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Running title: Cross-scale integration in epilepsy 
  
 
 
Abstract 

Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been 

linked to functional network disturbances, particularly of integration of the default mode 

network (DMN). However, the cellular substrates of functional network integration are 

unknown. We leverage a unique cross-scale dataset of therapy-resistant TLE patients, 

who underwent fMRI, MEG and/or neuropsychological testing before neurosurgery. fMRI 

and MEG underwent atlas-based connectivity analyses. Functional network centrality of 

the lateral middle temporal gyrus, part of the DMN, was used as a measure of local 

network integration. Subsequently, non-pathological cortical tissue from this region was 

used for single cell morphological and electrophysiological patch-clamp analysis, 

assessing integration in terms of total dendritic length and action potential rise speed. As 

could be hypothesized, greater network centrality related to better memory performance. 

Moreover, greater network centrality correlated with more integrative properties at the 

cellular level across patients. We conclude that individual differences in cognitively 

relevant functional network integration of a DMN region are mirrored by differences in 

cellular integrative properties of this region in TLE patients. These findings connect 

previously separate scales of investigation, increasing translational insight into focal 

pathology and large-scale network disturbances in TLE. 

 

Keywords: action potential kinetics, cellular morphology, connectome, graph theory, 

resting-state fMRI 
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Temporal lobe epilepsy (TLE) is hallmarked by localized pathology of the temporal lobe. 

It is often accompanied by cognitive disturbances and particularly memory deficits 

(Meador 2002), which are poorly understood through local pathological markers alone. 

Indeed, cognition is increasingly thought to depend on the orchestrated functional 

dynamics taking place on a large-scale structural network of connected brain regions 

(Stam 2014; Bassett and Sporns 2017). These functional network dynamics can be 

studied using functional MRI (fMRI) and magnetoencephalography (MEG), which assess 

synchronized brain activity of different regions.  

The most important properties of brain networks in relation to cognition are 

segregation and integration (Deco et al. 2015; Cohen and D’Esposito 2016; Horien et al. 

2019). Segregation refers to the extent to which nodes are locally interconnected, and 

integration signifies the level of integrative connectivity taking place, either in globally or 

at a particular node. At specific brain regions, the extent of segregation and integration 

typically show opposite patterns (van den Heuvel and Sporns 2011; Bertolero et al. 

2017): certain regions have a more segregative topological role (e.g. regions within the 

visual system), while others are considered mainly integrative (e.g. regions in the frontal 

lobe), indicating that brain regions tend to have a ‘typical’ role in the brain network that 

can be quantified with either segragative or integrative network measures. For example, 

centrality indicates the expected level of network integration occurring at any particular 

node, with nodes showing high integration most likely having low segregation. 

Integrative connectivity of the temporal lobe, also overlapping with the default 

mode network (DMN (Raichle et al. 2001)), may be paramount to explain individual 

memory differences in TLE (DeSalvo et al. 2014; McCormick et al. 2014; Douw et al. 

2015). An exemplar study explored the integrative connectivity of the hippocampal circuit 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.01.31.428369doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.428369


 5

with the posterior DMN (Voets et al. 2014) reporting that greater memory deficits were 

related to lower network integration. An open question remains whether combining 

different imaging and neurophysiological modalities may improve explanation of 

cognitive variance in these patients. Multilayer network theory provides a framework to 

integrate such modalities into a single network consisting of interconnected layers (De 

Domenico et al. 2013). Previous work suggests that multilayer functional brain network 

integrative measures of centrality supersede unilayer properties in explaining cognitive 

functioning in Alzheimer’s disease patients (Yu et al. 2017), but this approach has not 

been used in TLE or on combined fMRI and MEG networks.  

Moreover, the cellular substrates of functional network integration are unknown, 

limiting our understanding of how focal cellular properties and pathology relate to large-

scale network disturbances in TLE and other neurological diseases (Bassett and 

Bullmore 2009; Stam 2014). “Microstructure-informed connectomics” (Larivière et al. 

2019) may connect these scales of measurement (Sporns 2016; van den Heuvel and 

Yeo 2017). In animals, more integrative structural network regions are comprised of 

bigger neurons with more axons (Scholtens et al. 2014). Moreover, cross-scale relations 

between structural brain properties covary with disease characteristics in postmortem 

studies of multiple sclerosis (Kiljan et al. 2019) and Alzheimer’s disease (Jonkman et al. 

