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Abstract
The reproducibility crisis in neuroimaging has led to an increased demand for standardized

data processing workflows. Within the ENIGMA consortium, we developed HALFpipe

(HHHHHHHHHHHHHHHHHarmonized AAAAAAAAAAAAAAAAAnaLLLLLLLLLLLLLLLLLysisysisysisysisysisysisysisysisysisysisysisysisysisysisysisysisysis of FFFFFFFFFFFFFFFFFunctional MRI pipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipeline), an open-source, containerized,

user-friendly tool that facilitates reproducible analysis of task-based and resting-state fMRI

data through uniform application of preprocessing, quality assessment, single-subject

feature extraction, and group-level statistics. It provides state-of-the-art preprocessing

using fMRIPrep without the requirement for input data in Brain Imaging Data Structure

(BIDS) format. HALFpipe extends the functionality of fMRIPrep with additional preprocessing

steps, which include spatial smoothing, grandmean scaling, temporal filtering, and

confound regression. HALFpipe generates an interactive quality assessment (QA) webpage to

assess the quality of key preprocessing outputs and raw data in general. HALFpipe features

myriad post-processing functions at the individual subject level, including calculation of

task-based activation, seed-based connectivity, network-template (or dual) regression,

atlas-based functional connectivity matrices, regional homogeneity (ReHo), and fractional

amplitude of low frequency fluctuations (fALFF), offering support to evaluate a

combinatorial number of features or preprocessing settings in one run. Finally, flexible

factorial models can be defined for mixed-effects regression analysis at the group level,

including multiple comparison correction. Here, we introduce the theoretical framework in

which HALFpipe was developed, and present an overview of the main functions of the

pipeline. HALFpipe offers the scientific community a major advance toward addressing the

reproducibility crisis in neuroimaging, providing a workflow that encompasses

preprocessing, post-processing, and QA of fMRI data, while broadening core principles of

data analysis for producing reproducible results. Instructions and code can be found at

https://github.com/HALFpipe/HALFpipe.

Introduction
The application of neuroimaging, in particular functional MRI (fMRI), has led to an explosion

in knowledge about brain functions implicated in a range of human behaviors, cognitive

processes, and emotions. Such research has been spurred by rapid advances in computation-

ally intensive software required to perform complex algorithmic processing and statistical

modeling of fMRI data. The resulting proliferation of software tools designed to fulfill various
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analytic functions has produced a large array of options for carrying out any given type of

processing. Since the fMRI signal indirectly captures the neural processes of interest, a series

of computational operations on fMRI data, referred to as the analysis pipeline, are necessary

to arrive at interpretable results. In practice, each step is flexible and subject to a number

of choices by the researcher, termed analytic flexibility (Poldrack et al., 2017). The steps in

the analysis pipeline may be reordered, run with different parameters, or may be completely

omitted in some cases. Understandably, users expect different tools performing the same

function to generate (near) identical results when supplied with given input data. However,

the multiplicity of tools has had the unintended consequence of generating inconsistent re-

sults from studies designed to answer the same research question, sometimes even when the

same data is used as the starting point (Botvinik-Nezer et al., 2020). Thus, analytic flexibility

combined with the number of analysis steps, as well as the possible parameters for running

each analysis step, has led to a vastmultiplicity ofmethodologic variants and an equal number

of possible results. This situation has contributed in part to what is widely hailed as a crisis of

reproducibility,which now plagues the neuroimaging field (Gorgolewski et al., 2016; Poldrack

et al., 2017).

One solution to improving reproducibility is to constrain the parameter space by limiting

choices to default parameters established from empirically-derived best-practices (Grüning

et al., 2018). For instance, established pipelines such as fMRIPrep (Esteban, Markiewicz, Blair,

et al., 2019) and C-PAC (Craddock et al., 2013) have automated many of these choices. An

alternative approach is to runmultiple analyses separately on the same input data with the

same or different pipelines, but with different parameter selections for each analysis, and

then compare the results. This second approach, termedmultiverse analysis (Steegen et al.,

2016), has the advantage that results frommultiple analyses may be compared and alternate

solutionsmay be presented in published reports to promote increased transparency. However,

multiverse analysis has the disadvantage that it may ultimately not be possible to determine

the optimal or even the correct solution, as true effects in non-simulated fMRI data are often

unknown.

The reproducibility crisis has led to an increased demand for standardized workflows to

conduct both the preprocessing and postprocessing stages of fMRI analysis. The recent intro-

duction and widespread adoption of standardized pipelines for fMRI data preprocessing has

provided the research community with much-needed high-quality tools that have improved

reproducibility (Thompson, Ching, et al., 2020). The four ingredients that are essential to

data analysis and reproducible results are: (1) data andmetadata availability, (2) code usage

and transparency, (3) software installability, and (4) re-creation of the runtime environment.

Relative to other processing pipelines, fMRIPrep (Esteban, Markiewicz, Blair, et al., 2019) has

grown in popularity due to its adoption of best practices, open-source availability, favorable

user experience, and glass-box principles of transparency (Poldrack et al., 2019). However,

fMRIPrep is limited to the so-called preprocessing steps of fMRI data analysis, whilst variability

in parameter selection for subsequent post-processing analysis steps (e.g., data cleaning,

feature extraction, model specification) may compromise reproducibility.

The ENIGMA consortium has addressed the reproducibility crisis by pooling observational

study data from structural and diffusion imaging (andmore recently EEG and MEG), and by

developing standardized pipelines, data harmonization methodology, and quality control

protocols (Thompson, Jahanshad, et al., 2020). These workflows have successfully analyzed

structural and diffusionMRI data aggregated from large numbers of small- andmedium-sized

cohorts to accumulate sufficient power to yield robust results on a wide range of neuropsy-

chiatric conditions (e.g. Hoogman et al., 2020; Schmaal et al., 2020; van den Heuvel et al.,

2020). However, until now the ENIGMA consortium has lacked the ability to reliably conduct

consortium-wide analyses on fMRI data. More recently, however, the ENIGMA task-based

(Veer et al., 2019) and resting-state fMRI (Adhikari et al., 2019) working groups have spurred

initiatives to bring the ENIGMA framework to the functional domain.

