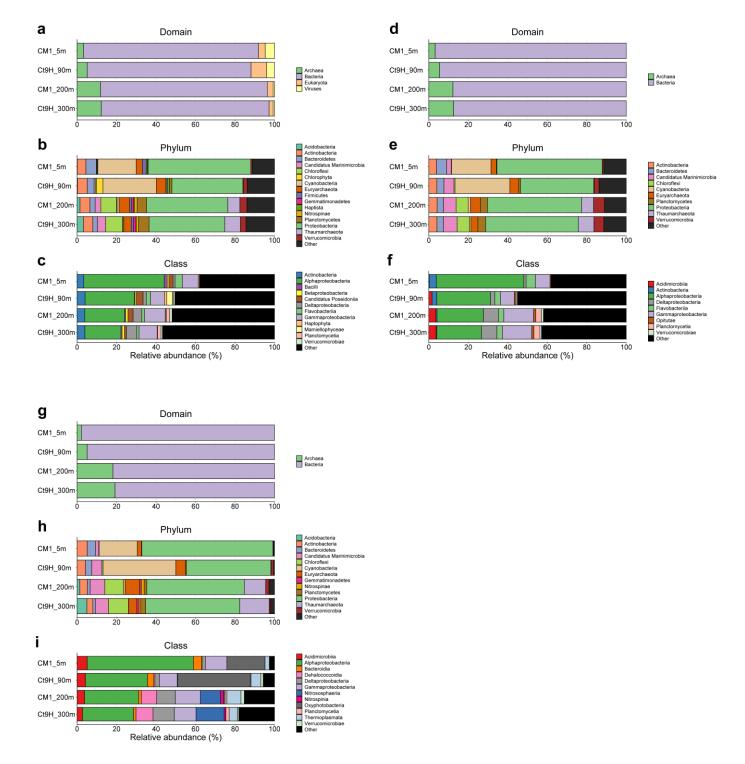
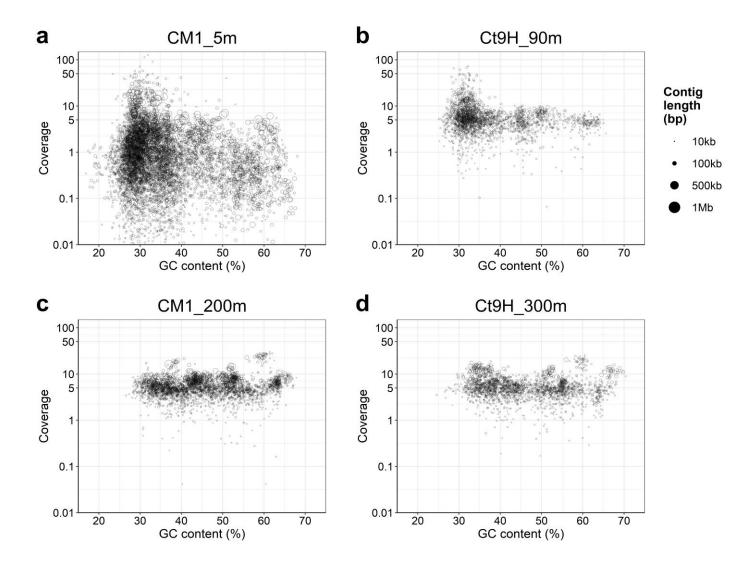



Figure S4. Taxonomic profiles of HiFi reads. Estimated relative abundances obtained using Kaiju with the NCBI nr database at the **a** domain, **b** phylum, and **c** class levels, those with the GORG database at the **d** domain, **e** phylum, and **f** class levels, and those from BLASTN analysis of full-length 16S rRNA gene sequences with the SILVA database at the **g** domain, **h** phylum, and **i** class levels are presented. The eukaryotic and viral reads are ignored in **d-i** based on the databases used. Sequences assigned to members with <1% abundance or taxonomically unclassified are grouped as 'Others.'

129

Figure S5. Assembled contigs. a CM1_5m assembled from ONT reads after polishing. Contigs with $> 0.01 \times$ coverage against HiFi reads are presented. b Ct9H_90m assembled from HiFi reads. c CM1_200m assembled from HiFi reads. d Ct9H_300m sample assembled from HiFi reads. Each circle represents a contig, where the size represents its total sequence length. The xand y-axes represent GC content and genome coverage of HiFi reads, respectively.

