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ABSTRACT 

Leukemia initiating cells (LICs) fuel leukemic growth and spark relapse. Previously 

thought to be primitive and rare, the LIC state may actually be heterogeneous and 

dynamic, enabling evasion of therapies. Here, we use single-cell transcriptomics to track 

LIC multipotency within the cellular ontogeny of MLL-rearranged B-lymphoblastic 

leukemia (MLL-r B-ALL). Although we identify rare transcriptionally and phenotypically 

primitive LICs, we also observe LICs emerging from more differentiated populations with 

the capability to replenish the full leukemic cellular diversity.  We find that activation of 

MYC-driven oxidative phosphorylation controls this process of facultative state 

conversion in LICs. 
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Leukemia initiating cells (LICs) possess the capability for sustained, deregulated self-

renewal and the potential to fully reconstitute fulminant leukemia at relapse or upon 

xenotransplantation. This definition was formed based on the finding that only a specific 

fraction of human acute myeloid leukemia (AML) cells could engraft immunodeficient 

mice (1). Subsequent studies advanced a model wherein leukemia cells are 

hierarchically organized with rare, primitive, quiescent LICs at the apex that appropriate 

hallmarks of normal hematopoietic stem and progenitor cells (HSPCs) including self-

renewal and differentiation (2, 3).  Based on this model, LICs have been defined in 

several forms of leukemia (4-9).   

Recent advances have opened paradigms of LIC biology to revision. Use of 

improved immunodeficient mouse strains that heighten the sensitivity of 

xenotransplantation has revealed that engraftable LICs can be heterogeneous (10-12). 

This concept could explain the limited clinical success of interventions targeting LICs as 

has been suggested in solid tumors where cancer stem cells show phenotypic plasticity 

(3, 13). Although such findings have led to reassessment of classical LIC models, it 

remains generally accepted that leukemias are comprised of heterogeneous cells with 

variable xenotransplantation capacities. Since the engraftability of individual leukemias – 

a readout of LIC content - is of prognostic importance, improved understanding of LIC 

biology is needed (14, 15). 

B-ALL with rearrangement of the MLL locus (MLL-r) constitutes about 80% of B-

ALL of infancy and also occurs in older children and adults. MLL-r B-ALL behaves 

aggressively, often presenting with corticosteroid resistance and central nervous system 

infiltration, and has poor long-term outcomes (16, 17). This unfavorable clinical behavior 

is associated with distinctive underlying biology including coexpression of markers of 

myeloid differentiation and the ability to undergo a B-lymphoid-to-myeloid lineage switch 

(16, 18, 19).  These attributes suggest that MLL-r B-ALL LICs uniquely possess primitive 
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HSPC-like multipotency programs and multilineage differentiation potential that could be 

tracked to purify and study LIC biology. 

Here, we used single cell RNA sequencing (scRNA-seq) combined with 

xenotransplantation to define the cellular diversity of MLL-r B-ALL. Although LICs are 

enriched in phenotypically and transcriptionally primitive fractions, they can facultatively 

emerge from more differentiated blast populations to reconstitute the full cellular diversity 

of MLL-r B-ALL, a process regulated by MYC signaling and mitochondrial oxidative 

phosphorylation. Our findings define new mechanisms of LIC plasticity with anticipated 

therapeutic relevance. 
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RESULTS 

Single cell RNA sequencing identifies candidate LICs 

The coexpression of myeloid markers and tendency to switch to the myeloid lineage at 

relapse suggests that MLL-r B-ALL LICs possess B-lymphoid/myeloid multipotency (16, 

19). Therefore, we aimed to elicit multipotency at the single-cell level in MLL-r B-ALL. To 

this end, we employed patient derived xenografts (PDXs) with defined somatic mutations 

(Table S1)(20, 21). These MLL-r B-ALL PDXs infiltrate the liver, spleen, lymph nodes, 

and central nervous system of unconditioned NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) 

recipient mice (Fig. 1A). At baseline, MLL-r B-ALL cells are nearly uniformly CD19+ with 

occasional CD33+ cells (Fig. 1B). To test for latent multipotency, we used MS5 stromal 

cells that can induce B-lymphoid and myeloid differentiation in human HSPCs (22, 23). 

After 4 weeks of culture on MS5, MLL-r B-ALL cells differentiated to CD33+ primitive 

myeloid cells (Figure S1A). By performing single cell assays, we found that MLL-r B-ALL 

cells generated clonal outgrowths containing both B-lymphoid and myeloid differentiation 

(Fig. S1, B-C).   