To support these initiativeswithin ENIGMA,we developed a standardizedworkflow that en-
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Table 1: Comparison to other neuroimaging pipelines

HALFpipe C-PAC
fMRIPrep
MRIQC
FitLins

CONN
toolbox

XCP
Engine

DPARSF
DPABI

Quality
assessment

Quality metrics Yes Yes Yes Yes Yes Yes

Visual quality
assessment

Yes Yes Yes Yes Yes Yes

Features

Task-based
activation

Yes No Yes No* Yes No

Seed-based
connectivity

Yes Yes No Yes Yes Yes

Dual regression Yes Yes No Yes No Yes

Atlas-based
connectivity
matrix

Yes Yes No Yes Yes Yes

ReHo Yes Yes No Yes** Yes Yes

fALFF Yes Yes No Yes Yes Yes

Group statistics Yes Yes Yes Yes No Yes

Note: * Task-based connectivity is supported; ** As implemented with LCOR (Local Correlation).

compasses the essential elements of task-based and resting-state fMRI analyses from rawdata

to group-level statistics, builds on the progress and contributions of fMRIPrep developers, and

extends its functionality beyondpreprocessing steps to include additional preprocessing, post-

processing, and interactive tools for quality assessment. These extended features include:

automatic and reliable conversion of fMRI data to BIDS format, spatial smoothing, temporal

filtering, extended confounds regression, calculation of task-based activations, and resting-

state feature extraction, including seed-based functional connectivity, network-template

(dual) regression, atlas-based functional connectivity matrices, regional homogeneity (ReHo)

analysis, and fractional amplitude of low frequency fluctuations (fALFF). Although each of

these post-processing functions is available in other software packages and a few pipelines

have incorporated a subset of these features, HALFpipe combines all these post-processing

tools from open-source neuroimaging packages with the preprocessing steps performed by

fMRIPrep (see Table 1). Furthermore, although HALFpipe provides recommended settings for

each of the processing steps (see Table 2), it allows users to run any combinatorial number of

these processing settings, thereby offering a streamlined infrastructure for pursuing multi-

verse analyses. Similar to other processing pipelines, HALFpipe is available as a containerized

image, thereby offering full control over the computational environment. In this article, we

provide a detailed description of HALFpipe . First we explain the software architecture and

implementation, followed by a walkthrough of the procedure for running the software, and

finally a discussion of the potential applications of the pipeline.

Methods
The HALFpipe software is containerized, similar to fMRIPrep or C-PAC . This means that it

comes bundled with all other software that is needed for it to run, such as fMRIPrep (Este-

ban, Markiewicz, Blair, et al., 2019), MRIQC (Esteban et al., 2017), FSL (Jenkinson et al., 2012),

ANTs (Avants et al., 2011), FreeSurfer (Fischl & Dale, 2000), and AFNI (Cox, 1996; Cox & Hyde,

1997). As such, all users of one version of HALFpipe will be using the exact same versions of

these tools, because they come with the container. Thus, the containerization of HALFpipe

software aids reproducibility across different researchers and computing environments. We

have provided the HALFpipe application in a Singularity container and a Docker container.

Singularity or Docker, which are both freely available, must be installed prior to download-

ing the containerized HALFpipe application. Both Docker and Singularity perform so-called

operating-system-level virtualization, but are more efficient and require less resources than
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virtual machines. Running Docker containers on a Linux ormacOS operating system requires

administrator privileges. Singularity is typically run on a Linux operating system, which may

be used without administrator privileges.

Besides containers, our HALFpipe development team adopted other software engineering

best practices, which promoted faster development and reduced code errors. These industry

best-practices, which have found their way into research applications (Das, 2018), involve

writing code that is easy to read (albeit generally harder to write), the breakdown of complex

systems into several simpler subsystems, dedicated effort toward thoughtful code design

before implementation, and performing continuous integration via unit tests (Beck, 1999).

The HALFpipe development team applied these practices whenever possible.

HALFpipe is being developed as an open-source project and is accepting contributions that

offer new features, enhance functionality, or improve efficiency. All changes will be reviewed

manually. Additionally, before inclusion in the source tree, changes will undergo automated

(unit) testing, which includes running an entire analysis for one subject of the OpenNeuro

dataset ds000108 (Wager et al., 2008). This way, unexpected side effects and bugs can be

caught and corrected before causing problems for users.

Databases
To automatically construct a neuroimaging processingworkflow, the programneeds to be able

to fulfill queries such as “retrieve the structural image for subject x” . Many programs implement

such queries using a database system.

For example, the Python implementation of the BIDS standard, called PyBIDS , uses an SQL

database on the back-end. Each file of a BIDS dataset is assigned a number of tags in the

database, such as subject , task , or session to facilitate executing queries on these tags. The

PyBIDS equivalent of the example above would be layout.get(datatype='anat', sub='x') . The

database approach adds a layer of complexity, because the database must be defined and

populated and code must be written to interface with the database. For HALFpipe , we chose to

construct indices and query functions based on native Python data types.

A further challenge is generating database queries that flexibly interface with the logic

of neuroimaging and processing pipelines, which is relevant in the context of missing data.

HALFpipe always tries to execute the best possible processing pipeline based on the data that is

available. For example, a field mapmay have been routinely acquired before each functional

scan in a particular dataset. If one of these field maps is missing, HALFpipe flexibly assigns

another field map, for example one belonging to the preceding functional scan. However,

HALFpipe will not use a fieldmap from another scan session, as field inhomogeneities are likely

to have changed. Finally, HALFpipe does not fail if a field map is missing, but simply omits

the distortion correction step for that subject. Other examples include the ability of HALFpipe

to match structural to functional images, and match task events to a functional scan. This

strategy is used throughout the construction of processing workflows.

Metadata
Processing of neuroimaging data requires access to relevant metadata, such as temporal

resolution, spatial resolution, andmany others. Some elements ofmetadata, such as echo time

(TE), are represented differently depending on scanner manufacturer and DICOM conversion

software. The method for reading various types of data has been harmonized in HALFpipe

using the following three methods.

