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Abstract 

Multiscale integration of gene transcriptomic and neuroimaging data is becoming a widely 

used approach for exploring the molecular underpinnings of large-scale brain structure and 

function. Proper statistical evaluation of computed associations between imaging-based 

phenotypic and transcriptomic data is key in these explorations, in particular to establish 

whether observed associations exceed ‘chance level’ of random, non-specific effects. Recent 

approaches have shown the importance of spatial null models to test for spatial specificity of 

effects to avoid serious inflation of reported statistics. Here, we discuss the need for 
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examination of the second category of specificity in transcriptomic-neuroimaging analyses, 

namely that of gene specificity, examined using null models built upon effects that occur 

from sets of random genes. Through simple examples of commonly performed 

transcriptomic-neuroimaging analyses, we show that providing additional gene specificity on 

observed transcriptomic-neuroimaging effects is of high importance to avoid non-specific 

(potentially false-positive) effects. Through simulations we further show that the rate of 

reported non-specific effects (i.e., effects that are generally observed and cannot be 

specifically linked to a gene-set of interest) can run as high as 60%, with only less than 5% of 

transcriptomic-neuroimaging associations observed through ordinary linear regression 

analyses showing spatial and gene specificity. We explain that using proper null models that 

test for both spatial specificity and gene specificity is warranted. 

 

Keywords: neuroimaging, gene expression, Allen Brain Atlas, gene specificity, null model 

 

Introduction 

A fast-growing number of imaging-genetic studies point out associations between the spatial 

patterns of gene transcriptome data and macroscale imaging-derived brain phenotypes 

(Richiardi et al., 2015; Wang et al., 2015a; Krienen et al., 2016; Anderson et al., 2018; Burt 

et al., 2018; Fornito et al., 2019; van den Heuvel et al., 2019). Whole-brain transcriptome 

data, such as the extensive Allen Human Brain Atlas (AHBA) serves as an invaluable 

quantitative reference to assess such transcriptomic-neuroimaging associations (Hawrylycz et 

al., 2012). Examples of such associations include genes related to oxidative metabolism to 

display transcriptional profiles in a similar spatial pattern as the degree of inter-module long-

distance functional connectivity (FC) (Vertes et al., 2016) and hub connectivity (van den 

Heuvel and Sporns, 2013), as well as genes enriched for neuronal and synaptic connectivity 
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to show transcriptional profiles that capture the architecture of brain functional networks 

(Krienen et al., 2016; Romero-Garcia et al., 2018b). Such transcriptomic-neuroimaging 

studies can also provide important new insight into the molecular background of macro-scale 

disease mechanisms. Brain transcriptional profiles of risk genes have been associated to 

patterns of disorder-specific brain changes revealed by neuroimaging techniques in several 

mental health conditions, for example schizophrenia (Romme et al., 2017), autism spectrum 

disorder (Romero-Garcia et al., 2018a) and major depressive disorder (Anderson et al., 2020), 

among others. These explorations have opened a new window for examining how genetic 

variants and molecular changes associated with brain disorders may relate to changes in brain 

structure and function. 

As recently pointed out (Alexander-Bloch et al., 2018; Arnatkevic̆iūtė et al., 2019; 

Burt et al., 2020; Fulcher et al., 2020; Markello and Misic, 2021), caution is however advised 

in the statistical evaluation of gene expression patterns and imaging-derived features. An 

important point of these studies is that the commonly used linear model assumes independent 

observations. This is however not the case for brain gene expression data, as expression 

levels of neighboring regions tend to be often strongly correlated. The above mentioned 

studies have thus proposed important statistical methods to take such spatial autocorrelations 

into account, including null models that generate surrogate brain maps based on the 

parameterized variogram model (Burt et al., 2020) or based on spatial permutations 

(Alexander-Bloch et al., 2018). Implementations of such null models remarkably reduce 

false-positive findings (Fulcher et al., 2020; Markello and Misic, 2021), showing the extent 

of “spatial specificity” for the observed transcriptomic-neuroimaging associations. However, 

as also pointed by (Markello and Misic, 2021), these spatial null models still suffer from 

inflated false-positive rates. 
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What is not assessed in above spatial null models is the importance of evaluating 

whether an observed correlating transcriptomic-neuroimaging pattern goes beyond effects 

that one can expect from taking any other gene or set of genes, i.e., the extent of “gene 

specificity”. To address this type of specificity, other recent studies have proposed null 

models by generating null distributions of effects that are derived from random genes 

selected from the pool of all ~20,000 genes. This null model is however not ideal. As 

importantly mentioned (Fulcher et al., 2020), it fails to take into account the level of co-

expression among the genes of interest in the null condition, which may still lead to an 

inflation of statistical effects. Such a statistical bias strikingly increases when investigating a 

set of biologically relevant genes (like a set of genes related to a brain trait or a brain 

disorder), which are generally much higher co-expressed than a set of random genes (Wei et 

al., 2019). Null models based on co-expressed and biologically relevant random genes are 

thus required. 

Given these various options to perform, it remains unknown how these different null 

models may impact statistical tests of transcriptomic-neuroimaging associations, and to what 

extent examinations of spatial specificity and gene specificity compensate for each other. 

Here, we compare and evaluate commonly used options for statistical evaluation of 

transcriptomic-neuroimaging associations, including the (most) commonly applied linear 

regression, null models that maintain spatial relationships, and null models on the basis of 

effects that occur amongst random genes. In line with recent studies (Burt et al., 2018; 

Arnatkevic̆iūtė et al., 2019; Fulcher et al., 2020), we point out that controlling for spatial 

specificity is important to reduce false-positive findings, but we further show that this is not 

enough: We suggest that further examinations of gene specificity using proper null models 

that account for random gene effects is equally important in minimizing bias towards non-
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specific results in transcriptomic-neuroimaging studies. We provide a toolbox to easily 

perform null-model evaluations for transcriptomic-neuroimaging studies.  

 

Results 

We demonstrate the use and importance of different null models by means of discussing the 

analysis strategy and results of three common examples, followed by simulations of effects. 