To better understand the primitive multipotent programs in MLL-r B-ALL, we 

performed scRNA-seq (24, 25). We obtained 5,153 viable, human CD45+ cells from 

leukemia 1 (MLL-AF4 patient peripheral blood, inDrop platform) and 6,230 cells from 

leukemia 2 (MLL-ENL early passage PDX, SeqWell platform), after performing quality 

controls (see Methods). Presenting leukemia 1 (MLL-AF4) as an example, we visualized 

14 transcriptional groups with unique signatures using t-stochastic neighbor embedding 

(t-SNE; Fig. 1C-D). We used the SingleCellNet algorithm to compare each 

subpopulation to normal benchmarks and found that most cells classified as pro-B cells, 

indicating that the observed transcriptional heterogeneity is independent of the global 

differentiation state (Fig. 1E)(26, 27). We next used the StemID algorithm to assign a 

multipotency label to each cell, finding that clusters 1 and 9 were most highly enriched in 
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putative multipotent cells (Fig. 1F)(28). Consistent with this prediction, we validated 

enrichment of primitive HSPC signatures in these clusters (Fig. 1G)(29). We observed 

similar results in leukemia 2 (Figure S1, D-G). 

To further assess the differentiation state of these candidate LSC-enriched clusters 

we analyzed the expression of cell surface markers. We found that the primitive HSPC 

marker CD34 was expressed in the candidate LIC cluster 1 along with low expression of 

CD38 and the committed B-cell markers CD19, CD79A, and CD79B.  This suggested a 

relatively primitive differentiation state typical of normal human HSCs and multipotent 

progenitors (MPPs) in the candidate LIC cluster 1 (Fig. 1H, Figure S1, H)(30). Given this 

finding and considering the primitive multipotency programs of MLL-r B-ALL, we 

analyzed expression of CD34 and CD38 as well as the markers CD90 and CD45RA by 

flow cytometry. These markers resolve multipotent HSPCs - HSCs, MPPs, and 

multilymphoid progenitors (MLPs) - from more lineage restricted myeloid progenitors 

such as granulocyte/monocyte progenitors (GMPs)(30).  We found that MLL-r B-ALL 

contained three distinguishable populations that we named based on their corresponding 

normal HSPC immunophenotypes: rare CD34+ CD38- CD90- CD45RA+ leukemic MLPs 

(L-MLPs), more abundant CD34+ CD38+ CD90- CD45RA+ leukemic GMPs (L-GMPs), 

and the remaining CD34- cells (Fig. 2A). Together, these results suggest that MLL-r B-

ALL cells are heterogenous with LICs possessing a primitive phenotype and 

multipotency programs. 

 

MLL-r B-ALL shows functional cellular heterogeneity 

 To determine if MLL-r B-ALL LICs are enriched in any of these three populations, 

we used fluorescence activated cell sorting (FACS) to purify each for analysis (Fig. 2B, 

Fig. S1, I). Since LICs are typically quiescent, we analyzed the cell cycle status of each 

population (31-33). The most primitive L-MLP fraction contained the highest proportion 
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of cells in G0 phase (Fig. 2C, Fig. S2, A). Next, we used MS5 assays to quantify 

leukemic progenitors, finding that L-GMPs possessed the highest frequency of short-

term clonogenic cells (Fig. 2D).  As the gold standard to detect LICs, we next used 

limiting dilution analysis (LDA) xenotransplantation (34). Using the terminal leukemia as 

our endpoint, we first observed that unfractionated human MLL-r B-ALL possessed a 

remarkably high frequency of LICs (1/426 cells (1/1417 – 1/128 95% confidence 

interval)). Using FACS to fractionate MLL-r B-ALL PDX cells, we found that L-MLPs 

caused leukemia with the shortest latency and contained the highest LIC content in LDA, 

an effect we corroborated with primary patient cells (Fig. 2E-G, Fig. S2, C-H, Fig. S3, A-

B, Table S2). In line with this finding, using RNA sequencing (RNA-seq) of FACS-

purified populations, we found that the L-MLP fraction bore the strongest primitive HSPC 

signature, paralleling our scRNA-seq data (Fig. S3, C-D). 

Since quiescent LICs may be relatively resistant to chemotherapy, we exposed 

MLL-r B-ALL cells to prednisolone for five days followed by a washout period to monitor 

leukemic regeneration, mimicking the corticosteroid prophase used in chemotherapy 

regimens (16). While most cells died upon prednisolone exposure, we found that L-

MLPs were most enriched in the surviving fraction (Fig. S3, E-G). Over three weeks of 

culture, we observed that surviving cells underwent a myeloid lineage switch (Fig. S3, H-

J). Together, these results demonstrate that MLL-r B-ALL cells are functionally 

heterogeneous and appear to be hierarchically organized, with primitive, corticosteroid-

resistant, phenotypically plastic, LIC-enriched L-MLPs at the apex. 