2020). However, the cellular substrates of functional network integration as an important 

correlate of cognitive impairment have been impossible to investigate in vivo.  

We leverage a unique cohort of TLE patients undergoing functional neuroimaging 

and clinical neurophysiological recording as well as tissue extraction of the lateral middle 

temporal gyrus, a DMN region, through resective neurosurgery (Goriounova et al. 2018). 

We expected greater network integration to associate with more integrative cellular 
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characteristics in terms of morphology and action potential kinetics (Poirazi et al. 2003; 

Eyal et al. 2014; Testa-Silva et al. 2014; Goriounova et al. 2018).  
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Materials and methods  

Patients 

All patients undergoing resective neurosurgery for drug-resistant epilepsy localized in 

the medial temporal lobe between 2009 and 2016 at Amsterdam University Medical 

Centers (location VUmc, Amsterdam, The Netherlands) were eligible for participation. All 

patients underwent temporal lobectomy, which included the lateral middle temporal 

gyrus. A schematic of the cross-scale analysis pipeline is provided in Figure 1. 

All procedures were performed with the approval of the Medical Ethical Committee of 

VUmc, and in accordance with Dutch license procedures and the Declaration of Helsinki. 

Written informed consent was provided by all subjects for data and tissue use for 

scientific research.   

 

Data Availability Statement 

Patients did not consent to sharing their raw data. However, the full derived variable set 

used for analysis in the current work is available from GitHub 

(https://github.com/multinetlab-amsterdam/projects/tree/master/multiscale_integration), 

where our code to do so can also be found.  

 

Memory functioning 

Patients underwent cognitive assessments during presurgical workup, as previously 

reported (Goriounova et al. 2018). In order to assess verbal memory functioning, the 

Wechsler Memory Scale (WMS) and the Dutch version of Rey’s Auditory Verbal 

Learning Test (RAVLT) were selected for analysis. From the WMS, the composite 

Verbal Memory Index was used, which has a mean value of 100 with a standard 
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deviation of 15 in a normative, healthy population. From the RAVLT, immediate recall in 

terms of total correctly encoded words across five trials (15 words each) was quantified, 

with possible scores ranging between 0-75 words in total. Additionally, delayed recall of 

the 15 words was assessed after 15mins, yielding an additional outcome measure of 

memory retrieval. Higher values indicate better memory performance.  

 

Structural neuroimaging  

MRI was performed on a 1.5T magnet (Siemens Sonata) and included an anatomical 3D 

T1-weighted MPRAGE scan (sequence parameters: TR = 2700ms, TE = 5.2ms, TI = 

950ms, 1mm isotropic resolution, 176 slices). Image processing was performed using 

FSL5. Standard procedures were used to preprocess structural imaging: non-brain 

tissue was removed from the 3D T1-weighted images using the Brain Extraction Tool, 

and grey and white matter segmentation was performed using FAST. Non-brain tissue 

was removed and tissue segmentation was performed. To construct each individual’s 

functional brain network, the Automated Anatomical Labeling atlas was used to define 

78 cortical regions. This atlas was warped from standard space to native space, and 

masked with each subject’s native grey matter mask.  

 

Functional magnetic resonance imaging  

Patients underwent presurgical fMRI for language localization. Previous studies have 

shown that the intraindividual effect of any task or state on network topology is small in 

comparison to interindividual differences in network topology (Gratton et al. 2018; Kraus 

et al. 2021), indicating that we may use these pseudo resting-state data to investigate 

individual differences in network integration. Resting-state analysis has previously been 
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used on such task data for network analysis in both healthy controls and patients (Harris 

et al. 2014; Krienen et al. 2014; Derks et al. 2017).  

Scanning was performed using a standard echo-planar imaging sequence (TR = 

2850ms, TE = 60ms, 144 volumes, 3.3mm isotropic resolution, 7min). During the scan, 

patients performed a language task in which nine volumes of word generation were 

alternated with nine volumes of rest (imagery of a landscape).  

Preprocessing was performed using standard procedures (Beckmann et al. 

2005), including discarding the first five volumes, motion correction, spatial smoothing, 

and high-pass filtering. Six regions with low signal quality (mainly orbitofrontal areas) 

were excluded, leaving 72 cortical regions for analysis. Additionally, ICA-AROMA was 

applied to minimize the impact of movement (Pruim et al. 2015). Functional images were 

co-registered to the anatomical scans. Time series were extracted from the centroids of 

all regions, after which a 72x72 connectivity matrix per subject was created using 

Pearson correlation coefficients. Finally, the absolute values of these correlations were 

used as weighted connectivity.  