We assess how the different null models (i.e., null models that give spatial or gene 

specificity) serve to identify possibly inflated statistical effects. For each example, we 

hypothesize that the transcriptional profile of a gene/gene-set of interest (GOI) relates to a 

brain phenotype, like the spatial pattern of brain atrophy (McColgan et al., 2018) or brain 

disconnectivity (Romme et al., 2017). We test a hypothesized association between the GOI 

and the brain phenotypes by examining the correlation between the expression pattern of the 

GOI across the cortex and the pattern of brain features, e.g., atrophy across the cortex (Figure 

1a). We then test the statistical relevance of these associations using different strategies: 1) by 

spatial null models that provide spatial specificity (Figure 1b) and 2) by random-gene null 

models that assess gene specificity (Figure 1c). We show that statistical evaluations based on 

null models that maintain spatial relationships do not necessarily provide gene specificity, 

and vice versa. 
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Figure 1. Approaches for statistical testing of overlapping patterns of gene transcription and 

imaging-derived brain phenotypes. (a) Permutation test procedure. The expression profile (X) of a 

user-defined set of the gene(s) of interest (GOI) is computed. The association between the expression 

profile and the imaging-derived pattern (Y) is assessed using linear regression. Permutation testing is 

used to examine whether the observed β1 is larger than null distributions of β1 derived from null 

models. Different statistical null models are possible: (b) Examination of spatial specificity. The “null-

spatial” model (Alexander-Bloch et al., 2018) is proposed as a method to examine the spatial 

specificity of the observed associations. Randomized brain parcellations are obtained by spinning the 

inflated sphere of the real brain parcellation (1000 randomizations). A gene expression data matrix is 

then rebuilt using these randomized brain parcellations. The rebuilt gene expression data is used to re-

evaluate transcriptomic-neuroimaging associations to generate null distributions. (c) Examination of 

gene specificity. Three null models (from more liberal to more stringent) are used to examine the gene 

specificity. “null-random-gene” model: random genes are selected from all ~20,000 genes included 

in AHBA. “null-coexpressed-gene” model: random genes that conserve the mean co-expression level 

of the original genes are selected from all ~20,000 genes included in AHBA. “null-brain-gene” 

model: random genes are selected from a subset of genes (2957 genes) that show up-regulated 

expression levels in brain tissues in contrast to other body sites. 
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Example 1: genes related to cortico-cortical connectivity  

We start by re-assessing a commonly examined relationship between the expression of genes 

important for neuronal connectivity and macroscale connectome organization (Krienen et al., 

2016; Romero-Garcia et al., 2018b). We test this by focusing on 19 genes known to be 

enriched in supragranular layers of the human cerebral cortex [referred to as human 

supragranular enriched (HSE) genes], revealed by a previous study that compared gene 

expression profiles in different cortical layers between mice and humans (Zeng et al., 2012). 

These HSE genes are suggested to play a role in shaping long-range cortico-cortical 

connections of layer III pyramidal neurons and as such to show a spatial expression pattern 

that runs parallel to the organization of brain structural and functional networks (Krienen et 

al., 2016; Romero-Garcia et al., 2018b). The transcriptional profile of HSE genes is shown in 

Figure 2a. 

Transcriptomic-neuroimaging overlap: linear regression. We first examine the spatial 

expression pattern of HSE genes in the context of macroscale brain connectome properties 

(Romero-Garcia et al., 2018b). Using simple linear regression we indeed note that the 

expression pattern of HSE genes is significantly associated with the pattern of connectivity 

strength of cortical areas – a measurement describing the extent to which a region is 

connected to the rest of the brain – under the assumption of ‘independent’ gene expressions 

in the brain [standardized beta (β) = 0.672, p < 0.001 for connectivity weighted by the 

number of streamlines (NOS); β = 0.631 p < 0.001 for connectivity weighted by streamline 

density (SD); false discovery rate (FDR) corrected for multiple testing across five 

connectome-related metrics; Figure 2b,c]. A similar association can be found between the 

pattern of HSE gene expression and the pattern of nodal strength of the functional 

connectome (FC; β = 0.442, p < 0.001; FDR corrected; Figure 2b,c), which is in line with the 
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notion of a strong correspondence between structural and functional connectivity (Wang et 

al., 2015b). 

Spatial specificity: null-spatial model. These findings thus confirm a potential 

association between HSE gene expression and macroscale connectome organization (Krienen 

et al., 2016; Romero-Garcia et al., 2018b), but it is worth checking whether such associations 

are spatially specific (i.e., not inflated by inter-regional auto-correlations of gene expression). 

As discussed recently (Alexander-Bloch et al., 2018; Arnatkevic̆iūtė et al., 2019; Burt et al., 

2020; Fulcher et al., 2020), the commonly used linear regression method assumes 

independent observations, which means no correlation between values (i.e., expression 

levels) of the same variable [i.e., gene(s)] across different observations (i.e., regions). It is 

thus crucial to examine whether the observed associations are biased by potentially correlated 

expressions of neighboring brain regions, i.e., preserving spatial relationships across regions. 

To this end, an important new null model was introduced, namely the “null-spatial” model 

where transcriptomic samples are assigned to brain regions from randomized parcellations 

that are obtained by spinning the reconstructed sphere of the real brain parcellation 

(Alexander-Bloch et al., 2018), importantly preserving spatial relationships across brain 

regions (1,000 randomizations; see Methods, Figure 1b). The rebuilt gene expression data 

matrices are used to generate a null distribution of β, which is used to assess whether the 

original effect goes beyond the null condition. Using the null-spatial model, the associations 

between the expression pattern of HSE genes and the pattern of structural/functional 

connectivity strength are again found to be significant (NOS: z = 3.372, p < 0.001; SD: z = 

2.473, p = 0.013; FC: z = 2.051, p = 0.040; FDR-corrected for multiple testing across 5 tests, 

Figure 2d). These effects thus significantly go beyond effects that one can expect using 

randomized brain regions with the same neighboring relationships, suggesting that the 

observed associations are specific to the spatial organization of brain regions. 
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Gene specificity. Spatial specificity however does not yet tell us anything about 

whether the observed effect is specific to this set of genes or might be present for all genes 

associated with the brain. We thus further want to examine whether the observed effects are 

also gene specific (i.e., not reflected by other genes in general). This is of particular 

importance as multiple examinations have pointed out general (global) posterior-anterior 

gradients of expression levels across brain areas (McColgan et al., 2018; Vogel et al., 2020), 

effects that may more reflect spatial patterns general to genes expressed in the brain, rather 

than reflecting patterns unique to the GOI. We thus argue that the next important step in the 

evaluation of the observed association(s) between transcriptomic profile(s) and spatial 

patterns of the imaging-derived brain phenotypes is to examine to what extent the computed 

linear correlations exceed effects that one could also observe when any other gene or set of 

genes would have been chosen, i.e., a set of not-of-interest genes.  