 

Plasticity of MLL-r B-ALL LICs 

Although the primitive L-MLP fraction contained abundant LICs, we observed that 

terminal leukemia did occur in recipients of the more differentiated L-GMP and CD34- 

fractions, albeit at lower efficiency (Fig. 2E-G).  When we compared the content of 
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terminal leukemia derived from each fraction, we found that the full diversity emerged 

from each source (Fig. 3A).  Moreover, by secondary xenotransplantation, we found that 

leukemia derived from each source contained serially transplantable, self-renewing LICs 

(Fig. 3B). To directly observe this plasticity during leukemic reconstitution in vivo, we 

transplanted purified CD34- cells into NSG mice and isolated bone marrow at defined 

time points post-transplant but prior to the expected onset of terminal leukemia. We 

found that CD34- cells gradually replenished the CD34+ fraction over time (Fig. 3C). To 

exclude an artifactual effect of the PDX model, we used primary patient blasts and 

observed similar LIC plasticity in vivo and down to the single-cell level in vitro, where we 

also observed latent myeloid potential in single-cell clones from all phenotypic 

populations (Fig. S4, A-D).   

 

LIC plasticity is driven by MYC and oxidative metabolism 

To investigate mechanisms of LIC plasticity, we performed RNA-seq on relatively LIC-

deplete CD34- cells either transplanted alone and actively repopulating CD34+ 

populations or growing at steady state in vivo with L-GMPs and L-MLPs (Figure 4A). 

Despite their identical immunophenotype, regenerating CD34- cells (CD34-r) and steady-

state CD34- cells bore divergent transcriptional profiles (Figure 4B). We found that 

CD34-r cells bore signatures of oxidative phosphorylation and MYC target gene 

expression (Figure 4C). At steady state, these signatures are enriched in multipotent 

scRNA-seq clusters, suggesting that CD34-r cells are activating primitive programs 

(Figure 4D). Using available MYC ChIP-seq data, we found that MYC bound loci 

involved in mitochondrial function and oxidative metabolism (encodeproject.org, Figure 

4E).   

Since MYC activity drives mitochondrial oxidative metabolism and is implicated in 

the pathobiology of MLL-r leukemias, and since LICs rely on oxidative phosphorylation, 
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we investigated the role of this pathway in LIC plasticity (35-37). By using the Mitotracker 

assay, we confirmed that CD34-r cells contained higher mitochondrial activity compared 

to CD34- cells, although overall mitochondrial mass was similar (Figure 4F-G). Next, we 

generated MV4;11 MLL-r biphenotypic B-ALL/myeloid cells bearing a conditional, 

doxycycline-inducible MYC expression cassette (Figure 4H)(38). Activation of MYC 

expression was sufficient to increase mitochondrial metabolism (Figure 4I). MYC 

expression can be inhibited by the bromodomain inhibitor IBET-151 (39). Therefore, we 

treated MV4;11 cells with IBET-151 and confirmed that this reduced MYC protein (Figure 

4J). By using the Seahorse Mito Stress Assay, we found that IBET-151 diminished 

mitochondrial oxidative metabolism (Figure 4K-L). Next, we treated FACS-sorted CD34-r 

cells in culture on MS5 and actively undergoing regeneration with IBET-151 and 

monitored state plasticity. We found that IBET-151 inhibited conversion to the CD34+ 

state in culture and diminished active mitochondrial content (Figure 4M-O). Treatment of 

NSG mice transplanted with CD34-r cells impaired acquisition of a CD34+ phenotype 

(Figure 4P). These results demonstrate that MYC regulates the metabolic state of MLL-r 

B-ALL cells as a mechanism of cell state interconversion. 
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DISCUSSION 

Since the initial supposition of malignant stem cells, models of leukemic ontogeny have 

been predicated upon that of normal hematopoiesis (2-4). However, the classical model 

holding that LICs are uniformly primitive akin to normal HSCs have gradually been 

revised (3). At first glance, our data would appear to be consistent with this classical 

model in that MLL-r B-ALL cells are stratified from phenotypically and transcriptionally 

primitive to most differentiated.  However, in B-ALL, LICs are distributed across multiple 

phenotypic populations, although their relative enrichment in each apparent 

differentiation state had not been previously quantified (1, 8, 9, 40, 41).  Compared to 

earlier studies, use of more immunodeficient mouse models with heightened sensitivity 

for human engraftment has uncovered heterogeneity in AML LICs as well (11, 42). 