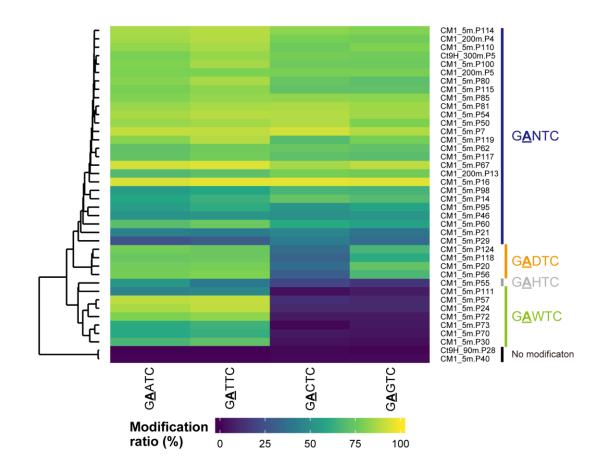
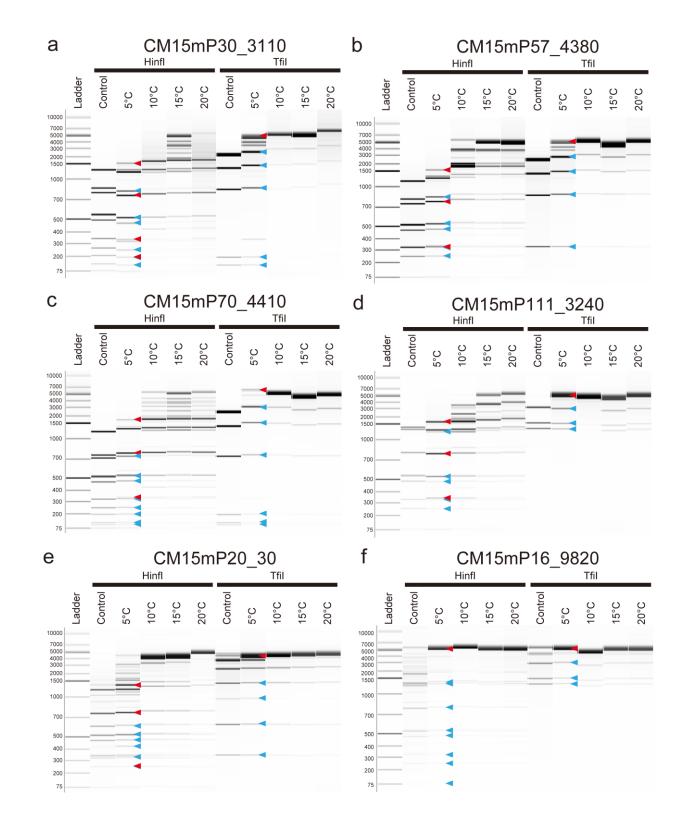
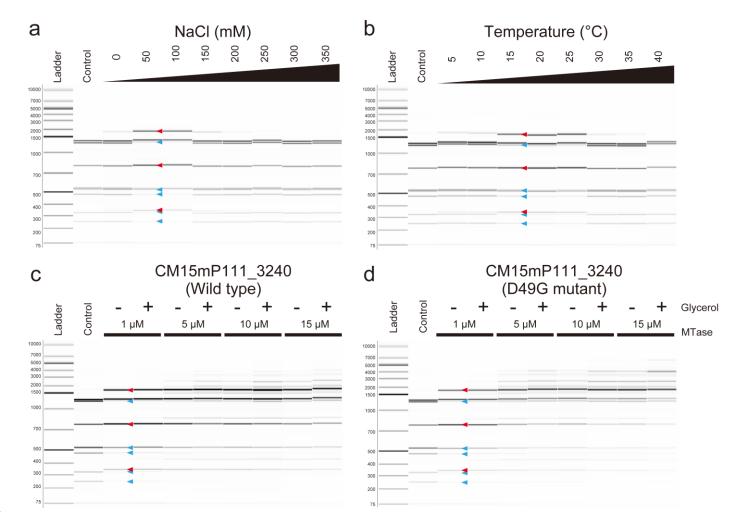
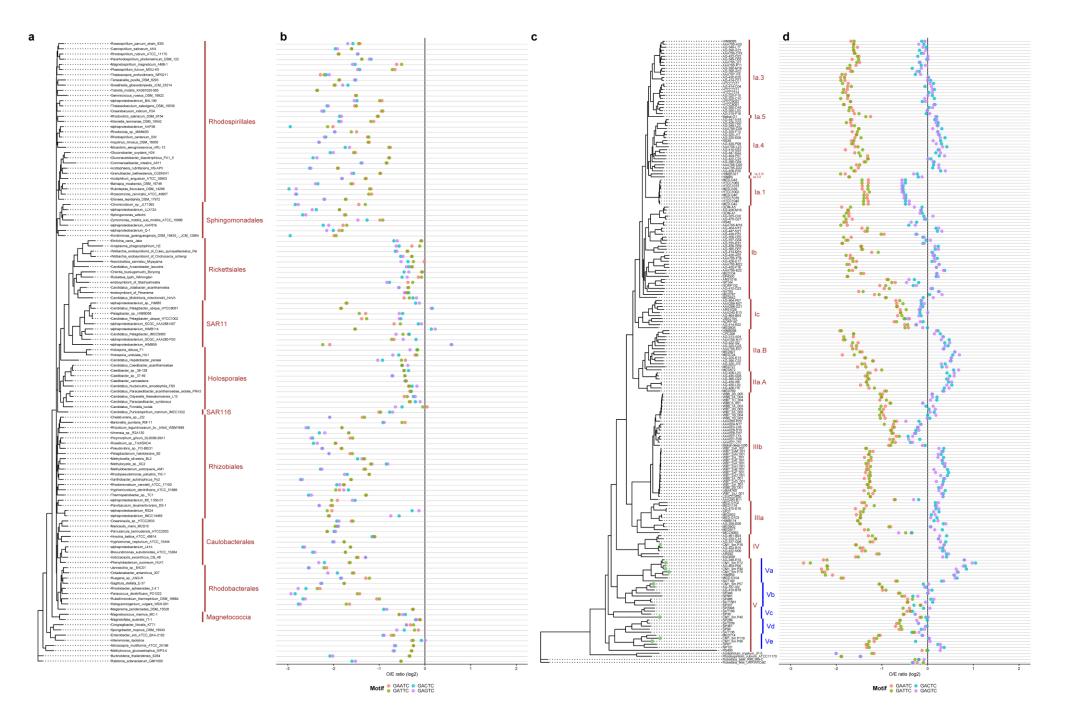