Null-random-gene model. We employ permutations to generate null distributions of 

effect sizes, β, based on gene expression profiles of same-sized gene sets randomly selected 

from all genes (by default 10,000 permutations are used). We refer to this commonly used 

null model (Romme et al., 2017; Fulcher et al., 2020) as the “null-random-gene” model 

(Figure 1c). When the original β significantly exceeds this null model, it indicates the 

observed association cannot be found for all genes, but is unique for the GOI. For our HSE 

example, we show that the observed effect sizes for associations between HSE genes and 

nodal strength of structural and functional connectivity are significantly larger than effect 

sizes of random genes (NOS: z = 5.810, p < 0.001; SD: z = 4.660, p < 0.001; FC: z = 3.124, p 

= 0.003; Figure 2d). 

Null-coexpressed-gene model. We (Wei et al., 2019) and others (Fulcher et al., 2020) 

have, however, further noted that when a set of genes (instead of a single gene) is examined, 

the co-expression level within the set of genes can influence findings resulting from the null-
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random-gene model. This is because the null-random-gene model underestimates the 

covariance of genes, something that is not conserved in a random mixture of genes  (Fulcher 

et al., 2020). Therefore, we argue that it would be more informative to further include a null 

model for stricter statistical evaluation, comparing the observed effect size to the null 

distribution of effect sizes yielded by random genes conserving the same level of co-

expression as the input GOI (referred to as “null-coexpressed-gene”; Figure 1c). For our HSE 

example, we use simulated annealing to look for random genes with the mean co-expression 

levels converging to those of HSE genes (see Methods). Application of this null model still 

shows significant associations between HSE gene expression and connectivity strength 

(NOS: z = 5.690, p < 0.001; SD: z = 4.640, p < 0.001; FC: z = 3.114, p = 0.002; Figure 2d). 

Null-brain-gene model. We anticipate that the strongest usability of transcriptomic-

neuroimaging examinations is to link brain transcriptomic data (like AHBA) to brain 

phenotypes (like MRI measurements). Most of such examinations will thus be centered on 

testing a GOI pre-selected based on the findings from previous brain related studies, e.g. 

GWAS of a disease phenotype like schizophrenia (Schizophrenia Working Group of the 

Psychiatric Genomics, Consortium, 2014) or Alzheimer’s disease (Jansen et al., 2019), a 

specific pathway related to neuronal properties (Kepecs and Fishell, 2014) as in our first HSE 

example, genetic variants related to brain volume (Jansen et al., 2020), etcetera. The result of 

such pre-selected GOI is that most of them will likely be related to processes related to the 

brain, and as such reflect genes likely over-expressed in brain tissue. As a consequence, we 

argue that in these cases a null condition generated by randomly selecting genes from the 

total set of ~20,000 genes (including genes related to all body processes, certainly not only to 

the brain) is not fair and too liberal, as the null-condition will include a body of background 

genes not, or less, expressed in brain tissue. Including such genes into the null-condition will 
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lead to a too liberal null-distribution of effects and with that an overestimation of the original 

effect (de Leeuw et al., 2018). 

To avoid this, we advise using a null model that tests whether the observed effect size 

is larger than the null distribution of effect sizes based on background genes that are 

particularly expressed in brain tissue. We refer to this null model as “null-brain-gene” (Figure 

1c) (Wei et al., 2019), with random genes now selected from the pool of genes that are 

significantly more expressed in brain tissues in contrast to other body sites. This selection can 

for example be made according to the GTEx database (Consortium, G. TEx, 2015), 

containing gene expression data of all sorts of body tissues, including the brain (2957 brain-

expressed genes selected by q < 0.05, FDR correction, one-sided two-sample t-test). In our 

example, using this stricter null model confirms that HSE genes and connectome metrics are 

stronger associated than expected for randomly selected brain genes (NOS: z = 4.445, p < 

0.001; SD: z = 4.283, p < 0.001; FC: z = 2.698, p = 0.007; Figure 2d) 

Null-brain-coexpression model. As a further step, we merge the null-coexpressed-

gene model and null-brain-gene model, investigating a more integrated null model that tests 

whether the observed effect size is larger than the null distribution of effect sizes based on 

brain-expressed genes with similar coexpression level conserved (referred to as “null-

coexpressed-brain-gene model”). Using this stringent null model still shows significant 

associations between HSE gene expression and connectivity strength (NOS: z = 4.304, p < 

0.001; SD: z = 4.184, p < 0.001; FC: z = 2.8934, p = 0.004). 
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Figure 2. HSE gene expression and macroscale connectome properties. (a) Brain plots of normalized 

gene expression levels of HSE genes. (b) Overview of linear regression results between HSE gene 

expression profile and five imaging-derived connectome properties included in GAMBA. Dark blue 

indicates significant (q < 0.05, FDR corrected across 5 connectome traits). (c) Scatter plots for 

significant correlations between HSE gene expression and nodal strength of the structural (NOS-

weighted, β = 0.672 and SD-weighted, β = 0.631) and functional connectome (β = 0.442). (d) 

Permutation testing results showing whether the observed effect size (β in panel b) is significantly 

beyond four distinct null distributions of effect sizes for null-spatial, null-random-gene, null-

coexpressed-gene, and null-brain-gene models. Dark blue indicates p < 0.05 (two-tailed z-test). 