Although across many forms of leukemia, LIC ontogeny does not seem to follow the 

strict stratification and unidirectional differentiation of normal HSPCs, the idea that 

engraftable LIC content correlates with leukemia prognosis provides an impetus for 

investigation of the molecular determinants of their state (14, 15). Notably, we find that in 

MLL-r B-ALL, functional LICs are quite common, being present in approximately 1/500 

cells, which is far more frequent than has been reported in limiting dilution of adult AML 

(11).   

Our data reinforce the notion that LIC identity can be fluid. Use of NSG mice led 

to the first evidence that AML LICs within CD34- fractions could reconstitute the full 

cellular diversity of the original AML specimen, including more primitive CD34+ cells, 

although the mechanism of this interconversion was not known (11). In a clinical context, 

in a more recent study, use of matched diagnostic and relapse AML patient specimens 

revealed that the frequency of engraftable LICs expanded up to 90-fold and that LICs 

gained heterogeneity at relapse, suggestive of plasticity under chemotherapeutic 

pressure (12). Moreover, a recent study reported that acute promyelocytic leukemia cells 
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undergoing differentiation driven by retinoic acid could re-acquire the LIC state following 

chemotherapy withdrawal, effectively reversing the differentiation trajectory (10). 

Extending this concept to solid tumors, a similar effect was recently uncovered in colon 

cancer, where cells devoid of the stem cell marker Lgr5 can establish metastases and 

give rise to Lgr5+ cancer stem cells (43). These findings parallel the known phenomenon 

that in healthy tissues, adult stem cell identity can be plastic: professional stem cells 

maintain tissue integrity at steady state, but under stress, facultative stem cells can be 

recruited from apparently lineage-committed populations (44, 45).   

Our efforts to uncover mechanisms of LIC plasticity in MLL-r B-ALL implicated 

MYC signaling and oxidative phosphorylation. Oncogenic MYC activity is a downstream 

effector of transforming MLL translocations and mitochondrial turnover is important for 

LIC homeostasis (39, 46). Interestingly, MYC can drive mitochondrial oxidative 

metabolism and proliferation of stem cells in breast cancer, consistent with our findings 

(35). Recruitment of oxidative metabolism seems to also play a role in relapse in B-ALL 

(47). We impaired MYC activity through inhibition of BET bromodomain proteins - an 

intervention that slows progression of MLL-driven leukemia - finding that this inhibitor 

blocked the conversion of CD34- to CD34+ cells (39, 48, 49). Together with prior studies, 

our data support a model wherein MLL-containing translocations cooperate with 

bromodomain proteins to engage MYC and activate oxidative phosphorylation, driving 

LIC proliferation and repletion of all leukemic populations. Our findings can be connected 

to the clinical behavior of MLL-r B-ALL and may have therapeutic implications. The dual 

lineage and LIC plasticity of MLL-r B-ALL provide two distinct mechanisms of 

chemotherapy evasion.  Together with high LIC content, this promiscuity in cell state 

likely contributes to the poor outcomes of MLL-r B-ALL. Further understanding of the 

molecular basis of the enhanced cellular plasticity in MLL-r B-ALL relative to normal 

hematopoiesis could lead to valuable therapies.   
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Together, our findings reinforce the notion that LICs are plastic and adaptable, 

providing possible explanations as to why therapies targeting LICs have yet to prove 

widespread efficacy despite being the object of intense investigation for over two 

decades (3, 50). Although aspects of LICs in MLL-r B-ALL might prove to be disease-

specific, placement of our results in the broader context of the prevailing knowledge of 

LICs illustrates the ongoing revision of classical LIC paradigms.  Further incremental 

innovation in immunocompromised mouse models and single-cell-level readouts could 

continue to augment understanding of LIC biology and define an as yet evasive unifying 

LIC model. 
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FIGURE LEGENDS 
 
Figure. 1.  Single cell RNA sequencing identifies candidate LICs.   

(A) The indicated tissues were isolated from NSG mice engrafted with human MLL-r B-

ALL PDXs and analyzed by light microscopy (scale = 50 μm).   

(B) (Upper panels) MLL-r B-ALL cells were procured from leukemic NSG bone marrow 

or spleen and analyzed by flow cytometry (gated on human CD45+). (Lower panels) 

MLL-r B-ALL cells were examined by light microscopy (scale = 10 μm; left; leukemia 1; 

middle leukemia 2; right; leukemia 3).   

(C) Human CD45+ MLL-r B-ALL cells were isolated from patient peripheral blood and 

analyzed by scRNAseq (results shown are for leukemia-1/MLL-AF4). t-distributed 

stochastic neighbor embedding (t-SNE) was used to visualize populations.   

(D) Differentially expressed transcripts in each cluster are shown on a heatmap.   

(E) SingleCellNet was used to classify individual cells relative to normal HSPC and 

differentiated benchmarks.   

