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1 List of plasmids, strains, and primers

Here are the list of strains, plasmids and primers used in this study. Bacterial strains were
constructed either by P1 transduction or by cloneintegration (St-Pierre et al., 2013) as mentioned
in Table 1. Plasmids pSJR036 and pSJR046 were constructed by digestion of the backbone
by enzymatic restriction, amplification of the insert by PCR using a high fidelity polymerase
and ligation using Gibson assembly (details in Table 3). All plasmids were checked by PCR
amplification of the insert and Sanger sequencing. After construction, all strains were checked
by PCR amplification and Sanger sequencing of the modified chromosomal region.

Table 1: List of strains. CLI stands for clone-integration, and P1 for phage transduction.

Strain Background Genotype Source/Construction
eSJR017 MG1655 seqA::mGFP

Prna1-mKate2
Gift from Raul Fernandez Lopez
(RFL84). mKate2 construct built
by Nathan Lord.

eSJR048 MG1655 rph-1 λ− Genomic Stock Center
(CGSC7740)

eSJR059 MG1655 lacIq lacZ::pal246 cynX::GmR Gift from David Leach (DL2859)
eSJR130 BW27784 asbB::pal246 ascF::KnR Gift from David Leach (DL4212)
eSJR145 MG1655 HK022:PsulA-mGFP eSJR048 CLI using pSJR036
eSJR206 MG1655 HK022:PsulA-mGFP

P21:Ptet01-mKate2
eSJR145 CLI using pSJR046

eSJR214 MG1655 eSJR206
asbB::pal246 ascF::KnR

eSJR206 P1 using eSJR130

eSJR301 MG1655 eSJR206 lacIq

lacZ::pal246 cynX::GmR
eSJR206 P1 using eSJR059

eSJR302 MG1655 eSJR206 lacIq

lacZ::pal246 cynX::GmR

asbB::pal246 ascF::KnR

eSJR301 P1 using eSJR130

Table 2: List of plasmids.

Plasmid Purpose Source
pSJR017 Clone-integration marker excision pE-FLP (St-Pierre et al., 2013)
pSJR021 Clone-integration at HK022 site pOSIP-KH (St-Pierre et al., 2013)
pSJR025 Clone-integration at P21 site pOSIP-KT (St-Pierre et al., 2013)
pSJR035 Source sequence for PsulA-mGFP DL4847
pSJR036 PsulA-mGFP insertion by CLI This study
pSJR046 PtetO1-mKate2 insertion by CLI This study
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Table 3: Plasmid construction. List of plasmids constructed in this study.

Plasmid Backbone Digestion PCR tem-
plate(s)

primer
pair(s)

pSJR036 HK022::PsulA-mGFP pSJR021 EcoRI,
PstI

pSJR035 oSJR084,
oSJR085

pSJR046 P21::PtetO1-mKate2 pSJR025 EcoRI,
PstI

eSJR017 oSJR066,
oSJR098

Table 4: List of primers.

Primer 5′-3′ Sequence Purpose
oSJR084 GGACGCCCGCCATAAACTGCCAGGAATTGG

GGATCGGAATTCAGGGTTGATCTTTGTTGT

pSJR036 construction

oSJR085 TTAGGTTAGGCGCCATGCATCTCGAGGCAT

GCCTGCAGTTATTTGTATAGTTCATCCATG

pSJR036 construction

oSJR066 ACGCCCGCCATAAACTGCCAGGAATTGGGG

ATCGGAATTCTTATCTGTGCCCCAGTTTGC

pSJR046 construction

oSJR098 ATGAATTCAAATACTGTCCTTCCGGTCAGT

GCGTCCTGCTGATGTGCTCAGTATCTCTAT

CACTGATAGGGATGTCAATCTCTATCACTG

ATAGGGACTCGACTGCAGGCATGCCTCGAG

ATGCATGGCGCCTAACCTAAACTGACA

pSJR046 construction

oSJR058 GGAATCAATGCCTGAGTG HK022 insertion verification
oSJR059 ACTTAACGGCTGACATGG HK022 insertion verification
oSJR060 ACGAGTATCGAGATGGCA HK022 insertion verification
oSJR061 GGCATCAACAGCACATTC HK022 insertion verification
oSJR092 ATCGCCTGTATGAACCTG P21 insertion verification
oSJR093 ACTTAACGGCTGACATGG P21 insertion verification
oSJR094 GGGAATTAATTCTTGAAGACG P21 insertion verification
oSJR095 TAGAACTACCACCTGACC P21 insertion verification
oSJR072 TTATGCTTCCGGCTCGTATG lacZ::pal246 verification FW
oSJR073 GGCGATTAAGTTGGGTAACG lacZ::pal246 verification RV
oSJR080 CCAACCAGTCTGAAGGTGCG ascB::pal246 verification FW
oSJR081 CCAGCGGTTCGATACCGTAC ascB::pal246 verification RV
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2 Image analysis of snapshot data