 

Example 2: Alzheimer’s disease risk gene APOE 

Our HSE example includes a case in which the main hypothesized effect survived all 

different statistical evaluations, from liberal linear regression to stricter (i.e., providing 
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needed spatial and gene specificity) null-coexpressed-gene and null-brain-gene models, 

showing both spatial and gene specificity. In a second example, we show that this however is 

not always the case, and that the use of a (too) liberal statistical test not testing for spatial 

and/or gene specificity potentially may lead to false-positive associations. Here, we zoom in 

on transcriptomic brain patterns of disease-related pathology, another major topic of 

combined transcriptomic-neuroimaging studies (Romme et al., 2017; McColgan et al., 2018; 

Freeze et al., 2019). We examine the Apolipoprotein E (APOE) gene, widely indicated as a 

risk gene for Alzheimer’s disease (AD) (Liu et al., 2013). We hypothesize that the cortical 

gene expression of APOE is related to the cortical alterations revealed in patients with AD or 

other types of dementia (Grothe et al., 2018), and that correlation analysis between 

transcriptomic and neuroimaging data may provide evidence for such a relationship. 

We again start by examining potential overlap in the transcriptional profile of our 

gene of interest, here APOE (Figure 3a), and a neuroimaging phenotype of interest, here 

cortical grey matter atrophy patterns of 22 brain diseases, including AD, dementia, and others 

as reported by meta-analyses of the BrainMap voxel-based morphometry (VBM) studies (see 

Methods). Linear regression analysis first reveals that the pattern of APOE gene expression is 

significantly associated with results of VBM studies reporting on atrophy of brain regions in 

i) dementia (β = 0.653, p < 0.001), ii) AD (β = 0.631, p < 0.001), iii) semantic dementia (β = 

0.620, p < 0.001) and iv) frontotemporal dementia (β = 0.505, p = 0.001; FDR corrected for 

multiple testing across 22 diseases; Fig 3b,c). This seems to confirm our hypothesis. Analysis 

seems to reveal additional associations between APOE expression and the atrophy pattern of 

v) attention deficit hyperactivity disorder (ADHD) which has been hypothesized as a risk 

factor of dementia pathology (Callahan et al., 2017) (β = 0.349, p = 0.008) and vi) bipolar 

disorder (β = 0.335, p = 0.010; Figure 3b). 
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As a subsequent step, we use the null-spatial model to examine the spatial specificity 

for the above-mentioned associations between APOE transcriptional profile and atrophy 

patterns in the observed brain diseases. Using this null model reveals significant associations 

of APOE’s expression with brain atrophy in 5 out of the 6 diseases listed above, including 

dementia (z = 3.518, p < 0.001), AD (z = 3.336, p < 0.001), frontotemporal dementia (z = 

3.331, p < 0.001), semantic dementia (z = 2.762, p = 0.006), and bipolar disorder (z = 2.143, 

p = 0.032; Figure 3d). These findings show encouraging effects that favors a relationship 

between the transcriptional profile of APOE and patterns of cortical atrophy related to 

dementia. 

However, when we evaluate whether the observed associations between APOE 

transcriptional profile and disease-related atrophy patterns exceed effects that one could also 

observe by chance for any other set of genes, these effects diminish. Among the six diseases 

revealed in linear regression analysis, only the effects for semantic dementia (z = 2.057, p = 

0.040) and dementia (z = 2.001, p = 0.045) remain significant when using the null-random-

gene model; the other effects no longer show significance (AD: z = 1.938, p = 0.053, 

frontotemporal dementia: z = 1.928, p = 0.054; bipolar disorder: z = 1.271, p = 0.204). 

Moreover, using the stricter null-brain-gene model (i.e., zooming in on genes over-expressed 

in brain tissue) none of the above effects remain significant (all p > 0.05). This suggests that 

the initially found association between the expression pattern of APOE and the atrophy 

patterns of e.g., AD, frontotemporal and semantic dementia, do not exceed effects that can be 

generally observed when any other (random) gene expressed in brain tissue would have been 

selected. 
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Figure 3. APOE gene expression and atrophy in brain diseases. (a) Brain plots of normalized gene 

expression levels of APOE. (b) Overview of linear regression results, showing the top 10 associations 

between APOE gene expression profile and the BrainMap voxel-based morphometry (VBM)-derived 

atrophy patterns included in GAMBA. Dark blue indicates significant (q < 0.05, FDR corrected across 

22 brain diseases included in GAMBA). (c) Top 3 significant correlations between APOE gene 

expression and VBM changes in dementia (β = 0.653), Alzheimer’s (β = 0.631), semantic dementia (β 

= 0.620). (d) Permutation testing results showing whether the observed effect size (β in panel c) is 

significantly beyond three distinct null distributions of effect sizes for null-spatial, null-random-gene, 

and null-brain-gene models. Dark blue indicates p < 0.05 (two-tailed z-test). 

 

Example 3: Application to autism spectrum disorder risk genes 

We further demonstrate the importance of proper null-model selection in avoiding over-

interpretation of observed associations in a third example. We examine gene expressions of 
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25 risk genes of autism spectrum disorder (ASD, 24 of which are present in AHBA) obtained 

from a recent meta-analysis of genome-wide association studies on a total of 18,381 ASD 

cases and 27,969 controls (Grove et al., 2019). Again, in a first examination, we compute the 

correlation between the expression pattern of ASD genes (Figure 4a) and functional 

alterations in brain diseases derived from BrainMap data (Fox and Lancaster, 2002; Fox et 

al., 2005; Laird et al., 2005), which reveals an interesting association with Asperger’s 

syndrome (β = 0.284, p = 0.032, not corrected) (Figure 4b) -- a major diagnosis of ASD with 

difficulties in social interaction and nonverbal communication. The subsequent analysis 

further suggests that this effect for ASD genes is spatially specific as shown by the 

application of the null-spatial model (z = 1.991, p = 0.047). However, using null models to 

examine gene specificity does not show any significant result (null-random-gene: z = 1.217, p 