(F) The StemID algorithm was used to annotate each single cell with a multipotency 

label, with results overlaid on the t-SNE plot and proportion of predicted multipotent cells 

in each cluster shown.   

(G) t-SNE plot showing enrichment of a validated HSC signature.   

(H) The expression of the indicated cell surface markers in each population is shown.   

 

Figure 2.  MLL-r B-ALL shows functional cellular heterogeneity.   

(A) Representative flow cytometry distributions of cells based on the indicated markers. 

(B) The indicated populations were sorted from leukemic marrow (leukemia 1/MLL-AF4) 

and morphology examined (scale = 10 μm).   

(C) The indicated populations were isolated by FACS and cell cycle state analyzed by 

flow cytometry following staining for Ki67 and DNA content with DAPI. Cell cycle 
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distribution of each population was quantified (results aggregated over two independent 

experiments, n = 5 xenografted mice tested; * p < 0.05 compared to L-MLPs by unpaired 

student’s t-test).   

(D) The indicated populations were sorted onto MS5 stromal layers at various doses. 

After 4 weeks, outgrowths were tabulated, with estimated progenitor cell frequency 

presented. Results are aggregated over two independent experiments (for L-MLP versus 

L-GMP Χ2 = 64.3, p = 1 x 10-15; for L-MLP versus CD34- Χ2 = 14.9, p = 0.0001; for L-

GMP versus CD34- Χ2 = 18.1, p = 0.00002).   

(E) 400 cells of the indicated fractions were xenotransplanted into unconditioned NSG 

recipients, and the incidence of leukemia monitored over time (results aggregated over 

two independent transplantation experiments; p = 0.008 L-MLP versus L-GMP, 0.005 L-

MLP versus CD34-, and 0.9 L-GMP versus CD34- compared by log rank test).   

(F-G) LIC content of each population was quantified by in vivo LDA with incidence at 

each dose shown (see Table S2). 

 

Figure 3.  Plasticity of MLL-r B-ALL LICs.   

(A) Flow cytometry profiles of terminal leukemias derived from the indicated transplanted 

cell populations gated on viable and human CD45+ cells within bone marrow. 

Proportions of each cell type in leukemias derived from the indicated transplanted cell 

populations are presented (p = NS comparing each outcome population except in 

leukemia 1 where p < 0.05 comparing the L-GMP and CD34- fractions of leukemias 

derived from L-GMP to both L-MLP and CD34- derived leukemia).   

(B) Terminal leukemias derived from the indicated cell sources of leukemia 1/MLL-AF4 

in primary transplantation were transplanted into secondary recipients at the indicated 

doses, and the onset of terminal leukemia was monitored in the secondary recipients.   
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(C) CD34- cells were purified from leukemia 1 by FACS and transplanted into recipient 

mice. Reconstitution of CD34+ populations was monitored by flow cytometry (gated on 

viable human CD45+ cells) and quantified over time.   

 

Figure 4. LIC plasticity is driven by MYC and oxidative metabolism.  

(A) Schematic showing the input populations sorted for RNA-seq at steady state (left) 

and from regenerating CD34- cells (right).   

(B) RNA-seq was performed on the indicated populations. Representative heatmap of 

differentially expressed gene is shown across three replicates.   

(C) GSEA was used to identify differentially enriched signatures in CD34-r versus CD34- 

cells.   

(D) The indicated expression signatures were analyzed in the context of the 

corresponding scRNA-seq data.   

(E) MYC ChIP-seq data from the ENCODE project were analyzed and significantly 

enriched peaks queried using Gene Ontology analysis, with significant terms presented.  

(F) Active mitochondria were quantified in the CD34- fraction of bulk leukemia or CD34-r 

cells using Mitotracker green, with representative flow cytometry results presented 

compared to background of unstained cells (n = 8 CD34- and 6 CD34-r biologic 

replicates over two independent experiments).   

(G) CD34- or CD34-r cells were processed for transmission electron microscopy (TEM), 

with representative images presented (scale = 1 μm). Number of mitochondria per cell 

were quantified over two experiments.  

(H) MV4;11 cells were transduced with a doxycycline inducible MYC vector and treated 

with the indicated doses of doxycycline for 24 hours, at which time MYC was measured 

by Western blotting.   
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(I) MYC expression was induced in MV4;11 cells for 4 days, at which time mitochondrial 

activity was measured by flow cytometry using Mitotracker (n = 4 independent 

experiments).   

(J) MV4;11 cells were treated for 48 hours with 50 nM IBET-151 at which time MYC was 

measured by Western blot.   