First, metadata can be stored in BIDS format. This means that a JavaScript Object Notation

(JSON) file accompanies each image file, which contains the necessary metadata. BIDS calls

this file the sidecar, and common tools such as heudiconv (Halchenko et al., 2018) or dcm2niix

(Li et al., 2016) generate these files automatically. If these files are present, HALFpipe will detect

and use them. Second, instead of sidecar files, some software tools store image metadata in

the NIfTI header. The NIfTI format defines fields that can fit metadata, but depending on how

the image file was created, these metadata may be missing. Some conversion programs also

place the metadata in the description field in free text format. This description can also be
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parsed and read automatically. Third, information may be incorrectly represented due to

user error, incompatible units of measurement, or archaic technical considerations. In such

cases, HALFpipe provides a mechanism to override the incorrect values. For every metadata

field, the user interface will prompt the user to confirm that metadata values have been read

or inferred correctly. The user can choose to manually enter the correct values.

Interfaces
HALFpipe consists of different modules that need to pass data between each other, such as file

pathnames and the results of quality assessment procedures. Developing an application as

large and complex as HALFpipe requires establishing predictable interfaces, which prescribe

data formats for communication within the application. An advantage of this approach is that

knowledgeable users can write their own code to interface with HALFpipe .

HALFpipe uses the Python module marshmallow to implement interfaces, called schemas in

the module’s nomenclature. All schemas are defined in the HALFpipe code. When the user first

starts the application, the user interface is displayed by HALFpipe . It asks the user a series of

questions about the data set and the analysis plan, and stores the inputs in a configuration file

called spec.json . The configuration file has a predictable syntax and can be easily scripted or

modified, which enables collaborative studies to harmonize analysis plans.

Workflow engine
To obtain reproducible results, a core requirement for HALFpipe was reproducible execution of

the processing pipeline. As the ENIGMA consortium requires fMRI analysis of large datasets

with several thousand samples, HALFpipe was designed to parallelize processing onmultiple

computers or processor cores. Both of these specifications were achieved by implementation

in Nipype , NeuroImaging in Python: Pipelines and Interfaces (Gorgolewski et al., 2011). Nipype is a

workflow engine for neuroimaging that constructs an acyclic directed graph, in which nodes

represent processing commands that need to be executed (the steps of the pipeline), while the

edges represent inputs and outputs being passed between nodes (images or text files). In this

formalization of a neuroimaging pipeline as a graph, the fastest order for execution across

multiple processor cores can be determined.

The workflow graphs are modular and scalable, which means they can be nested and

extended. HALFpipe uses the workflows defined by fMRIPrep and then connects their outputs

to additional workflows. fMRIPrep itself is modular and divided into multiple workflows:

sMRIPrep (Esteban et al., 2021), SDCFlows , and NiWorkflows . The workflow graph facilitates

saving and verifying intermediate results, and supports the user’s ability to stop and later

restart processing. HALFpipe also uses the graphs to determine which intermediate results

files are not needed by subsequent commands by using a tracing garbage collection algorithm

(Dijkstra et al., 1978). As such, intermediate files do not accumulate on the storage device.

This feature is implemented as a plugin to Nipype .

Nipype forms the basis of fMRIPrep and C-PAC , which are widely used in the neuroimaging

community. However, it has several limitations that are relevant in the context of HALFpipe .

HALFpipe is able to calculate features and statistical maps with different variations of prepro-

cessing settings. To do this efficiently, intermediate results need to be re-used whenever

possible. An improved second version of Nipype is currently being developed, called Pydra

(Jarecka et al., 2020), which will be able to automatically detect repetitive processing com-

mands, and automatically re-use outputs. Presently, until Pydra becomes available, HALFpipe

calculates a four-letter hash code that uniquely identifies each preprocessing step. Before

constructing a new preprocessing command, HALFpipe checks whether its hash has already

been added to the graph. If present, the existing command is re-used.

A key requirement of HALFpipe was robust and flexible handling of missing data. For in-

stance amissing functional scan or statisticalmap does not cause HALFpipe to fail. Additionally,

HALFpipe defines inclusion and exclusion criteria for scans, such as the maximum allowed

motion (mean framewise displacement) or a minimum brain coverage when extracting a

brain region’s average signal. Finally, depending on the data set, statistical maps may need
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to be aggregated across runs or sessions within single subjects before a group-level model

can be run. This means that the static graph has to be modified dynamically to adapt to the

results of processing. HALFpipe solves this problem by defining a data structure that not only

contains the file names of statistical maps, but also the tags and metadata that can be used to

adjust processing on the fly. For example, using this data structure, designmatrices can be

constructed for groupmodels based on the actual subjects that have statistical maps available.

Running on a high-performance cluster
HALFpipe provides a simple way to run on a high-performance compute cluster. For each

subject, preprocessing and feature extraction takes 6 to 10 hours on a single processor core.

Most jobs take about 8 GB to 20 GB of RAM, depending on size of the data. Assuming each

subject is assigned to a unique job, we recommend requesting 24 GB of RAM for each job.

The most memory-intensive steps of processing are spatial registration and resampling, and

running FSL MELODIC for independent component analysis (ICA) as part of ICA-AROMA (Pruim

et al., 2015). For large datasets, parallel processing of subjects is highly desirable to reduce

the total computation time.

Deploying Nipype to perform computations onmultiple nodes, such as on a high perfor-

mance cluster (HPC) is particularly challenging. By default, Nipype submits a separate job to

the cluster queue for each processing command (graph node) regardless of the amount of

time required to execute the command. A watcher process running on the head node collects

outputs from completed commands and submits the next processing command. This process

can be inefficient on some HPCs because computational resources need to be allocated and

deallocated continually. We implemented a more efficient approach for HALFpipe that parti-

tions the processing graph into many independent subgraphs, which the user may submit as

separate jobs. The smallest granularity available is one subgraph per subject that is invoked

with the command line flag --subject-chunks . A Nipype workflow is created and validated for

all subjects before the pipeline starts running. In a cluster setting, the most efficient resource

utilization is to submit each subject as a separate job and to run each job on two CPU cores.

Data denoising
HALFpipe and fMRIPrep aremodular preprocessing pipelines, meaning that they utilize a series

of tools from various software libraries. Most have been adopted as standard practice by the

community for many years. Thus, the reasons motivating specific algorithmic choices may

not be readily apparent to users, but need to be considered when designing tools such as

HALFpipe . Here we articulate the design considerations in our selection of tools.