Figure S6. Methylomes of Alphaproteobacteria P-MAGs. The components of $G\underline{A}NTC$ are presented. The left dendrogram represents a hierarchical clustering of the modification ratios on each P-MAG. The distance matrix was calculated based on the Euclidean distance, and the clusters were calculated using the single-linkage method. Methylated motifs detected in each P-MAG using the metaepigenomic analysis are indicated on the right side. We noted that the G<u>A</u>HTC from CM1_5m.P55 was supported by low subread coverage (36×) and may be a misdetection.

Figure S7. REase digestion assays of MTases that were detected in Alphaproteobacteria P-MAGs. HinfI (GANCT) and TfiI (GAWTC) REases were employed for the assays, where the plasmids contained 10–14 GANTC and 3–6 GAWTC target sites. All plasmid DNAs were linearized using NdeI. Based on the metaepigenomic analysis, **a-d** G<u>A</u>WTC, **e** G<u>A</u>DTC, and **f** G<u>A</u>NTC were hypothesized motifs of each MTase. Band sizes that theoretically appeared or were depleted when the hypothesized methylation occurred are indicated by red and blue triangle marks, respectively. We noted that several unexpected bands appeared in the upper side of the control samples of each HinfI and TfiI cleavage assays in **e** and **f**, possibly due to the leakage expressions from the constructs.

151


Figure S8. *In vitro* REase digestion assays of purified CM15mP111_3240 MTase and its mutant. Sensitivity assays of **a** salt and **b** temperature of the original MTase and assays of high enzymatic and glycerol concentrations in the **c** MTase and **d** D49G mutant are presented. Glycerol concentrations were changed to 0% (-) and 10% (+) (v/v). HinfI (GANCT specificity) was employed for the assays, where the substrate DNAs contained 10 GANTC target sites. Unmethylated substrate DNAs were produced using PCR. Band sizes that were expected to appear (red) and disappear (blue) when GA<u>W</u>TC methylation occurs are indicated with triangle marks. Substrate DNAs without MTase reaction were used for the control.