= 0.223; null-coexpressed-gene: z = 1.354, p = 0.076; null-brain-gene: z = 1.246, p = 0.213; 

null-coexpressed-brain-gene: z = 1.235, p = 0.217) (Figure 4c). This simple example shows 

that even when an expected association is observed that fits with current theories of brain 

(dis)organization and (dis)connectivity, these effects may be overestimated, with other sets of 

genes (in this case, random subsets of genes generally expressed in brain tissue) showing 

similar expression patterns. We thus again argue that the selection of a proper null model 

matching one’s research question is of importance in linking brain expression data to 

neuroimaging phenotypes. 
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Figure 4. ASD gene expressions and functional alterations in brain diseases. (a) Brain plots of z-

scores, showing to what extent the expression level of 24 ASD genes is higher than the average gene 

expression. Yellow circles indicate p < 0.05. (b) Overview of linear regression results, showing the 

top 10 associations between ASD gene expression profile and the disease-related BrainMap functional 

alterations included in GAMBA, with Asperger’s syndrome showing the highest correlation (β = 

0.284, p = 0.032, not corrected). (c) Permutation testing results showing whether the observed effect 

size (β in panel c) is significantly beyond four distinct null distributions of effect sizes for null-spatial, 

null-random-gene, null-coexpressed-gene, and null-brain-gene models. Dark blue indicates p < 0.05 

(two-tailed z-test). 
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Table 1. Summary of examples statistically testing associations between spatial patterns of gene 

expression and imaging-derived brain phenotypic patterns 

Examples 

Linear 

regression 

(standardized β) 

Spatial 

specificity Gene specificity 

null-spatial 

(z-score) 

null- 

random- 

gene (z-

score) 

null- 

coexpressed- 

gene 

 (z-score) 

null- 

brain- 

gene (z-

score) 

null-brain- 

coexpressed- 

gene  

(z-score) 

HSE genes & 

connectivity strength 

(NOS) 

0.672 3.372  5.810 5.690 4.445 4.304 

APOE & VBM 

changes in dementia 
0.653 3.518 2.001 NA 1.744 NA 

ASD genes & fMRI 

changes in 

Asperger’s syndrome 

0.284 1.991 1.217 1.354 1.246 1.235 

bold: significant 

 

Quantitative simulations of null models 

Brain phenotypes. We provided three simple examples of analyses commonly performed in 

transcriptomic-neuroimaging studies. We continue by simulating the outcome of the 

discussed statistical evaluation approaches for a wide range of real brain phenotypes and 

artificial gradients to get a deeper insight into the comparison of the different null-model 

strategies and their effect on reporting potential false-positive results. We first build a full 

outcome-space of all associations between single-gene expression profiles in AHBA (20,949 

in total) and 384 imaging-derived brain phenotypes taken from multiple sources such as 

NeuroSynth (Yarkoni et al., 2011), BrainMap (Fox and Lancaster, 2002; Fox et al., 2005; 

Laird et al., 2005) and Cognitive Ontology (Yeo et al., 2016) (see methods). Among all these 

gene × brain phenotype (20,949 × 384) associations, the linear model indicates 960,963 

(11.85%) of these associations as significant (p < 0.05, uncorrected), with 208,190 (2.57%) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.02.22.432228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

reaching FDR and 56,259 (0.69%) reaching Bonferroni correction with α level < 0.05 

(corrected for 384 tests of all brain phenotypes per gene). We then implemented the null 

models to examine the spatial/gene specificity for the potential significant associations. Only 

FDR-corrected results are reported in the following paragraphs for the sake of simplicity. 

Uncorrected and Bonferroni-corrected results are tabulated in Table 2. 

Using the null-spatial model to assess spatial specificity of these associations shows 

that only 26,273 out of the 208,190 associations reported in linear regression remain 

significant (p < 0.05; Supplementary Figure S1). This suggests that a large proportion of 

transcriptomic-neuroimaging associations as revealed by linear regression (87%) are 

overestimated due to dependencies of expression levels among neighboring brain regions and 

thus likely involve false-positive findings. This is in line with what was recently reported in 

literature (Burt et al., 2020; Fulcher et al., 2020; Markello and Misic, 2021). 

 When we then further implement the null-random-gene and null-brain-gene models 

(null-coexpressed-gene is not applicable in the situation of examining the spatial pattern of a 

single gene) to examine gene specificity of the reported transcriptomic-neuroimaging 

associations of our gene of interest and all neuroimaging patterns, we can find that only 

15,297 out of these 26,273 reported associations surviving the null-spatial model remain 

further significant using the null-random-gene (p < 0.05, null-random-gene and null-spatial 

combined). This suggests that even among spatially specific associations, there is still a 

considerable proportion of associations (42%) that can be commonly found for a wide range 

of (random) genes and therefore are hard to call an effect that is specific to our gene of 

interest. These effects thus likely reflect effects that are not specific to the gene of interest 

and reflect patterns that are found for many other genes as well. Further examining effects 

under the more stringent null-brain-gene model shows that an even smaller proportion of only 
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9,802 associations out of the 26,273 associations surviving the null-spatial model remain 

significant (p < 0.05, null-brain-gene and null-spatial combined; Supplementary Figure S1).  

We note that similar types of results are found when we apply the null models the 

other way around, namely, first applying the null-brain-gene model and then the null-spatial 

model. Doing so, we can identify 67,181 significant transcriptomic-neuroimaging 

associations (p < 0.05, null-brain-gene), of which only 15% (9,802) are spatially specific (p < 

0.05, null-spatial and null-brain-gene combined; Supplementary Figure S1), indicating that 

gene and spatial specificity are not mutually inclusive. 

Similar findings can also be observed for gene sets of more than one gene by 

examining transcriptomic-neuroimaging associations for gene sets curated in the Gene 

Ontology (GO) database (http://geneontology.org) (results for GO terms are presented in the 

Supplementary Results). 