HALFpipe performs all denoising in a predefined order after resampling the fMRI data to

standard space using fMRIPrep . HALFpipe defines standard space as theMNI152NLin2009cAsym

template, which is the most current and detailed template available (Horn, 2016a).

fMRIPrep not only outputs a preprocessed image in standard space, but also a spreadsheet

with nuisance (or confound) time series. These include (derivatives of) motion parameters

(squared), aCompCor components (Behzadi et al., 2007), white matter signal, CSF signal, and

global signal. A key consideration is that including these time series as nuisance regressors

may re-introduce variance that was already removed in previous processing steps (Hallquist

et al., 2013). An example of this phenomenon may be regressing out motion parameters

after removing low-frequency drift via temporal filtering. In practice, this means setting up a

regression model for each voxel, where the temporally filtered time series of a voxel is the

dependent variable and the regressors are the motion parameters. The regression model

will calculate a regression weight for each motion regressor, so that the total model explains

the maximum amount of variance (under assumption of normality). After multiplying the

motion parameters with these weights, they are summed to yield one time series containing

the motion-related noise. This time series is subtracted from the temporally filtered voxel

time series to yield the result of the procedure, the denoised time series (i.e., the regression

residuals). However, if themotion parameters happen to contain any low-frequency drift, then

their weighted sum likely will as well. It follows that subtracting a time series with temporal
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drift from the temporally filtered voxel datawill introduce temporal drift again, independent of

whether a temporal filter was applied before. In HALFpipe , any filter or transformation applied

to the voxel time series is also applied to the nuisance time series. This way, previously

removed variance is not re-introduced accidentally, because it has been removed from both

sides of the regression equation. In HALFpipe , denoising is implemented as follows:

1. ICA-AROMA noise component classification (Pruim et al., 2015) relies on reference masks

defined inMNI152NLin6Asym space, which is different from the standard space template

used by fMRIPrep . To solve this issue, fMRIPrep will estimate a second normalization to this

template, apply it to the fMRI image in native space, and run ICA-AROMA on the resulting

image (Ciric et al., 2021). This approach effectively doubles the processor time spent on spa-

tial normalization, and may require manually checking both spatial registrations. To avoid

this considerable effort, HALFpipe resamples the image toMNI152NLin6Asym space using an

existing transformation/warp field between the two spaces (Horn, 2016b). Specifically, this

predefined warp field is concatenated with the subject’s warp to MNI152NLin2009cAsym

space, with which resampling is performed with fMRIPrep ’s bold_std_trans_wf workflow.

Finally, ICA-AROMA is run on the resulting fMRI image in MNI152NLin6Asym space using

fMRIPrep ’s ica_aroma_wf workflow, which also includes spatial smoothing fixed to a 6 mm

FWHM smoothing kernel (Pruim et al., 2015). ICA-AROMA generates a set of component time

series and a binary classification of these components as either signal or noise.

2. HALFpipe implements spatial smoothing using AFNI ’s 3dBlurInMask (Cox, 1996). Each voxel’s

signal is averaged with the signal of its neighboring voxels, weighted by an isotropic gaus-

sian kernel. At the edges of the brain, this kernel may include non-brain voxels, so smooth-

ing is constrained to only happenwithin the brainmask. This is equivalent to the procedure

in theMinimal Preprocessing Pipelines for the Human Connectome Project (Glasser et al., 2013).

3. Grand mean scaling sets the image mean, defined as the within-scan mean across all

voxels and time points, to a predefined value. The grand mean is closely related to scanner

parameters such as amplifier gain but not to neural mechanisms (Gavrilescu et al., 2002).

Adjusting the grand mean via scaling makes analysis results more interpretable and com-

parable across subjects, sessions, and sites. The scaling factor is calculated based on the

masked functional image, and applied to both the fMRI data and the nuisance time series

extracted by fMRIPrep .

4. The previously estimated ICA-AROMA noise components are removed from the smoothed

and grand-mean-scaled fMRI data. This is done in a non-aggressive way to minimize

removing variance that is shared between signal and noise components. ICA-AROMA

implements this step using the FSL command fsl_regfilt , which calculates an ordinary

least squares regression for each voxel, where the design matrix includes both the signal

and the noise components as regressors. This means that the resulting regression weights

reflect theuniquevarianceof thenoise components (andnot the sharedvariancewith signal

components). Then, the noise component regressors are multiplied by their regression

weights and added together to yield one time series of all the noise. Subtracting the noise

from the voxel time series yields a denoised time series (the regression residuals); this step

is done using a re-implementation of fsl_regfilt in Numpy (Harris et al., 2020). The same

procedure is applied to the nuisance time series from step 3.

5. Temporal filtering can be used to remove low-frequency drift via a high-pass filter, high-

frequency noise via a low-pass filter, or both at the same time using a band-pass filter.

HALFpipe implements two approaches to temporal filtering, a frequency-based approach (Jo

et al., 2013) and a Gaussian-weighted approach (Marchini & Ripley, 2000). The frequency-

based temporal filter is very exact in selecting frequencies to be kept or removed, and is

commonly used to calculate fractional Amplitude of Low Frequency Fluctuations (fALFF)

and Regional Homogeneity (ReHo). The Gaussian-weighted temporal filter is the default

used by FSL Feat (Jenkinson et al., 2012) and may have fewer edge effects at the start and

end of the time series. However, its spectrum also has a more gradual roll-off, meaning

that it will be less aggressive in removing frequencies close to the chosen cutoff value.
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HALFpipe user interface BIDS conversion
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Figure 1. HALFpipe workflow. After minimal preprocessing with fMRIPrep (Esteban, Markiewicz, Blair, et al., 2019),
additional preprocessing steps can be selected (purple). Using the preprocessed data, statistical maps can be
calculated during feature extraction (turquoise). Note that not all preprocessing steps are available for each feature,
as is outlined in Table 2. The diagram omits this information to increase visual clarity.

Temporal filtering is applied to both the fMRI data and nuisance time series from step 4.

6. Nuisance time series from step 5 are removed using the regression residualization proce-

dure described above from both the fMRI data and the nuisance time series.

HALFpipe suggests default settings for each of these steps, which are outlined in Table 2.

Note that some are selected based on best-practices in the field (i.e., band-pass temporal filter

for ALFF and ReHo), whereas most default settings can be adjusted by the user.