(K-L) MV4;11 cells were treated with 50 nM IBET-151 or vehicle control for 48 hours, at 

which time they were analyzed by the Mito Stress Assay.  Plot is representative of five 

independent experiments analyzed in (L).   

(M-O). FACS-sorted CD34- cells were cultured on MS5 stroma for 14 days under the 

indicated conditions, at which time either the CD34+ content (M) or Mitotracker green 

signal (N) of the cultures was analyzed by flow cytometry (n = 5 biologic replicates). 

(P) CD34-r cells were engrafted into NSG mice for three weeks, at which time a two 

week treatment course with IBET-151 (5 mg/kg IP daily Monday-Friday for two weeks), 

after which the human CD45+ content of the bone marrow was analyzed by flow 

cytometry with the indicated markers (n = 5 mice per group). 

All results presented as mean ± SEM and compared by student’s t-test, with p-values for 

the indicated comparisons shown. 
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METHODS 

Study design 

This study was initially designed to define LICs in MLL-r B-ALL, relying on 

xenotransplantation with LDA and terminal leukemia incidence by day 150 post-

transplant as endpoints.  This endpoint was chosen based on the approximately 100-day 

latency of bulk transplanted leukemia cells at a dose of 10,000 cells per transplant.  We 

hypothesized that transplantation of LIC-enriched populations would shift latency earlier 

and transplantation of LIC-depleted would shift the latency further.  Leukemia 

populations were isolated and xenotransplanted with investigators monitoring recipient 

mouse health blinded to the cell source.  At the earliest onset of discernible morbidity 

suggestive of active leukemia, mice were humanely euthanized to harvest tissues and 

bone marrow.  At the completion of the experiment, the experimental conditions were 

unblinded, and LIC frequency calculated by LDA analysis, or survival analyzed by log-

rank test, where indicated.  For quantification of flow cytometry or expression data, the 

statistical tests used are indicated.  Student’s t-tests were used and analysis was 

unpaired, except where otherwise indicated.   

 

Mice and xenotransplantation 

Unconditioned NSG mice (Jackson Laboratory stock 005557) were transplanted with the 

indicated cell sources at the indicated doses.  All transplantation was performed by tail 

vein injection.  Mice transplanted with patient derived xenograft cells or primary patient 

cells were unconditioned.  Mice were followed to the onset of terminal leukemia as 

indicated in the study design. 

 

Cell culture 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2020.04.29.066332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.066332


 19

Patient derived leukemia cells were cultured on MS5 stromal cells in the presence of 50 

ng/ml recombinant human stem cell factor (SCF), 50 ng/ml recombinant human 

thrombopoietin (TPO), 10 ng/ml recombinant human FLT3 ligand (FLT3L), and 10 ng/ml 

recombinant human interleukin-7 (IL-7, all from R and D Systems)(23).  Leukemia-1 was 

most amenable to in vitro culture and so was used for most culture-based experiments.  

For in vitro LDA experiments, 5,000 MS5 cells were plated in wells of gelatin-coated 

Nunc 96 well plates (Fisher Scientific) with cytokines 48 hours prior to FACS-based 

sorting of leukemia cells directly into the wells.  Where indicated, cells were treated with 

50 μg/ml prednisolone (Sigma) for the duration described. 

 Human MV4;11 cells were cultured in RPMI with 10% fetal calf serum 

supplemented with penicillin and streptomycin.  Cells were treated with 0.2-2 μg/ml 

doxycycline hyclate (Sigma) where indicated. 

 

Flow cytometry and cell sorting 

Human antibodies used for flow cytometry studies are listed in the resources table.  Data 

were acquired on either BD LSR Fortessa or LSR II Instruments (BS Biosciences).  Cells 

were sorted on a BD FACS Aria (BD Biosciences) with a 100 μm nozzle.  Mitotracker 

Green was purchased from Thermo. 

 

RNA sequencing 

For scRNA-Seq using the Seq-Well platform, 20,000 cells were applied to Seq-Well 

devices pre-loaded with mRNA capture beads as previously described(24).  Following 

hybridization and reverse transcription, random second-strand synthesis was performed 

to generate double stranded cDNA. PCR was performed using the following primer 

sequence 5’ – AAGCAGTGGTATCAACGCAGAGT – 3’. Sequencing libraries were 
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generated using the Illumina Nextera XT protocol using custom N700 sequencing 

indices. Libraries were sequenced using Next-Seq 75 cycle high output sequencing kits 

with 20 base read 1 sequence and 50 base read 2 sequence.  