 

Table 2. Summary of all potential associations between spatial patterns of single-gene expression and 

384 imaging-derived brain phenotypic patterns 

Methods 
Number of significant associations (α<0.05) 

Uncorrected FDR-corrected Bonferroni-corrected 

LR 960,963 208,190 56,259 

LR & N-spin 84,149 26,273 8,142 

LR & N-spin & N-rand 26,786 15,297 7,610 

LR & N-spin & N-brain 19,551 9,802 6,294 

LR: Linear Regression; N-spin: null-spatial model; N-rand: null-random-gene model; N-brain: null-brain-gene model 

 

Simulated phenotypes. In the previous paragraphs we demonstrate the need of examining 

spatial and gene specificity of observed transcriptomic-neuroimaging associations. We argue 

that this is particularly important when testing phenotypes with spatial patterns similar to 

global posterior-anterior or inferior-superior gradients (McColgan et al., 2018; Vogel et al., 
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2020). To show this point, we simulated spatial maps of seven phenotypes that follow global 

spatial gradients across the brain, from i) posterior to anterior, ii) from inferior to superior, 

and iii) from medial to lateral, together with the (iv-vii) four combinations of these gradients 

(Supplementary Figure S2). We then examined all associations between single-gene 

expression profiles in AHBA and the simulated phenotypes. Among all these possible 

associations (20,949 × 7), we can find 23,723 (16%) significant associations between single-

gene transcriptional profiles and simulated phenotypic profiles (linear regression: q < 0.05, 

FDR corrected; corrected for 7 tests of all simulated phenotypes per gene). These correlations 

suggest that a large set of genes have expression profiles that follow general and very global 

spatial gradients of the brain, and show a non-specific spatial pattern that is shared with a 

wide range of other genes (i.e., lack any form of gene specificity). Application of the null-

spatial model to these associations shows that only 3,305 out of the observed 23,723 

associations (14%) remain significant, suggesting that most of the common effects found 

significant using linear regression are inflated due to the strong spatial dependency of 

neighboring brain regions and can be filtered out by the null-spatial model. Among those 

3,305 spatial-specific associations however, only 974 (29%) further remain significant when 

we additionally apply the null-random-gene model and examine whether effects are also gene 

specific. An even smaller number of significant associations remain (only 626; 19%) when 

we use a stricter null-brain-gene model (Supplementary Figure S1). 

These simulations show that only 3% (626 out of 23,723) of the associations between 

single-gene transcriptional profiles and 8 simple spatial gradients revealed in ordinary linear 

regression can be labeled as both spatially specific and gene specific; 97% of the initially 

found FDR-corrected effects do not survive a statistical evaluation that examines spatial and 

gene specificity.  
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Table 3. Summary of all potential associations between spatial patterns of single-gene expression and 

7 simulated brain phenotypes that represent global spatial gradients 

Methods 
Number of significant associations (α<0.05) 

uncorrected FDR-corrected Bonferroni-corrected 

LR 33,335 23,723 18,336 

LR & N-spin 3,880 3,305 3,175 

LR & N-spin & N-rand 1,003 974 967 

LR & N-spin & N-brain 647 626 620 

LR: Linear Regression; N-spin: null-spatial model; N-rand: null-random-gene model; N-brain: null-brain-gene model. 

 

Toolbox  

We made a simple web-based application and a MATLAB toolbox to facilitate quick 

examinations of transcriptomic-neuroimaging associations and to then test observed 

correlations with different null models. Within GAMBA (short for Gene Annotation using 

Macroscale Brain-imaging Association) expression profiles of input GOIs (i.e., a single gene 

or a set of genes) can be associated to imaging-derived brain traits from nine categories 

(Supplementary Figure S3) and tested using the different null models as discussed in this 

paper (including null-spatial, null-random-gene, null-coexpressed-gene, null-brain-gene).  

Imaging-derived phenotypes included in the tool cover the spatial patterns of i) resting-state 

functional networks (Yeo et al., 2011), ii) brain cognitive components (Yeo et al., 2016), iii) 

regional metrics of the brain structural and functional connectome, iv) measurements of the 

cortical oxygen and glucose metabolism (Vaishnavi et al., 2010), v) human surface area 

expansion compared to the chimpanzee (Wei et al., 2019), vi) brain volume alterations across 

twenty-two disorders (Fox and Lancaster, 2002; Fox et al., 2005; Laird et al., 2005), vii) brain 

functional changes in sixteen disorders (Fox and Lancaster, 2002; Fox et al., 2005; Laird et 

al., 2005), viii) cortical patterns of brain (dis)connectivity across nine psychiatric and 

neurological disorders (de Lange et al., 2019) and ix) brain functional correlates of 292 terms 
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in relation to cognitive states and brain disorders, as described in the NeuroSynth database 

(Yarkoni et al., 2011). Details on the included datasets and statistical analyses are described 

in the Supplementary Methods. The web-tool is available online at 

http://dutchconnectomelab.nl/GAMBA. A relevant MATLAB toolbox used for implementing 

the mentioned null models is also available at 

https://github.com/dutchconnectomelab/GAMBA-MATLAB. 

 

Discussion 

We evaluate and discuss the importance of selecting proper null conditions when performing 

a transcriptomic-neuroimaging study. We examined the usability of commonly applied 

statistical methods, such as simple single linear regression to assess the statistical validity of 

observed transcriptomic-neuroimaging relationships and once again confirm that the use of 

proper null-models that provide spatial specificity (using null-spatial model) are highly 

needed. We further show, however, that preserving spatial effects and controlling for spatial 

autocorrelation is not enough to provide information on whether the effect of our gene(s) of 

interest are unique and stand-out from effects that can be widely observed across many other 

random genes in the dataset. We recommend the use of appropriate null models when 

examining overlapped spatial patterns of transcriptomic profiles and imaging-derived 

phenotypes, providing information on both spatial and gene specificity based on the research 

question asked. 

 

The three examples we present do of course not cover all types of examinations one can 

perform by combining transcriptomic and neuroimaging data. They do however illustrate 

some of the caveats and limitations of cross-linking cortical patterns of transcription and 

neuroimaging features and recommend the use of additional statistical analyses. Our first 
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example illustrates that transcriptomic-neuroimaging associations can include effects that are 

both spatial- and gene-specific. We show that the cortical transcriptional profile of HSE 

genes runs parallel to spatial patterns of macroscale brain traits and that this association goes 

beyond both general spatial and random-gene-set effects that could be expected based on 

chance level alone. They thus highlight an interesting relationship between expression 

patterns of genes related to patterns of macroscale connectivity (Zeng et al., 2012; Krienen et 

al., 2016; Romero-Garcia et al., 2018b). 