Quality assessment
Assessing the quality of data and preprocessing is a laborious undertaking and often done

manually. Efforts to automate this process, either through predefined thresholds of image

quality features (Alfaro-Almagro et al., 2018) or machine learning (Esteban et al., 2017) are

not yet ready to replace the eyes of a trained researcher checking the data. However, various

approaches make this process easier. First, rather than viewing three-dimensional neu-

roimaging files directly, generating and viewing reports containing two-dimensional images

offers a significant time savings. Second, tools such as slicesdir (in FSL ), fMRIPrep , and MRIQC

generate HTML files that containmultiple report images and can be explored in a web browser.

MRIQC also provides an interactive widget to rate the quality of each image (Esteban, Blair,

et al., 2019).
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In HALFpipe , we use a fixed set of processing steps for quality assessment. While slicesdir

allows the researcher to easily compare the same image type across different subjects, it

cannot be used to generate reports for all types of images. By contrast, fMRIPrep/MRIQC HTML

files have a broad range of information and quality report images included, but one HTML

file is always specific to one subject. As such, examining multiple processing steps in many

subjects can be cumbersome. To overcome these issues, HALFpipe provides an interactive

web app that is contained in a single HTML file. The app dynamically loads reports with

images, and can handle datasets up to thousands of images without a performance penalty.

The images can be sorted both by subject, as is done by fMRIPrep/MRIQC , or by image type, as

is done in slicesdir . Each image can be rated as either good, uncertain, or bad. Predefined

logic automatically converts these ratings into inclusion/exclusion decisions for HALFpipe ’s

group statistics. In addition, tagging images as uncertain enables users to efficiently retrieve

and discuss these with a colleague or collaborator, after which a definitive decision on image

quality can be made.

Images can be zoomedby clicking them. For faster operation by advanced users, rating and

navigation are accessible not just via user interface buttons, but also via keyboard shortcuts

based on the WASD keys. Pressing the A goes back one image and D goes ahead, whereas

W, S and X rate an image as good, uncertain or bad, respectively. The web app offers an

overview chart that indicates subjects preprocessed successfully and subjects with errors,

a chart with quality ratings, and box plots reflecting the sample distributions for motion,

noise components, and temporal signal-to-noise ratio (tSNR). All three are implemented

so that users can hover over chart elements with their cursor to view meta-information,

such as the subject identifier, and click to navigate to the associated report images. The

HTML file is built as a frameworkless web app using TypeScript. Source code is available at

https://github.com/HALFpipe/QualityCheck.

HALFpipe shows two report images for each subject on structural/anatomical processingand

four additional images for each type of functional scan. Detailed explanationsmay be found in

the quality assessment manual at https://github.com/HALFpipe/HALFpipe#quality-checks.

1. T1w skull stripping shows the bias-field corrected anatomical image overlaid with a red

line that outlines the brain mask. The user must check that no brain regions are missing

from the mask, and that portions of the skull or head are not included in the mask.

2. T1w spatial normalization shows the anatomical image resampled to standard space over-

laid with a brain atlas in standard space. The user needs to check whether the regions of

the atlas closely match the resampled image.

3. Echo planar imaging (EPI) tSNR shows the temporal signal-to-noise ratio of the functional

image after preprocessing using fMRIPrep . The user must check that signal recovery is

distributed uniformly throughout the brain, and exclude scanswith asymmetry, distortions,

localized signal drop-out, or striping artifacts.

4. EPI Confounds shows the carpet plot (Aquino et al., 2020; Power, 2017) generated by

fMRIPrep . A carpet plot is a two-dimensional plot of time series within a scan, with time

on the x-axis and voxels on the y-axis. Voxels are grouped into cortical gray matter (blue),

subcortical gray matter (orange), cerebellum (green), and white matter and cerebrospinal

fluid (red). Above the carpet plot are time courses (x-axis) of the magnitude (y-axis) of

framewise displacement (FD), global signal (GS), global signal in CSF (GSCSF), global signal

in white matter (GSWM), and DVARS, which is the temporal change in root-mean-square

intensity (D = temporal derivative of time courses, and VARS = root-mean-square variance

over voxels). The usermust look for changes in heatmap/intensity in relation tomotion and

signal changes above. Abrupt changes in the carpet plot may correspond to motion spikes,

whereas extended signal changes may indicate acquisition artifacts caused by defective

scanner hardware.

5. EPI ICA-based artifact removal shows the time course of the mean signal extracted from

each ICA-component and its classification as either signal (green) or noise (red). This figure

is generated by fMRIPrep . For each component, there is a spatial map (left), the time series
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Table 2: Default values for preprocessing settings per feature

Preprocessed
image

Task-based
activation

Seed-based
connectivity

Dual
regression

Atlas-based
connectivity

matrix
ReHo fALFF

Spatial
smoothing

6 mm 6 mm*

Grand mean
scaling

10,000

ICA-AROMA Yes

Temporal filter Gaussian (125 s FWHM) Frequency-based (0.01–0.1 Hz)

Confound
removal

None None

Add confounds
to model

None

Note: Cells filled in grey indicate that this option cannot be selected in the user interface, all other settings can be adapted
by the user; * Done on the statistical maps after feature extraction.

(top right) and the power spectrum (bottom right). The user must check that components

classified as noise do not contain brain networks or temporal patterns that are known to

be signal.

6. EPI spatial normalization shows the functional image after preprocessing using fMRIPrep

overlaid with a brain atlas in standard space. As before, the user must check whether the

regions of the atlas closely match the resampled image.

Statistics
HALFpipe uses FSL FMRIB Local Analysis of Mixed Effects (FLAME) (Woolrich et al., 2004) for

group statistics, because it considers the within-subject variance of lower level estimates in

its mixed effects models. In addition, its estimates are conservative, which means they offer

robust control of the false positive rate (Eklund et al., 2016).

A common issue in fMRI studies is that the spatial extent of brain coverage may differ

between subjects. A common choice is to restrict higher-level statistics to only those voxels

that were acquired in every subject. However, with a large variation in brain coverage, which

is to be expected when pooling multi-cohort data, sizable portions of the brain may ultimately

be excluded from analysis. To circumvent this issue, HALFpipe uses a re-implementation of

FSL ’s flameo in Numpy (Harris et al., 2020). In this implementation, a unique design matrix is

re-generated for every voxel so that only subjects who have a measurable value for a given

voxel are included. Then the model is estimated using the FLAME algorithm. This list-wise

deletion approach depends on the assumption that voxels are missing completely at random

(MCAR), meaning that the regressors (and thus statistical values) are independent of scanner

coverage.