 

Magnetoencephalography 

Patients underwent resting-state MEG as part of their presurgical work-up and/or in the 

setting of scientific research (Nissen et al. 2017, 2018). Interictal eyes-closed recordings 

were acquired in supine position using a whole-head system (Elekta Neuromag Oy, 

Helsinki, Finland) with 306 channels inside a magnetically shielded room 

(Vacuumschmelze GmbH, Hanau, Germany). Data were recorded with a sampling 

frequency of 1250Hz, filtered online with a 410Hz anti-aliasing filter and a 0.1Hz high-

pass filter. The head position relative to the sensors was recorded continuously with 
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head-localization coils. A 3D digitizer (Fastrak, Polhemus, Colchester, VT, USA) 

digitized the head-localization coil positions and scalp outline (roughly 500 points) to 

allow surface matching of the scalp surface points with anatomical MRI.  

Three eyes-closed resting-state recordings of typically 15 min each were 

recorded for clinical analysis of interictal epileptiform activity. Only one recording was 

analyzed in this study and chosen according to the following criteria with descending 

priority: (1) consisting of at least 5 minutes of data, (2) displaying the smallest number of 

artifacts as per visual inspection, and (3) being the earlier dataset of the three 

recordings.  

Further analysis of these data has been extensively described before (Nissen et 

al. 2017). Offline spatial filtering of the raw data removed artifacts using the temporal 

extension of Signal Space Separation (tSSS) using MaxFilter software (Elekta 

Neuromag Oy; version 2.1). The reconstruction of neuronal sources was performed with 

an atlas-based beamforming approach, after which time series (virtual electrodes) for 

each centroid of each atlas region were reconstructed (Hillebrand et al. 2016). These 

time series were then filtered in the theta band (4-8Hz), because of its proven relevance 

for cognitive functioning in these patients (van Dellen et al. 2009; Douw et al. 2010), and 

to limit the number of investigated variables in this limited sample.  

As a measure of functional connectivity, the phase lag index (PLI) was used. The 

PLI assesses the phase-relationship between two regions by quantifying the asymmetry 

in the distribution of instantaneous phase differences between two time series. It is 

robust against zero-lag phase synchronization due to volume conduction or field spread. 

This analysis yielded a 78x78 MEG connectivity matrix per patient. 
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Network analysis  

We then created minimum spanning trees (MSTs) to extract the functional backbone of 

each fMRI and MEG network and adequately allow for comparison between patients and 

modalities without having to use a subjective threshold for pairwise connectivities (Stam 

et al. 2014). The MST is a binary network that connects all nodes in a network without 

forming cycles while maximizing connectivity strength. Eigenvector centrality was then 

calculated per brain region. Of note, there is a plethora of network measures that 

measure integration, which are highly intercorrelated (Oldham et al. 2019). Instead of 

using multiple measures in this sample with limited statistical power, we chose to focus 

on eigenvector centrality as the network measure of integration. Eigenvector centrality is 

a spectral centrality measure, that not only takes into account the number of connections 

of a node, but also weighs the number of connections of its neighboring nodes 

(Lohmann et al. 2010).  

In addition to modality-specific analysis of centrality, we also analyzed multimodal 

centrality, since an open question is whether combining different imaging and 

neurophysiological modalities may improve explanation of cognitive variance in these 

patients. Multilayer network theory offers an analytical framework that allows for such 

synergy between modalities to be captured (Mucha et al. 2010). Each layer in a 

multilayer network represents a network characterized by one type of connectivity. 

Interlayer connections link the same region across different layers. Importantly, 

multilayer network measures supersede summed properties of individual layers when 

trying to explain the behavior of other types of complex networks (Stegehuis et al. 2016). 

Multilayer techniques have only recently been applied to neuroscience, but show 

promising results towards explaining more cognitive variance than unilayer analyses in 
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for instance Alzheimer’s disease patients (Yu et al. 2017). We therefore used the fMRI 

and MEG MSTs to construct a two-layer network consisting of the 72 nodes available in 

both modalities, where each region was connected only to itself across the two layers, 

forming an interconnected binary multiplex network. We then calculated multilayer 

eigenvector centrality per region (De Domenico et al. 2015). Ultimately, this network 

analysis yielded three centrality values per patient (fMRI, MEG, multilayer). 