 

A different conclusion should however be made when examining APOE and the set of ASD 

genes, with the two examples underscoring the importance of proper statistical testing. The 

expression pattern of APOE across cortical areas seems to show, at first glance, a sensible 

and significant correlation with reported patterns of structural alterations in AD and 

dementia. Findings in literature are in support of such associations, arguing in favor of a “true 

positive” effect. For example, AD patients are known to show elevated APOE expression in 

the medial temporal regions that are in turn known to be involved in the pathology of the 

disease (Akram et al., 2012; Linnertz et al., 2014; Ranlund et al., 2018). However, further 

evaluation using null models that test gene specificity reveals that the observed association is 

not particularly specific to APOE, and can be observed for nearly 150 other brain-expressed 

genes in AHBA (corresponding to z = 1.65 for AD, null-brain-gene model). This indicates 

that while potentially an interesting effect, it is quite hard to say that this effect is specific to 

APOE. Investigating a gene set involved in AD-related biological pathways instead of a 

single risk gene may produce more informative results (Freer et al., 2016). 

 

Similarly, analysis of ASD risk genes initially reveals an interesting association between 

expression patterns of ASD genes and patterns of brain functional alterations seen in 
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Asperger’s syndrome, as shown by both linear regression and the null-spatial model. One 

may be easily tempted to take this effect as a meaningful interaction because Asperger’s 

syndrome is a highly heritable subtype of ASD (Grove et al., 2019) and imaging-genetic 

associations in ASD have been proposed (Ranlund et al., 2018; Xie et al., 2020). Yet, our 

analyses using null-random-gene and null-brain-gene models show that we cannot claim 

specificity of this effect to ASD genes, as such an overlapping pattern can similarly be found 

for (many) other random genes not related to ASD. This example indicates that a false-

positive conclusion can easily be made and that using null models to test gene specificity is 

important. 

 

Simulations correlating single-gene expression profiles to brain phenotypes show that 

actually only 13.6% of all observed linear associations that survive FDR satisfy spatial 

specificity. Such a small proportion is likely attributable to a high auto-correlation between 

adjacent brain regions in transcriptomic and phenotypic data, leading to a degree of freedom 

much smaller than the one applied, such that the effects are inflated. This again stresses the 

importance of using null models [e.g., the spin-based null-spatial model here (Alexander-

Bloch et al., 2018) or other equivalents (Arnatkevic̆iūtė et al., 2019; Burt et al., 2020; Fulcher 

et al., 2020; Markello and Misic, 2021)] to reduce false-positive rate introduced by the spatial 

auto-correlation effects.  

 

Extending the important null-spatial model, our simulation analysis correlating single-gene 

expression profile to brain phenotypes shows that implementing the null-spatial model only 

is, however, not enough, and that only 37.3% of the transcriptomic-neuroimaging 

associations survived in the null-spatial model do not show gene specificity. The ratio is even 

lower (18.9%) in our simulations that take brain geographic gradients as the phenotypic of 
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interest. This is because the transcriptional profiles of a considerable number of genes (16% 

of all genes) bear high similarity to the examined geographic gradients in the brain. These 

simulations suggest that examining spatial specificity cannot be regarded as a substitute of 

testing gene specificity, nor vice versa, pointing to the necessity of testing both the spatial 

and gene specificity in transcriptomic-neuroimaging studies. 

 

The discussed null models are presented in a simple web-tool GAMBA and a MATLAB 

toolbox, which can be used to probe the association between transcriptomics and common 

brain structure/function phenotypes derived from a wide range of neuroimaging data. 

GAMBA complements other tools that link genetics and brain functions, tools such as 

NeuroSynth (Yarkoni et al., 2011), Brain Annotation Toolbox (Liu et al., 2019), and the 

ENIGMA toolbox (Larivière et al., 2021) that provide similar platforms to visualize and 

examine brain maps of gene expression patterns and brain maps, but do not directly provide 

means to test these effects against multiple null models. 

 

Several methodological points have to be considered. First, our examples are based on the 

rich gene expression data from the AHBA (Hawrylycz et al., 2012). Further extensions to 

other datasets of brain gene expressions, such as PsychENCODE (Wang et al., 2018) and 

BrainSpan (Johnson et al., 2009) can easily be made. Second, we need to consider that 

AHBA gene expression data is extracted from the post-mortem brains of healthy individuals, 

i.e., ones with no psychiatric and neurologic conditions. Therefore, results regarding spatial 

brain patterns of disorders should be interpreted in the context of gene expression of risk 

genes in brain regions to be a potential marker for a higher susceptibility of these regions in 

relevant disorders (Romme et al., 2017; McColgan et al., 2018). 
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Conclusion 

In summary, we highlight the need of using null models to investigate both spatial specificity 

and gene specificity when examining associations between the spatial patterns of gene 

transcriptomic profiles and imaging-derived brain traits. 

 

Methods 

AHBA gene expression data 

Microarray gene expression data were obtained from the extensive Allen Human Brain Atlas 

database (http://human.brain-map.org), including highly detailed data from six postmortem 

brains of donors without any neuropathological or neuropsychiatric conditions. Microarray 

analyses are described in detail in http://help.brain-

map.org/display/humanbrain/Documentation. Brain tissue samples of the left hemisphere 

were obtained from four donors (466 ± 72.6 samples from H0351.1009, H0351.1012, 

H0351.1015, and H0351.1016), and 946 and 893 samples covering both hemispheres from 

the remaining two donors (H0351.2001 and H0351.2002). We included tissue samples of 

cortical and subcortical regions of the left hemisphere and used the expression of 58,692 

probes for each brain donor (Romme et al., 2017; Wei et al., 2019). 