For groupmodels, users can specify flexible factorial models that include covariates and

group comparisons. By default, missing values for these variables are handled by list-wise

deletion as well, but the user may alternatively choose to replacemissing values by zero in the

demeaned designmatrix. The latter approach is equivalent to imputation by the samplemean.

Designmatrices for the flexible factorial models are generated using the Pythonmodule Patsy

(Smith et al., 2018). Contrasts between groups are specified using the lsmeans procedure

(Lenth, 2016).

Procedure
HALFpipe starts up as a terminal-based user interface that prompts the user with a series of

questions about the dataset being analyzed and the desired analysis plan. The main stages of

HALFpipe analysis, which are detailed below, include loading data, preprocessingwith fMRIPrep ,
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Table 3: Examples of path template syntax

Example 1 Example 2

Path template data/{subject}/bold_rest.nii.gz data/{subject}/bold_{task}.nii.gz

Matches these
files

data/subject01/bold_rest.nii.gz

data/subject02/bold_rest.nii.gz

data/subject03/bold_rest.nii.gz

data/phantom/bold_rest.nii.gz

data/subject01/bold_rest.nii.gz

data/subject02/bold_rest.nii.gz

data/subject03/bold_rest.nii.gz

data/subject01/bold_task.nii.gz

Does not match
data/subject01/bold_task.nii.gz

data/subfolder/subject01/bold_rest.nii.gz

data/phantom/bold_rest.nii.gz

data/subfolder/subject01/bold_rest.nii.gz

Note: The grey highlight shows the part of the file name that is responsible for not matching.

quality assessment, feature extraction, and group-level statistics. Users have the flexibility

to specify the settings for each processing stage at one time or separately at each stage. If

HALFpipe is stopped and resumed at an intermediate stage, HALFpipe will detect which stages

have been completed and ask the user to indicate further analyses that are desired. For

instance, the user can request preprocessing and feature extraction, but not group-level

statistics, and later resume processing specifying group-level statistics only.

Loading data
Amajor advantage of HALFpipe is that it accepts input data organized in various formatswithout

the need for file naming conventions or a specific directory structure. Using the terminal

interface, the user is asked to provide the location of the T1-weighted and fMRI BOLD image

files, which are required for preprocessing, aswell as fieldmaps and task event files if available

or applicable. However, HALFpipe requires additional information linking the image files to

run in an automated fashion, such as information specifying which set of images belong to

the same subject.

Through the use of path templates, HALFpipe can handle a wide range of folder structures

and data layouts. The syntax for path templates is adapted from C-PAC ’s data configuration

(Giavasis et al., 2020). Instead of manually adding each input file for each subject separately,

as is done in the SPM or FSL user interfaces, the template describes the pattern used for naming

files. That pattern canmatch many file names, thereby reducing the amount of manual work

for the user. For example, when placing the tag {subject} in the file path {subject}_t1.nii.gz ,

all files of which the name ends in _t1 and have the extension .nii.gz will be selected. The

part of the filename that comes before _t1 is now interpreted by the parsing algorithm as

the subject identifier. Whenmultiple files from different modalities have the same subject

identifier, or sessionnumber, etc., theywill bematched automatically by these tags. Automated

processing workflows can then be constructed around the resulting data structure.

In contrast to C-PAC ’s data configuration syntax, HALFpipe path templates use BIDS tags

(Gorgolewski et al., 2016). HALFpipe path templates can be further specified by adding a colon

and a regular expression after the tag name (as in standard Python regular expression syntax).

For example, {subject:[0-9]} will only match subject identifiers that contain just digits. This

can be useful for more complex data layouts, such as whenmultiple datasets are placed in the

same directory, and only a single subset is to be used. For more examples, see Table 3.

In the HALFpipe user interface, the user receives feedback on howmany and which files are

matched, so that the path templates can be entered interactively. Importantly, after finishing

the configuration process via the user interface, all files are internally converted into the

standardized BIDS structure, which is a prerequisite for running fMRIPrep . However, no copies

of files are made, the conversion is based entirely on symbolic links (aliases) to the original

files. If the data are already in BIDS format, HALFpipe will still carry out this conversion for

consistency. The resulting dataset in BIDS format is then stored in the working directory in a

subfolder called rawdata .
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Preprocessing
Preprocessing is implemented in HALFpipe using fMRIPrep , which performs a consensus of

preprocessing steps required for any fMRI study (Esteban, Markiewicz, Blair, et al., 2019). The

consensus steps include skull stripping, tissue segmentation, and spatial normalization of

structural images. Consensus steps for functional images include motion correction, slice

time correction, susceptibility distortion correction, and spatial normalization. Besides

slice timing correction, all other steps entail spatial transformations. fMRIPrep calculates

the parameters for each of these transformations, which are combined and finally applied

in one step. The resulting image is outputted, among other derived data and a report on

preprocessing. Importantly, HALFpipe runs fMRIPrep with small modifications. We disabled

experimental susceptibility distortion correction in the absence of field maps, because it is

not yet validated. We also do not output preprocessed and normalized functional images by

default, because they use a lot of disk space. However, users canmanually choose to output

preprocessed images with their choice of preprocessing settings in the user interface.

For fMRIdata, HALFpipe canperformdenoising via ICA-AROMA (Pruimet al., 2015). Additional

widely used preprocessing steps, such as spatial smoothing, grandmean scaling, temporal

filtering (Gaussian- or frequency-based), and confound regression can be selected by the user,

the latter using confounds selected from the large set generated by fMRIPrep , including the

original motion parameters, derivatives of motion parameters, motion parameters squared,

top five aCompCor components (Behzadi et al., 2007), white matter signal, CSF signal, and

global signal. Importantly, in fMRIPrep all confound signals are extracted from the data before

ICA-AROMA is run. If applicable, HALFpipe will apply denoising to these confound signals as well,

to match the preprocessed and denoised data, so as to not accidentally re-introduce noise

variance (Hallquist et al., 2013; Lindquist et al., 2019). This was illustrated with the example

onmotion parameter regression in the section Data denoising.