All analyses were performed using in-house Python scripts (publicly available 

from our GitHub page (https://github.com/multinetlab-

amsterdam/projects/tree/master/multiscale_integration) in combination with the publicly 

available Brain Connectivity Toolbox (Rubinov and Sporns 2010) implemented in Matlab 

R2012a (Mathworks, Natick, MA, USA).  

 

Single cell electrophysiology and morphology 

Tissue exclusively originated from the lateral middle temporal gyrus and was removed in 

order to gain access to the disease focus in deeper lying structures. In all patients, the 

resected neocortical tissue was not part of the epileptic focus or tumor and displayed no 

structural/functional abnormalities according to presurgical MRI investigation and 

histological analysis by an experienced pathologist. Data analysis has been extensively 

described before (Goriounova et al. 2018). 

Upon surgical resection, the cortical tissue was immediately transferred to ice-

cold artificial cerebral spinal fluid, then transported to the electrophysiology lab within 15 

mins, where neocortical slices (350μm thickness) were prepared (Goriounova et al. 

2018). Whole-cell patch-clamp recordings were made of layer 2 and layer 3 pyramidal 

neurons and action potentials (APs) were elicited by incrementing step current injections 
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(step size 30–50 pA). Waveforms were sorted according to their instantaneous firing 

frequency (1/time to previous AP) and AP rise speed was defined as the peak of AP 

derivative (dV/dt) for all APs from all neurons from each subject.  

During electrophysiological recordings, cells were loaded with biocytin through 

the recording pipette. After recording, slices were fixed in 4% paraformaldehyde and 

cells were revealed with chromogen 3,3-diaminobenzidine (DAB) tetrahydrochloride 

using the avidin–biotin–peroxidase method. Neurons were digitally reconstructed using 

Neurolucida software (Microbrightfield, Williston, VT, USA). Only neurons with virtually 

complete dendritic structures were included.  

We then selected three representative properties pertaining to integration at the 

cellular scale. Larger dendrites may enable neurons to have more synaptic contacts, 

putatively playing a more important integrative role than neurons with smaller dendrites 

(Poirazi et al. 2003; Eyal et al. 2014). Larger dendrites also directly influence the speed 

of action potential initiation, possibly providing these cells with better temporal resolution 

and more efficient information transfer (Eyal et al. 2014; Testa-Silva et al. 2014; 

Goriounova et al. 2018). Thus, regions that act as integrators for cognitive processes 

may be characterized by neurons with larger dendrites and faster action potentials. We 

therefore extracted total dendritic length (TDL) of all basal and apical dendrites and then 

averaged these data (1 to 10 neurons per patient) as our first measure of cellular 

integration, also because this measure proved cognitive relevant in these patients before 

(Goriounova et al. 2018). Additionally, we selected rise speed of the 1st AP, and APs 

fired at frequencies between 20-40 Hz for cross-scale analysis, also due to their 

proven relevance for cognition in this patient cohort (Goriounova et al. 2018).  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.01.31.428369doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.428369


 14

Statistical analysis 

Statistical analysis was performed in Matlab R2012a (Mathworks, Natick, MA, USA). 

Pairwise associations between functional network centralities and memory were 

tested using Spearman’s correlation coefficients. Cross-scale pairwise associations 

were tested using non-parametric Spearman’s correlation coefficients with bootstrapping 

(1 000 samples, 95% confidence intervals (CI)). When significant, robustness was 

explored by permuting the micro-macro pairs to create a data-specific correlation 

distribution (10 000 permutations) and by leave-one-out analysis. Spatial specificity of 

the associations was explored by correlating the cellular measure with functional 

network centralities of all other ipsilateral nodes in the network. The threshold for 

statistical significance was set at two-tailed alpha < 0.05, but we also report significant 

results after applying Bonferroni correction for multiple comparisons.   
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Results 

Patients 

In 15 of the 46 TLE patients originally included (Goriounova et al. 2018), MEG and fMRI 

were not available. Therefore, 31 patients (15 females) with a mean age of 33 years (± 

11 years) were included for the current analysis (see Table 1 for detailed characteristics 

per patient).  

 
 

Functional network integration and memory functioning 

Firstly, we sought to confirm that functional network centrality of the lateral middle 

temporal gyrus, as part of the DMN, related to memory functioning in these patients. 