We performed probe-to-gene re-annotation using the BioMart data-mining tool 

(https://www.ensembl.org/biomart/) (Arnatkevic̆iūtė et al., 2019). Outdated gene symbols 

were updated and alias gene symbols were replaced by symbols obtained from the HUGO 

Gene Nomenclature Committee (HGNC) database (http://biomart.genenames.org/), resulting 

in the inclusion of 20,949 genes. Expression levels that were not well-above background 

were set to NaN. Per donor, and per tissue sample, expression levels of probes annotated to 

the same gene symbol were averaged, followed by log2-transformation with pseudocount 1. 

Tissue samples were spatially mapped to FreeSurfer cortical and subcortical regions to obtain 
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region-wise gene expression profiles (French and Paus, 2015). A cortical parcellation of 114 

regions (57 per hemisphere) and subcortical segmentation of 7 regions based on the Desikan-

Killiany atlas (DK-114) were obtained for the Montreal Neurological Institute (MNI) 152 

template using FreeSurfer (Desikan et al., 2006; Fonov et al., 2011; Cammoun et al., 2012). 

Brain tissue samples were annotated to cortical regions in the DK-114 atlas based on MNI 

coordinates, computing the nearest gray matter voxel within the MNI ICBM152 template in 

the FreeSurfer space. Tissue samples with a distance less than 2mm to the nearest gray matter 

voxel were included. Gene expression profiles of tissue samples belonging to the same 

cortical region were averaged, resulting in a 6 × 64 × 20,949 data matrix (i.e., donors × brain 

regions × genes). Within each donor, gene expression per gene was normalized to z-scores 

across all cortical and subcortical regions. Normalized gene expression profiles were 

averaged across the six donors obtaining a group-level gene expression matrix of size 64 × 

20,949. Considering that most neuroimaging data as described in the following sections only 

include cortical regions, only the cortical expression pattern of each gene (i.e., 57 × 20,949 

gene expression matrix) was correlated to the patterns of various neuroimaging findings. 

 

Neuroimaging phenotypic data 

Connectome metrics used in example 1 were obtained from a human structural connectome 

map reconstructed using T1-weighted and diffusion-weighted MRI (dMRI) data of 487 

subjects (age [mean ± standard deviation]: 29.8 ± 3.4 years old) from the Human 

Connectome Project (Van Essen et al., 2013). Disease maps used in example 2 and example 3 

were computed based on coordinate-based results obtained from the extensive BrainMap 

database (http://www.brainmap.org/) that contains published functional and structural 

neuroimaging experiments of psychiatric and neurological disorders (see Supplementary 

Methods for a detailed description of the used procedures). 
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Statistics and null models 

Linear regression. Linear regression is used to test for an association between the cortical 

expression profile of a gene (or the average expression pattern across a set of genes) and the 

pattern of an imaging-derived brain phenotype: 

𝑌! = 𝛽" + 𝛽#𝑋$ + 𝜀		 	 	(1)	

where Yi indicates the standardized gene expression profile of gene i or the standardized, 

averaged profile of a gene set i, and Xj the standardized cortical profile of neuroimaging 

phenotype j. Standardization is performed by dividing each value X or Y by the standard 

deviation. The standardized regression coefficient β1 and the corresponding correlation 

coefficient and p-value are obtained. 

Null-spatial model. An important variant on the linear regression model was recently 

introduced (Alexander-Bloch et al., 2018), now testing whether the observed association is 

specific to spatial-anatomical relationships between brain regions. To this end, in (1) the 

observed β1 is compared to β1s generated by 1,000 permutations, in which the gene 

expression data matrix is rebuilt using randomized brain parcellations by spinning the 

reconstructed sphere of the real brain parcellation with random angles (0-360°) conserving 

the spatial relationship of neighboring regions. 

Null-random-gene model. The null-random-gene model tests whether the observed 

association is specific to the given gene or set of genes of interest (GOI), i.e., comparing 

against effects that can be observed when any other set of genes would have been selected. 

To this end, it is tested whether the observed β1 (i.e., the effect size) is different from null 

distributions of β1 observed for randomly selected genes with the null-random-gene 

distribution estimated from 10,000 permutations and the mean (µ) and standard deviation (σ) 

of effect sizes in the null distribution obtained. 
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Null-coexpressed-gene model. The null-coexpressed-gene model includes a stricter null 

model where random genes with similar co-expression levels as the given GOI are selected to 

generate null distributions of β1 (null-coexpressed-gene model). Random genes are selected 

according to the following steps: first, a set of random genes are initially selected. Then the 

mean co-expression level of the random gene set is compared to the mean co-expression level 

of the given GOI. If the co-expression difference is larger than the maximum difference 

allowed, the gene with the highest/lowest co-expression level is excluded and a new random 

gene is included in the set. This step repeats until the co-expression difference is smaller than 

the maximum difference allowed. A total number of 1,000 sets of random genes were 

obtained due to the limitation of computational capacity.  

Null-brain-gene model. The null-brain-gene model is generated using random genes selected 

from a pool of 2,957 genes over-expressed in brain tissue, with brain-expressed genes 

identified by performing one-tail two-sample t-tests on gene expression levels between brain 

tissues and other body sites (q < 0.05, FDR corrected), using gene expression data from the 

GTEx portal (https://www.gtexportal.org). Permutation is performed 10,000 times.  

 

For all null models, the mean (µ) and standard deviation (σ) of effect sizes (β1) in the null 

distributions are estimated. A two-tailed z-test is performed to examine whether the observed 

β1 (i.e., the effect size) is larger than the mean effect size derived from null models:  

𝑧 =
𝛽# − 	𝜇
𝜎  

where µ, σ indicate the mean and standard deviation of β1 over random permutations. A two-

tailed p-value is computed as follows: 

𝑝 = 2𝛷(|−𝑧|)	

where Φ is the standard normal cumulative distribution function.  
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Data availability 

Gene expression data are available in the Allen Brain Atlas (http://human.brain-map.org). 

The GTEx data are available in the GTEx Portal (https://www.gtexportal.org). MRI data 

(used for the connectome reconstruction) that support the findings of this study are available 

from the Human Connectome Project (Q3 release, https://www.humanconnectome.org). 

BrainMap data are available at http://www.brainmap.org/. 
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