		40										50 1										60 I	
	CM15mP62_4600	L	Ι	F	A	D	Ρ	Ρ	Y	N	L	Q	L	A	G	Е	L	L	R	Ρ	N	N	S
	CM15mP115_14070	L	۷	F	A	D	Ρ	Ρ	Y	N	L	Q	L	G	G	N	L	S	R	Ρ	D	Н	S
	CM15mP80_8830	L	۷	F	A	D	Ρ	Ρ	Y	N	L	Q	L	Т	G	N	L	Т	R	Ρ	D	Q	S
	CM15mP117_10270	L	V	F	A	D	Ρ	Ρ	Y	N	L	Q	L	S	G	Е	L	Т	R	Ρ	D	Q	Т
G <u>A</u> NTC	CM15mP54_24370	L	Ι	F	A	D	Ρ	Ρ	Y	N	L	Q	L	K	G	D	L	Н	R	Ρ	D	N.	S
	CM15mP85_3250	L	Ι	F	A	D	Ρ	Ρ	Y	N	L	Q	L	K	G	Е	L	Н	R	Ρ	D	Н	S
	CM15mP98_10650	L	Ι	F	A	D	Ρ	Ρ	Y	N	L	Q	L	N	R	D	L	L	R	Ρ	N,	N	S
	CM15mP16_9820	L	Ι	F	A	D	Ρ	Ρ	Y	N	L	Q	L	D	Q	Е	L	L	R	Ρ	N,	N	S
G <u>A</u> DTC	CM15mP20_30	М	V	F	С	D	Ρ	Ρ	Y	N	L	Q	L	S	K	Т	L	Y	R	Ρ	D	A	Т
	CM15mP111_3240	L	Ι	F	A	D	Ρ	Ρ	Y	N	L	Q	L	N	D	Т	Ι	Y.	R	Ρ	D	Y.	S
G <u>A</u> WTC	CM15mP57_4380	L	Ι	F	A	D	Ρ	Ρ	Y	Ν	L	Q	L	K	D	Т	L	Y.	R	Ρ	D	Q	Т
	CM15mP70_4410	L	۷	F	L	D	Ρ	Ρ	Y	N	L	Q	L	N	K	Е	L	Т	R	Ρ	N,	Н	S
	CM15mP30_3110	L	۷	F	L	D	Ρ	Ρ	Y	N	L	Q	L	N	K	V	L	Т	R	Ρ	N,	Н	S
	M.Csp16704III	L	۷	F	A	D	Ρ	Ρ	Y	F	М	Q	Т	Q	G	Е	L	L	R	Т	N	G	E
G <u>A</u> NTC	M.HpyAIV	F	Ι	F	A	D	Ρ	Ρ	Y	F	М	Q	Т	E	G	E	L	K	R	F	Е	G	Т
(outgroup)	M.Hinfl	L	Ι	F	A	D	Ρ	Ρ	Y	F	М	Q	Т	E	G	K	L	L	R	Т	N	G	D
I	M.CcrMI	L	Ι	F	A	D	Ρ	Ρ	Y	N	L	Q	L	G	G	D	L	L	R	Ρ	D	N.	S.
												N	38 Л. (40 MI p		42 itio	n					

160 **Figure S9.** A multiple sequence alignment of M.CcrMI homologs. MTases that were predicted or experimentally confirmed

161 to recognize either $G\underline{A}NTC/G\underline{A}DTC/G\underline{A}WTC$ were used in this analysis. The black rectangle indicates the region where they

162 interact with the third position of the motif sequences (i.e., 'N' and 'W') in the M.CcrMI gene.

Figure S10. Phylogenetic diversity of the Observed/Expressed (O/E) ratio of GANTC sequence. Pairs of a phylogenetic tree and O/E ratios of **ab** Alphaproteobacteria and **cd** SAR11 are presented. **a** Four Betaproteobacteria and four Gammaproteobacterial genomes were used as outgroups. Taxonomic groups at the order level are indicated in brown. We noted Magnetococcia (comprised of *Magnetococcus* and *Magnetofaba*) is currently classified as Alphaproteobacteria but was recently proposed to establish a novel Magnetococcia class. **c** The P-MAGs obtained in this study are colored in light green. One *Acidiphillum*, one *Rhodospirillum*, and two *Rickettsia* genomes were used as outgroups. Subclades are indicated in brown, and the inferred minor subgroups in subclade V referred to in this study are indicated with blue bars and texts. All the genomes retrieved from the NCBI repository are summarized in Supplementary Data S5.