Greater fMRI network centrality was significantly related to greater RAVLT delayed recall 

(rho = 0.857, CI [0.373 1.000], p = 0.024, n = 7; Figure 2). Unfortunately, very few 

patients had complete data across these scales, rendering the remaining pairwise 

testing of associations underpowered. 

 

Cross-scale correlations of integrative properties 

We then asked whether greater functional network centrality of the resected region went 

hand in hand with longer TDLs and faster APs, hypothetically signs of greater integrative 

potential at the cellular level (Figure 2). Longer TDL was significantly related to greater 

fMRI network centrality (rho = 0.758, CI [0.115 0.975], p = 0.016, n = 10; Figure 3A). 

This association remained significant when creating a sample-specific distribution of the 

correlation through permutation analysis (rho cut-off = 0.636, Figure 3B left panel). We 

then performed leave-one-out analyses, where we iteratively excluded a single patient 
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from the correlation analysis to see whether this result was driven by individual data 

point. This yielded significant results in 7 of 10 analyses (Figure 3B middle panel). 

Finally, we explored whether TDL of the resected region also correlated with network 

centrality of other cortical regions. This analysis revealed a significant negative 

correlation between TDL of the resected region and fMRI network centrality of the 

ipsilateral paracentral lobule (rho = -0.721, p = 0.024, Figure 3B right panel), although 

this result did not survive correction for the 36 correlations tested.  

Furthermore, faster AP rise speed (1st) was significantly related to greater fMRI 

network centrality (rho = 0.539, CI [0.042 0.868], p = 0.041, n = 15; Figure 3C/D). This 

finding remained in permutation testing (rho cut-off = 0.525), but was mostly non-

significant in leave-one-out analyses. Spatially, AP rise speed (1st) of the resected area 

was also significantly associated with fMRI network centrality of the precentral region 

(rho = 0.582, p = 0.025). Moreover, there were significant negative relationships with 

fMRI network centrality of the superior parietal region (rho = -0.657, p = 0.010) and 

temporal pole (rho = -0.611, p = 0.018), although these correlations did not survive 

correction for multiple comparisons.  

The only pairwise correlation that survived correction for the nine pairwise tests 

performed between cellular and functional network characteristics of the resected region 

was the significant positive association between AP rise speed (1st) and multilayer 

network centrality (rho = 0.964, CI [0.698 1.000], p < 0.001, n = 7; Figure 4A). Moreover, 

this association was robust in permutation and leave-one-out analyses, and was 

spatially specific, also when not correcting for multiple comparisons. 

Since different numbers of patients were available for each pairwise correlation 

depending on modalities available, we also investigated whether the small subset of 
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patients with complete data showed the same patterns of correlation as the larger but 

heterogeneous samples. Indeed, Figure 2 also shows the associations of both unilayer 

and multilayer network indices with cellular measures in the same samples of 5 patients 

(for TDL) and 7 patients (for AP rise speeds). As was the case for the mixed samples, 

only multilayer network centrality and AP rise speed (1st) were significantly correlated in 

this complete dataset, indicating that patient selection differences between the above 

described subsamples did not confound the reported pairwise correlations.  
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Discussion 
 
We report on a unique cohort of TLE patients with data spanning multiple scales of 

investigation, in order to explore the cellular substrates of cognitively relevant functional 

network integration of a DMN region. As expected (McCormick et al. 2014; Voets et al. 

2014; Douw et al. 2015), greater functional network integration of the lateral middle 

temporal gyrus related to better memory functioning in these patients. Moreover, greater 

network centrality of this brain region correlated with signs of greater cellular integration: 

patients with longer dendrites and faster action potentials also displayed more 

integrative functional network profiles.  

 Our findings signify that brain organization in terms of integrative propensity is 

preserved across scales of measurement in TLE patients. Functional network centrality 

of the investigated DMN region correlated with neuronal morphology in terms of total 

dendritic length of its constituent neurons. In previous work, we showed that pyramidal 

neurons of patients with higher intelligence in the related cohort had larger, more 

complex dendrites (Goriounova et al. 2018). Larger dendrites would enable neurons to 

have more synaptic contacts, putatively playing a more important integrative role than 

neurons with smaller dendrites (Poirazi et al. 2003; Eyal et al. 2014). Greater dendritic 

length and axonal density of neurons at particular locations have previously been linked 

to structural network integration as measured with diffusion MRI: more integratively 

connected network regions tended to have bigger neurons with more axons, while 

locally connected network regions were made up of smaller neurons that were 

connected with lower axonal density (Scholtens et al. 2014; Kiljan et al. 2019). The 

current results suggest that functional network integration also mirrors more integrative 

neuronal morphology, at least in the lateral middle temporal gyrus as part of the DMN.  
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 Functional network centrality also related to action potential kinetics: more 

integrative functional network topology related to faster action potential rise speeds. We 

previously found that patients with higher intelligence had faster action potentials during 

high frequency activity, in addition to the abovementioned longer total dendritic lengths 