 

For inDrops-seq the cells were encapsulated in 2-3 nl droplets using a microfluidic 

device and the libraries were made following a previously described protocol(25, 51), 

with the following modifications in the primer sequences.  RT primers on hydrogel 

beads-  

5’CGATTGATCAACGTAATACGACTCACTATAGGGTGTCGGGTGCAG[bc1,8nt]GTCT

CGTGGGCTCGGAGATGTGTATAAGAGACAG[bc2,8nt]NNNNNNTTTTTTTTTTTTTTTT

TTTV- 3’ 

R1-N6 primer sequence (step 151 in the library prep protocol in (51))- 

5’TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNN-3’ 

PCR primer sequences (steps 157 and 160 in the library prep protocol in(51))-  

5’-AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGTC-3’, 

where XXXXXX is an index sequence for multiplexing libraries.  

5’- CAAGCAGAAGACGGCATACGAGATGGGTGTCGGGTGCAG-3’ 

With these modifications in the primer sequences, custom sequencing primers are no 

longer required.  Single-cell RNA-Seq was library preparation was performed by the 

Single Cell Core at Harvard Medical School, Boston, MA. 

 

Bulk RNA sequencing library prep 

Cells were sorted by FACS and lysed in Trizol reagent (Thermo).  RNA was isolated 

using RNAeasy columns (Qiagen) and low input libraries prepared in collaboration with 

the Molecular Biology Core at the Dana-Farber Cancer Institute. 
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Data analysis 

InDrop Single-cell RNA-sequencing 

Raw sequencing reads were processed using the inDrop pipeline 

(https://github.com/indrops/indrops) using default parameters(25) The GRCh38 

reference genoma was used for alignment of sequencing reads. We used scImpute to 

account for dropout rates in single-cell RNA-seq data and obtain an imputed count 

matrix that was used for all downstream analysis described(52).  We used scImpute with 

the parameter ‘Kcluster = 10’.  To analyze imputed single-cell inDrop data we performed 

quality control, dimensionality reduction, clustering and differential expression analysis 

using CellRouter(53).  For this leukemia, we applied the following quality control metrics: 

all genes that were not detected in at least 20 cells were excluded. All cells with less 

than 200 genes detected were also excluded. As expression of ribosomal or 

mitochondrial genes is indicative of technical variation in single-cell RNA-seq data we 

also removed cells where the proportion of the transcript counts derived from 

mitochondrial genes was greater than 10%(54).  After such quality control of the imputed 

count matrix, we retained 5,153 cells with a median of 15,214 genes detected per cell. 

 

The data was then scaled and used for dimensionality reduction. We performed a 

principal component (PC) analysis using all genes (34,747 genes) and selected the top 

20 PCs using the elbow method. These PCs were used for graph-based clustering to 

identify clusters of transcriptionally similar cells in our dataset. We also used the top 20 

PCs to perform spectral t-stochastic neighbor embedding (t-SNE) analysis and visualize 

the underlying cluster structure in a space of reduced dimensionality. 

 

SeqWell single-cell RNA-sequencing 
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Read alignment was performed as described(55).  Briefly, for each NextSeq sequencing 

run, raw sequencing data was converted to FASTQ files using bcl2fastq2 that were 

demultiplexed by Nextera N700 indices corresponding to individual samples.  Reads 

were first aligned to HgRC19, and individual reads were tagged according to the 12-bp 

barcode sequence and the 8-bp UMI contained in read 1 of each fragment. Following 

alignment, reads were binned and collapsed onto 12-bp cell barcodes that corresponded 

to individual beads using Drop-seq tools (http://mccarrolllab.com/dropseq). Barcodes 

were collapsed with a single-base error tolerance (Hamming distance = 1), with 

additional provisions for single insertions or deletions.  An identical collapsing scheme 

(Hamming distance = 1) was then applied to UMIs to obtain quantitative counts of 

individual mRNA molecules. We also used scImpute to impute the raw counts matrix 

obtained, with the parameter of ‘Kcluster = 6’.  For this leukemia, we removed all genes 

expressed in less than 10 cells and also removed all cells expressing less than 500 

genes.  Cells with transcript counts derived from mitochondrial genes larger than 10% 

were also removed.  After QC, we retained 6,320 cells with a median of 2,588.5 genes 

detected per cell. 

 

Normalization 

Both inDrop and Seq-Well data were analyzed with CellRouter.  In CellRouter, transcript 

counts are normalized using a global scaling normalization method that normalizes 

expression measurements for each cell by the total expression, multiplied by a scale 

factor of 10,000, and log-transformed the result. 