Various confound and denoising settings may be used for each fMRI feature (see sec-

tion Feature extraction), and for generating preprocessed images that can, for example, be

used to extract features with software other than HALFpipe .

Quality assessment
Quality assessment can be performed in an interactive, browser-based user interface (see

Figure 2). HALFpipe provides a detailed user manual for quality assessment that is linked on

the web page. The web app shows report images of several preprocessing steps such as T1

skull stripping and normalization, BOLD tSNR, motion confounds, ICA-based artifact removal,

and spatial normalization (see the methods section on Quality assessment). These images

can be visually inspected and rated by the viewer as either good, uncertain, or bad.

Ratingswill be saved in the local browser storage. Once completed, they canbedownloaded

in JSON format to be read by HALFpipe . If placed in the working directory, ratings will be

automatically detected by HALFpipe and used to exclude subjects for group-level statistics.

Additionally, HALFpipe will automatically detect all other JSON files whose names start with

exclude , to accommodate quality assessment by multiple researchers. In the case of conflicts

between ratings, the lower rating will be used.

HALFpipe will include as much data as possible while excluding all scans rated as “bad”.

Ratings of “good” and “uncertain” will be included for group analysis. A “bad” rating for any

report image related to structural/anatomical processing will exclude the entire subject. A

“bad” rating for any report image related to functional image processing will only exclude the

specific functional scan. This means that if a subject has one “bad” scan, its other scans may

still be included for group statistics.

In addition, the mean framewise displacement, percentage of frames with a framewise

displacement above a specified threshold, percentage of the independent components that

were classified as noise, andmean graymatter tSNR from all subjects is displayed in box plots.

Next to the report images, links to the source images are shown so that these can be inspected

in more detail by opening them in a preferred image viewer (e.g., fsleyes ).
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Figure 2. Quality assessment user interface. The top panel shows the charts view, containing one chart
for processing status, one for quality ratings and one for image quality metrics. In the top left corner, the
navigation menu is open, which shows the option to export ratings for use in group statistics. The bottom
panel contains a screenshot of the explorer view that allows the user to navigate across subjects and
image types. The explorer view shows the currently selected report image on the right, along with its rating,
related images, and the source files that were used to construct it.

Feature extraction
Following preprocessing, HALFpipe can extract several features that are commonly used in

resting-state and task-based analysis. These include various ways of examining functional

connectivity between brain regions (seed-based connectivity, network-template (or dual)

regression, atlas-based connectivity matrices), as well as measures of local activity (ReHo,

fALFF). HALFpipe allows the user to choose several region-of-interest masks (seeds), template

networks, and atlases, for which a threshold indicates the minimum overlap the user requires

between seeds, template networks, or atlas regions and the subjects’ fMRI data. For each

feature, the user can change the default settings for spatial smoothing and temporal filtering,

and choose the confounds to be removed. The user is offered the option to extract the same

featuremultiple times, each time varying the preprocessing, confound, and denoising settings

to explore the impact of analytical decisions in a multiverse analysis. Of note, for selected

features some options are not available. For example, spatial smoothing is disabled for atlas-

based connectivity matrices (Alakörkkö et al., 2017), or performed after ReHo and fALFF have

been calculated (see Table 2).

A brief description of the features is provided in Box 1.
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Box 1: Overview of HALFpipe features

Task-based activations A first-level general linear model (GLM) is run for event-related or block designs. GLM regressors
describing the stimulus presentations for each of the task conditions are convolved with a double Gamma HRF and the
overall model is fit for each voxel in the brain using FSL FILM (Woolrich et al., 2001). Contrasts of interest are tested,
which results in a whole-brain task activation map for comparisons between task conditions.

Seed-based connectivity Average BOLD time series are extracted from a region of interest (seed), which is defined by a
binary mask image. This time series is used as a regressor in a first-level GLM, where the model is fit for each voxel in the
brain using fsl_glm . This results in a whole-brain functional connectivity map that represents the connectivity strength
between the ROI and each voxel in the brain.

Network-template (or dual) regression Subject-specific representations of connectivity networks (e.g., default mode,
salience, task-positive networks) are generated using dual regression (Beckmann et al., 2009) with fsl_glm . In a first
regression model, the set of network template maps is regressed against the individual fMRI data, which generates time
series for each of the template networks. Next, a second regression model is run, regressing the network time series
against the individual fMRI data. This generates subject-specific spatial representations of each of the template networks,
which can be considered to represent the voxelwise connectivity strength within each of the networks.

Atlas-based connectivity matrix Average time series are extracted from each region of a brain atlas of choice using
custom code inspired by Pypes (Savio et al., 2017) and Nilearn (Abraham et al., 2014). From these, a pairwise connectivity
matrix between atlas regions is calculated using Pearson product-moment correlations using Pandas (McKinney, 2010),
which represent the pairwise functional connectivity between all pairs of regions included in the atlas.

Regional homogeneity (ReHo) Local similarity (or synchronization) between the time series of a given voxel and its
nearest neighboring voxels is calculated using Kendall’s coefficient of concordance (Zang et al., 2004) using FATCAT ’s
3dReHo which is distributed with AFNI (Taylor & Saad, 2013).

Fractional amplitude of low frequency fluctuations (fALFF) Variance in amplitude of low frequencies in the BOLD signal
is calculated, dividing the power in the low frequency range (0.01–0.1 Hz) by the power in the entire frequency range (Zou
et al., 2008) with a customized version of the C-PAC implementation of fALFF.

Group-level statistics
Group-level statistics on individual features can be performed with FSL ’s FLAME algorithm.

Subjects who had poor quality data in the interactive quality assessment are excluded. In

addition, subjects can be excluded based onmovement by selecting the maximum allowed

mean framewise displacement (FD) and percentage of outlier frames (i.e., frames with motion

higher than the specified FD threshold).

For group-level statistics, users can choose to calculate the intercept only (i.e., mean across

all subjects) or runflexible factorialmodels. For the latter, HALFpipe prompts the user to specify

the path to a covariates file (multiple file formats are supported) containing subject identifiers,

group membership, and other variables, and to specify whether these are continuous or

categorical. Missing values in the covariates file can be handled with either listwise deletion

or mean substitution. The user can specify main effects and interactions between variables,

while within-group regressions against a continuous variable (e.g., symptom severity) is also

possible.