(Goriounova et al. 2018). Of note, larger dendrites also directly influence the speed of 

action potential initiation, putatively offering more integrative power (Eyal et al. 2014; 

Testa-Silva et al. 2014; Goriounova et al. 2018). Our current results put these local 

indicators of integration into a cross-scale network perspective, as we report on 

associations with functional network centrality. Our findings support a scale-free view on 

these type of brain properties, such that within-region cellular integrative properties are 

reflected by between-region functional network integration, which is of particular 

relevance towards understanding (cognitive deficits in) TLE.  

Of note, the functional network correlates of local action potential kinetics became 

particularly evident when taking both functional modalities (fMRI and MEG) into account 

through multilayer network theory. This finding suggests that multimodal functional 

centrality may capture cellular brain properties better than either of the two modalities 

alone, which would be in line with other multilayer brain network studies (Battiston et al. 

2017; De Domenico 2017). It should, however, be noted that the lack of robust 

significance for unilayer network centralities as well as the significance of multilayer 

network centrality may reflect limited statistical power in small subsamples.  

Based on our findings, richer hypotheses may be formulated on the relationships 

between local cellular organization and functionality on the one hand, and large-scale 

network topology on the other hand in TLE. Next steps may include investigation of 

cellular and network properties of pathological brain regions in addition to the non-
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pathological area of the DMN assessed in this study. This would bridge the gap between 

focal TLE pathology and its widespread cross-scale effects on the brain, ultimately 

pertaining to cognitive impairment. Such studies are of particular interest, since our 

current finding of cross-scale preservation of integrative propensity in a non-pathological 

brain region may not necessarily be specific to TLE: previous work in macaques and 

postmortem donors also report on such correlations (Scholtens et al. 2014; Kiljan et al. 

2019; Jonkman et al. 2020), raising the question whether cross-scale integration is a 

basic organizational principle conserved across species to begin with. By also involving 

focal pathological cellular properties (and their large-scale network counterparts), 

disease-specific processes may be disentangled from such fundamental principles.  

 Several limitations of this study should be noted. First and foremost, the unique 

nature of this multi-scale dataset meant that only a small sample was available, also 

precluding subgroup analysis or exploration of confounders that might have affected the 

current results, e.g. lateralization of the epileptogenic zone, sex, and age. It was also 

impossible to use a control group for this analysis: healthy individuals can obviously not 

be subjected to the cellular measurements we report on. Another limitation is the spatial 

resolution of matching between the cellular and functional network analyses: while 

certainty about the location of origin of the resected tissue was in the order of 

millimeters, the atlas region used to reflect the tissue location spans several centimeters. 

We chose this atlas as it has been used successfully by our group in previous studies 

with comparable patient populations and thus has proven cognitive and cellular 

relevance (van Dellen et al. 2012, 2014; Carbo et al. 2017), but future studies may aim 

to match tissue locations with increased spatial accuracy.   
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 In conclusion, we show that individual differences in functional network integration 

of a DMN region relate to cellular morphology and action potential kinetics. These 

results underline the translational nature of individual differences in brain properties 

between TLE patients, which has clinical relevance in terms of memory functioning. 