 

StemID analysis 

First, with the raw counts data obtained from the inDrop sample, we performed an initial 

quality control removing cells not expressing at least 200 genes or genes not expressed 
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in at least 20 cells. This filtered, not normalized counts matrix, was used as input for 

scImpute with “Kcluster=10”. After data imputation, we used the imputed count matrix for 

StemID analysis. Briefly, we removed cell cycle genes and performed the StemID 

analysis setting the following parameters: mintotal=0.01, minexpr=0, minnumber=0, 

maxexpr=Inf, downsample=TRUE, dsn=1 in the “filterdata” function, 

outminc=5,outlg=2,probthr=1e-3,thr=2**-(1:40),outdistquant=.95 in the “findoutliers” 

function. 

 

SingleCellNet analysis 

We downloaded scRNA-seq data from the GEO accession number GSE116256(27).  

This study performed a random sampling of hematopoietic cells in the normal and 

leukemic bone marrow (BM) ecosystem.  We reanalyzed five healthy BM samples 

published with this study and used cell types identified by the authors to train machine 

learning models of cell type identity of BM cells using SingleCellNet.  After training, we 

classified each single cell in our leukemia samples as belonging to any of the classes in 

our training dataset. 

 

Signature Scores 

We downloaded gene lists from https://www.gsea-msigdb.org/gsea/msigdb.  Specifically, 

we downloaded the following gene sets: HALLMARK_MYC_TARGETS_V1.txt, 

HALLMARK_OXIDATIVE_PHOSPHORYLATION.txt and 

IVANOVA_HEMATOPOIESIS_STEM_CELL.txt.  Then, we used CellRouter to calculate 

signature scores for each cell and plotted the distribution of these scores. 

 

Bulk RNA-sequencing 
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Fastq files containing single-end RNASeq reads were aligned with Tophat 2.0.12 against 

the UCSC hg28 reference genome using Bowtie 2.2.4 with default settings(56, 57).  

Gene level counts were obtained using the subRead featureCounts program (v1.5.1) 

using the parameter “--primary” and gene models from the UCSC hg28 Illumina 

iGenomes annotation package(58).  Read counts were normalized using size factors as 

available by the DESeq2 package(59). 

 

Morphology 

For morphologic analysis, leukemia cells were spun onto slides and stained with May-

Grunwald and Giemsa stains (Sigma) sequentially.  Transmission electron microscopy 

was performed at the electron microscopy core at Harvard Medical School. 

 

Recombinant DNA 

The human MYC cDNA was purchased from Addgene (pDONR223_MYC_WT, a gift 

from Jesse Boehm and Matthew Meyerson and David Root (plasmid # 82927; 

http://n2t.net/addgene:82927 ; RRID: Addgene_82927).  The MYC cDNA was cloned 

into the pCW57.1 vector (gift from David Root (Addgene plasmid # 41393; 

http://n2t.net/addgene:41393 ; RRID:Addgene_41393) using LR clonase (Thermo).  The 

purified plasmid was used to generate lentivirus in HEK-293T cells, which was used to 

transduce MV4;11 cells.  A stable transduced polyclonal line was selected with 0.5 μg/ml 

puromycin (Thermo).  Gene expression was confirmed by Western blotting following 

doxycycline exposure 

 

Seahorse Assay 

The Seahorse assays were performed using the Agilent Seahorse XF Cell Mito Stress 

Test kit using injections of 1 μM oligomycin, 1 μM carbonyl cyanide-4 (trifluoromethoxy) 
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phenylhydrazone (FCCP) and 0.5 μM each of antimycin A and rotenone at the intervals 

indicated.  The instrument is located at the Seahorse Core at Brigham and Women’s 

Hospital. 
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Figure 3

A

B

C

CD34-
L-GMP
L-MLP

L-MLP
L-GMP

CD34-

Source

Pe
rc

en
t o

f e
ac

h 
po

pu
la

tio
n

0

50

100

Source

CD34-L-GMPL-MLP

Le
uk

em
ia

 1
Le

uk
em

ia
 2

CD34

C
D

38

CD34-
L-GMP

L-MLP

1 2

2

19 63 75

1

12 29 42

0.4

2

33631 95

3

6 88

5

CD34

C
D

38

Weeks4 5 6

Input

Week 5
Week 6

CD34-
L-GMP
L-MLP

0

50

100

Pe
rc

en
t e

ac
h 

po
pu

la
tio

n95 5 86 13 79 20

10000
1000

20 40 60 800
0

50

100

Pe
rc

en
t s

ur
vi

vi
ng CD34-

Pe
rc

en
t s

ur
vi

vi
ng 100

50

0
0 20 40 60 80 100

10000
1000

L-GMP

Pe
rc

en
t s

ur
vi

vi
ng100

50

0

L-MLP

10000
1000

20 40 60 800

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2020.04.29.066332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.066332


Figure 4A
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Figure S1A
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Figure S2
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Figure S3
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Figure S3 (continued)
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Figure S4
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