Discussion
Large samples are essential for recent neuroimaging applications, such as imaging-genetics

association studies, training of complex machine learning models, and even unsupervised

learning. This demand has stimulated efforts to pool data frommultiple observational studies,

which typically incur greater bias than studies designed a priori to address a specific scientific

question. Within ENIGMA, we developed HALFpipe to support harmonization of task-based

and resting-state fMRI data analysis and quality assessment across multiple labs and cohorts.

HALFpipe bundles all software tools, library functions, and other dependencies by container-

izing the requisite components in a Singularity (Kurtzer et al., 2017) and Docker (Docker

Inc.) release. Containerization ensures that all software dependencies and the runtime envi-

ronment are provided. Therefore, containerized software such as HALFpipe can run reliably

regardless of the computing environment where it is installed, be it a laptop, computational

cluster, or cloud computing service (Grüning et al., 2018).

The design, implementation, and testing of the HALFpipe workflow resulted in its 1.0 version
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release in early 2021. Several thousand resting-state fMRI datasets from 29 ENIGMA PTSD

consortium sites have already been analyzed as part of the first published report to employ

HALFpipe (Weis, 2020), while analyses of other largemulti-site datasets are currently underway

in several ENIGMA working groups, including the ENIGMA task-based fMRI working group

(Veer et al. 2019). Running HALFpipe requires approximately 8 to 20 GB of RAM per computer

or cluster node and 6 to 10 hours to complete on a single processor core. The exact resource

usage depends on voxel resolution and the number of volumes in the fMRI data. The number

of features the user chooses has a negligible impact on processing time.

The HALFpipe user experience includes an interactive user interface to facilitate rapid anal-

ysis prototyping while preserving the ability to script automated analyses of large datasets via

configuration files in JSON format with detailed prescriptions of the dataset, analyses steps,

and input parameters. Importantly, HALFpipe accommodates concurrent harmonized pro-

cessing of task-based and resting-state fMRI data, which facilitates cross-modal comparisons

between the two fMRI modalities.

Our implementation of HALFpipe enables users to tackle consortium analyses of multi-

cohort fMRI datawith highly uniformapplication ofmethods. Specifically, we have established

a standardized process and analysis methodology that involves a pre-specified: (1) ensemble

of software tools, (2) software version for each tool, (3) set of user-defined parameters, (4)

analytic steps, (5) sequence of analytic steps, (6) quality assessment process, and (7) criteria

for excluding substandard data. Thus, HALFpipe promotes the seamless implementation of a

standardized process (preprocessing and feature extraction) at each site and/or cohort prior to

initiating group level statistics. Such capabilities hold the promise of significantly advancing

basic neuroscience, and particularly clinical neuroscience, by supporting the execution of

multi-site multi-cohort studies of several hundred or several thousand samples — ultimately

supporting harmonized cross-disorder comparisons. While not part of the HALFpipe workflow,

cross-site/platform harmonization techniques for neuroimaging have recently experienced a

dramatic increase (Fortin et al., 2018; Pezoulas et al., 2020; Wachinger et al., 2021). Much

of this methodological innovation has arrived on the heels of earlier developments in cross-

platform harmonization of genetic data (Borisov et al., 2019; Haghverdi et al., 2018; Johnson

et al., 2007; Pontikos et al., 2017). These advances in harmonization of neuroimaging data are

expected tomanifest synergy with standardized workflows such as HALFpipe , as both elements

are essential to large-scale imaging consortium efforts (Thompson, Jahanshad, et al., 2020).

The implementation of quality metrics for fMRI data has been an incremental process that

has moved steadily towards establishing empirically-informed best practices. Historically,

quality criteria have been applied unevenly across research labs. Recent years have witnessed

a heightened awareness about the essential role of applying systematic and principled quality

metrics to minimize confounds, for example motion artifacts (Murphy et al., 2013; Power

et al., 2012; Power et al., 2014), and widespread fMRI signal deflections (Aquino et al., 2020).

Automated quality control methods are being developed and adopted with increasing in-

terest, such as the MRI Quality Control software MRIQC (Esteban et al., 2017). HALFpipe has

adopted parts of the functionality of MRIQC with an enhanced user experience that generates

quality reports via a web-browser-based interface to facilitate rapid viewing, screening, and

selection of individual subject data for inclusion or exclusion. The application of uniform

quality assessment procedures is particularly important when mega-analyzing and even

meta-analyzing multi-site/scanner data, as is done in ENIGMA. That is, study variables that

segregate by site are more likely to lead to confounds without the uniform implementation

of quality assessment across sites (e.g. Wachinger et al., 2021). With its harmonized quality

procedures, HALFpipe aims to minimize such effects.

Limitations
Computing platforms that are likely to differ between sites are known to introduce subtle

differences in output attributable to operating systems and hardware (Gronenschild et al.,

2012). Collecting rawmulti-site data at one central site prior to HALFpipe processing ensures
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that the same computing platform can be used to process all data. While optimal, this is

often not practical due to restrictions on data sharing, even when the data is completely

de-identified (i.e., when linking data to protected health or other sensitive information is no

longer possible).

HALFpipe offers harmonization through uniform processing of fMRI data, but other sources

of non-uniformity are beyond its scope. Recent advances in cross-site/platformharmonization

may additionally correct for differences in site, scanner hardware, or computation on different

processors (Fortin et al., 2018; Pezoulas et al., 2020; Wachinger et al., 2021). Suchmethods

could be applied to extracted HALFpipe features, either centralized or through distributed

computation using tools such as COINSTAC (Plis et al., 2016), to yield results that are potentially

more generalizable.

Conclusion
HALFpipe provides a standardized workflow that encompases the essential elements of task-

based and resting-state fMRI analyses, builds on the progress and contributions of fMRIPrep

developers, and extends capabilities beyond preprocessing steps with a diverse set of post-

processing functions. HALFpipe represents a major step toward addressing the reproducibility

crisis in functional neuroimaging by offering a workflow that maintains details of user op-

tions, steps performed in analyses, metadata associated with analyses, code transparency,

containerized installation, and the ability to recreate the runtime environment, while im-

plementing empirically-supported best-practices adopted by the functional neuroimaging

community.
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