Ultimately, such “microstructure-informed connectomics” (Larivière et al. 2019) may lead 

the way towards better understanding and treatment of neurological disease in general, 

and memory functioning in TLE patients specifically.  
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Table 1. Patient characteristics 

ID fMRI  MEG Ephys Morph Sex Age  Lat Dom  Onset Dur Freq Etiol Type AED IR DR WMS 

1 A NA A A F 21 R Non  11 10 32 LGG SP LEV | VPA 49 10 85 
2 A NA A A F 31 L Non  16 15 13 LGG CP CBZ | LEV 55 6 100 
3 A A A A F 29 L Dom  13 17 32 HS CP | GTC LTG | TPM 48 5 NA 
4 NA A A A M 20 R Non  16 5 2 DNET CP CBZ | LEV 52 NA NA 
5 A NA A A F 27 R Non  14 13 120 DNET SP CBZ | LTG 28 7 90 
6 NA A A NA M 18 R Non  1 17 150 HS CP OXC NA NA NA 
7 A A NA A F 23 L NA 15 8 9 HS SP | GTC LEV | OXC 35 1 82 
8 A A NA A M 53 L Non  6 47 10 LGG CP CBZ | CLB 25 9 65 
9 A NA NA A M 19 R Non  17 2 450 GLI  CP CLB | OXC NA NA 75 
10 NA A NA A F 35 L NA 1 34 1 NA SP | CP | GTC CZP | LCS | LTG | LEV 36 9 78 
11 NA A NA A M 25 L NA 9 16 2 HS SP | CP | GTC CLB | LCS | LEV 52 12 NA 
12 NA A A A F 31 R Dom  21 10 4 HS CP CBZ | CLB 41 1 80 
13 NA A A A M 49 L Dom  8 41 2 HS CP CBZ | CLB | LEV 45 9 NA 
14 A NA A A F 45 R Dom  23 22 3 HS CP CBZ | CLB | LTG 51 11 101 
15 A NA A NA M 38 R Non  28 10 6 HS CP CBZ NA NA 110 
16 A NA A NA M 44 L NA 35 9 4 HS SP LCS | VPA NA NA 102 
17 NA A A NA M 53 L Dom  18 35 4 NA CP CBZ NA NA NA 
18 NA A NA A F 30 L NA 2 28 9 HS CP | GTC CLB | OXC 54 1 70 
19 NA A A A M 44 L NA 4 40 8 HS CP | GTC LTG | LEV 30 10 83 
20 NA A A NA F 32 R NA 6 26 151 MCD NA  NA NA NA NA 
21 A A A NA F 41 R Non  8 33 6 GLI  AB | CP LEV | CBZ | VPA | CLB 44 NA 86 
22 A NA A NA M 29 R Non  23 7 5 NA AB | CP PHB | CBZ 28 NA NA 
23 A A A NA F 20 R Non  4 17 6 MCD CP LEV | CBZ   58 NA NA 
24 NA A A NA M 21 L NA 8 13 6 GG AB CBZ | LEV | LTG NA NA 84 
25 NA A A NA F 48 R NA 14 34 48 HS AB | GTC ZNS | CBZ | VPA 48 NA 104 
26 A NA A NA M 44 R Non  25 19 1 HS CP   LTG | CBZ  NA NA NA 
27 NA A A NA M 43 R NA 6 37 7 HS SP | CP   OXC | LEV NA NA NA 
28 A A A NA F 33 R Non  19 14 150 HS AB | CP CBZ | LEV | CLB 51 NA 80 
29 A A A NA M 51 R Non  4 48 60 NA CP | GTC CBZ | PHB 41 NA NA 
30 A A A A F 18 R Non  5 13 17 GG CP OXC 66 NA NA 
31 A A A A M 23 R Non  11 12 8 HS CP OXC 56 NA 83 
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Legend. ID = identification number, fMRI = functional magnetic resonance imaging, MEG = magnetoencephalography, Ephys = electrophysiology, Morph = morphology, 
Lat =  
lateralization of epileptic focus, Dom = dominant hemisphere of resection, Onset = age in years at seizure onset, Dur = duration of epilepsy in years, Freq = frequency of 
seizures  
per month, Etiol = etiology of epilepsy, Type = type of epilepsy, AED = anti-epileptic drugs, IR = immediate recall on the Rey Auditory Verbal Learning Test, DR = 
delayed recall  
on the Rey Auditory Verbal Learning Test, WMS = Wechsler Memory Scale Verbal Memory Index, A = available, NA = not available, F = female, M = male, R = right, L 
= left,  
Non = non-dominant, Dom = dominant, LGG = low-grade glioma, HS = hippocampal sclerosis, DNET = dysembrionic neuroepithelial tumor, CAV = cavernoma, GLI = 
gliosis,  
MCD = malformation of cortical development, GG = ganglioglioma, SP = simpel partial, CP = complex partial, GTC = generalized tonic clonic, AB = absence, LEV = 
levetiracetam,  
VPA = valproic acid, CBZ = carbamazepine, CLB = clobazam, OXC = oxcarbazepine, LTG = lamotrigine, LCS = lacosamide, PHB = phenobarbital. 
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Figure legends 

 

Figure 1. Schematic representation of multi-scale analyses 

In (A), cellular tissue collection from the middle temporal gyrus (pink node) is depicted. 