Supplementary tables

Table S1. Descriptions of sampling sites

Sample	Cruise ID	Sampling method	Collection	Area	Description	Sation	Location	Environmental	Elevation Sample		
	Cruise ID		date	Alca	Description	Sation	Location	feature	(mbsl)	amount (L)	
CM1_5m	KM19-07	Intake pipe	2019-09-02	Izu-Ogasawara Trench	CM1	34N11	34.2607 N 142.0203 E	Epipelagic zone	5	200	
CM1_200m	KM19-07	Niskin sampler	2019-09-02	Izu-Ogasawara Trench	CM1	34N11	34.2607 N 142.0203 E	Mesopelagic zone	200	180	
Ct9H_90m	KM19-07	Niskin sampler	2019-09-06	Izu-Ogasawara Trench	Ct9H	34N12	34.3317 N 141.4143 E	Epipelagic zone	90	50	
Ct9H_300m	KM19-07	Niskin sampler	2019-09-06	Izu-Ogasawara Trench	Ct9H	34N12	34.3317 N 141.4143 E	Mesopelagic zone	300	320	

 Table S2. Data on metagenomic shotgun sequencing read and HiFi read analyses

	Sample	CM1_5m	Ct9H_90m	CM1_200m	Ct9H_300m
PacBio Sequel	Subread reads	20,889,048	15,827,638	18,959,396	19,589,319
	Read length (bp)	$5,001 \pm 2,522$	4,716 ± 1,963	4,519 ± 1,749	$4{,}381 \pm 1{,}708$
	Total base (bp)	104,456,419,820	74,635,717,619	85,686,708,868	85,823,726,072
	HiFi reads	1,106,089	657,109	812,032	809,717
	Read length (bp)	$4,311 \pm 540$	$4,926 \pm 771$	$4,707 \pm 664$	$4,559 \pm 630$
	Total base (bp)	4,768,807,324	3,237,145,123	3,821,978,925	3,691,721,393
	16S rRNA	1,773	1,296	1,543	1,408
	CDSs	7,514,379	5,109,850	5,585,360	5,369,598
	MTase	27,676	8,067	12,846	3,324
Oxford Nanopore GridION	Sequenced reads	24,562,005	-		-
	Read length (bp)	$2,734 \pm 2,013$	-		-
	Total base (bp)	67,142,060,909	-		
Illumina MiSeq	Paired-end reads	9,433,870	8,637,416	10,330,676	9,015,972
	Read length (bp)	288 ± 31	286 ± 34	283 ± 34	284 ± 34
	Total base (bp)	2,720,391,360	2,472,592,381	2,919,215,542	2,558,126,139

Table S3. Data on metagenomic assembly and genome binning

Sample	Contigs	Total length (bp)	N50 (bp)	Longest length (bp)	Average length (bp)	P-MAGs	Mapped HiFi reads on P- MAGs (%)	V-MAGs	Mapped HiFi reads on V- MAGs (%)
CM1_5m	29,391	524,431,517	29,344	2,239,202	17,843	130	31.5	159	4.72
Ct9H_90m	7,829	82,604,737	11,600	307,709	10,551	30	9.4	3	0.19
CM1_200m	10,824	123,124,031	12,650	545,541	11,375	41	24.7	1	0.01
Ct9H_300m	8,145	82,769,163	10,530	362,843	10,162	32	19.9	0	NA

Table S4. Methylated motifs detected in the chromosomal DNA of E. coli transformed with artificially-synthesized MTase genes

Genome ID	Transformed MTase gene ID	Detected methylated	Modification Type	Number of methylated	Number of motif	Methylation ratio (%)	M ean modification	M ean subread	Description
	Serie ID	motif	rype	sites	sequences	1410 (70)	QV	coverage	
Ct9H_300m.P26	Ct9H300mP26_1870	BAAA <u>A</u>	m6A	45818	47616	96.2%	453.2	672.4	
Ct9H_90m.P5	Ct9H90mP5_10800	BAAA <u>A</u>	m6A	4375	47616	9.2%	550.6	666.5	
CM1_200m.P2	CM1200mP2_32760	CAA <u>A</u> T	m6A	9630	9958	96.7%	564.7	668.7	
CM1_5m.P129	CM15mP129_7780	ACAA <u>A</u>	m6A	10950	11372	96.3%	459.4	675.0	
CM1_200m.P10	CM1200mP10_13750	<u>C</u> TCC	m4C	10992	19137	57.4%	226.6	649.6	
CM1_5m.P20	CM15mP20_30	G <u>A</u> DTC	m6A	15451	17919	86.2%	416.8	679.0	Incubated at 5°C
CM1_5m.P20	CM15mP20_30	G <u>A</u> NTC	m6A	9839	21484	45.8%	535.8	681.1	Incubated at 15°C

R= A/G, Y= C/T, M= A/C, K= G/T, S= C/G, W= A/T, H= A/C/T, B= C/G/T, V= A/C/G, D= A/G/T, N= A/C/G/T