Morphological analysis and electrophysiological recordings were performed. In (B), the 

functional network measure of eigenvector centrality is illustrated for the unilayer (fMRI 

or MEG) and multilayer (combined fMRI and MEG) network analyses. 

 

Figure 2. All pairwise correlations  

This figure shows an overview of all associations between cellular properties and 

functional network centrality (top three rows), as well as between functional network 

centrality and memory functioning (bottom three rows), using the maximum samples of 

patients with available data. Additionally, the middle three rows (in gray) reflect all 

pairwise correlations between scale-specific properties when considered in the same 

subgroup with complete functional network data for the morphological (n = 5) and 

electrophysiological (n = 7) analyses. Green elements reflect positive correlations (with 

rho, p and n in text), ranging from small correlations (rho < 0.4, light green) to medium 

correlations (0.4 < rho < 0.6, medium green) to large correlations (rho > 0.6, dark green). 

White, bold text indicates statistical significance (P < 0.05) and very dark green 

elements with white, bold text indicates statistical significance after Bonferroni correction 

for multiple (nine) comparisons. Blue elements reflect negative correlations in the same 

way. fMRI = functional Magnetic Resonance Imaging, MEG = magnetoencephalography, 

AP = action potential, WMS = Wechsler Memory Scale, RAVLT immediate = Rey 

Auditory Verbal Learning Test immediate recall, RAVLT immediate = Rey Auditory 
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Verbal Learning Test delayed recall. In (B), we only select patients with both functional 

modalities and either of the cellular measures available, namely five patients with total 

dendritic length and seven patients with action potential rise speed. The legend is 

identical between (A) and (B).  

 

Figure 3. Significant pairwise associations between cellular properties and functional 

network centrality 

(A) Displays a scatter plot of the significantly positive correlation between total dendritic 

length (in mm) and functional Magnetic Resonance Imaging (fMRI) centrality. The dark 

blue diamond in the plot represents a single patient, who has low centrality and short 

dendritic length (schematically depicted in the middle panel), while the light blue 

diamond represents a patient with high centrality and long dendritic length (right panel). 

In (B), the analyses of the robustness of these results are displayed. The left panel 

shows the distribution of permuted correlations (10 000 permutations), with the actual 

(pink) association being smaller than the alpha = 0.05 threshold indicated by the dotted 

line. The middle panel displays the 10 leave-one-out associations in addition to the real 

correlation, yielding a significant correlation in 7 of 10 analyses as indicated by the 

asterisks. The right panel displays all correlations between ipsilateral functional network 

centrality values (n = 36 regions) and total dendritic length of the resected area. The 

reported positive association (with the resected region) in pink as well as the negative 

correlation between paracentral centrality and total dendritic length are significant. In 

(C), a scatter plot of the significantly positive correlation between action potential (AP) 

rise speed (1st) and fMRI centrality is shown. In (D), the analyses of the robustness of 

these results are displayed in the same manner as in (B).  
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Figure 4. Significant pairwise association between cellular properties and functional 

network centrality after correction for multiple comparisons 

 (A) Displays a scatter plot of the significantly positive correlation between action 

potential (AP) rise speed (1st) and multilayer centrality, which is the only pairwise 

association significant after Bonferroni correction for multiple comparisons. The dark 

blue diamond in the plot represents a single patient, who has low centrality and slow 

action potentials (schematically depicted in the middle panel), while the light blue 

diamond represents a patient with high centrality and fast action potentials (right panel). 

In (B), the analyses of the robustness of these results are displayed. The left panel 

shows the distribution of permuted correlations (10 000 permutations), with the actual 

(pink) association being smaller than the alpha = 0.05 threshold indicated by the dotted 

line. The middle panel displays the 7 leave-one-out associations in addition to the real 

correlation, yielding a significant correlation in all analyses as indicated by the asterisks. 

The right panel displays all correlations between ipsilateral network centrality values (n = 

36 regions) and AP rise speed (1st) of the resected area. The reported positive 

association (with the resected region) in pink is the only significant correlation.  
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