In order to automate the detection of cells from fluorescent images (cell segmentation), we devel-
oped a custom algorithm based on edge-detection using low-pass filters (detailed in Algorithm 1)
and a graphical user interface to facilitate manual correction of the segmentation. The algorithm
was designed to detect cell edges using a custom convolution filter, that compares each pixel
value relative to its neighbours. The filters are constructed by summing many 2D Gaussian
distributions, where each Gaussian has a mean position moving away from the center of the filter
with a given orientation (detailed in Algorithm 2). We apply several filters with different orien-
tations to the fluorescence image, and compute a score by combining the results from all filters
(Algorithm 1). Then a threshold is applied to the score to remove cell edges, and generate a mask
from which cells are identified as individual connected components (see example in Figure 1).
Finally, the resulting segmentation is manually curated to remove any potential misidentified cell.

Image Score Mask

Figure 1: Semi-automated cell detection. Example of computed score and mask for a given
image.

Algorithm 1: Cell segmentation from fluorescence image.
Algorithm for segmenting a fluorescent image using an array of spacial low-pass filters. It takes any
image as input, plus seven parameters, and returns a mask containing where regions that appears as
“valleys” in the intensity landscape have been removed

Require: Input image: img. Parameters: minimum intensity value i0; µ and σ (gaussian filter);
pixel length d, width w, and set of angles A = {A1, A1 + π} (for low pass filter); and a score
threshold s0. Some predefined functions: IMFILTER that applies a convolution filter to an
image; GAUSSFILTER that return a gaussian filter; THRESHOLD that thresholds an image
returning a boolean matrix; LOWPASSFILTERS that computes custom low-pass filters (see
algorithm 2); IMCOMPLEMENT that computes the complement of an image; POSBOOL
that returns one if the value is positive; PAIRWMULT that computes the pairwise multiplication
of matrices; and PAIRWDIV that computes the pairwise division of matrices.

1: function SEGMENTATION MASK(img,i0,µ,σ,d,w,A,s0) . Returns mask
2: img ← IMFILTER(GAUSSFILTER(µ, σ), img) . Filter image noise
3: mask0 ← THRESHOLD(img, i0) . Threshold image
4: Filts ← LOWPASSFILTERS(d,w,A) . Set low pass filters
5: na ← LENGTH(A) . Number of filters
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6: for j ← 1 to na do
7: Fimgj ← IMFILTER(Filtsj , img) . Set of filtered images
8: end for
9: for j ← 1 to na/2 do

10: Himgj ← Fimgj + Fimgj+na/2 . Sum opposite angles
11: end for
12: S+ ←

∑na/2
1 PAIRWMULT(Himgj ,POSBOOL(Himgj)) . positives sum

13: S− ←
∑na/2

1 PAIRWMULT(Himgj , 1− POSBOOL(Himgj)) . negatives sum
14: Sr ← PAIRWDIV(S+, (S− + 1)) . Compute ratios
15: Sl ← LOG(1− Sr) . Take the log
16: score ← EXP(IMCOMPLEMENT(Sl)) . Compute score
17: mask ← PAIRWMULT(mask0,THRESHOLD(score, s0)) . Final mask
18: return mask
19: end function

Algorithm 2: lowpassfilters function.
Pseudocode for constructing an array of low pass filters. Each filter will compare each value relative
to its neighbours, but only in an angle. Constructing the filter using a 2D Gaussian density function
makes the filter less sensitive to image noise.

Require: Parameters: pixel length d, width w, and set of angles A = {A1, A1 +π}. Some predefined
functions: GAUSSPROJ returning the integral of a 2D gaussian density function (with mean
x, y and standard deviation w) over a space grid; and SUM2 that sums all elements of a matrix.

1: function LOWPASSFILTERS(d,w,A) . Returns cell array Filts
2: na ← LENGTH(A) . Number of filters
3: ngrid ← 2d+ 1 . Size of filter
4: for j ← 1 to na do . Compute filter for each angle
5: Filtsj ← ZEROS(ngrid, ngrid) . Initialise to zeros
6: a ← A(j) . angle
7: for q ← 1 to d do . move from center to d
8: x ← q ∗ COS(a) . X projection
9: x ← q ∗ SIN(a) . Y projection

10: Filtsj ← Filtsj + GAUSSPROJ(x, y, w) . Accumulate 2D distributions
11: end for
12: θ ← SUM2(Filtsj) . Sum all values so far
13: Filtsj ← θ ∗GAUSSPROJ(0, 0, w)− Filtsj . Final local difference filter
14: end for
15: return Filts
16: end function
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3 Mother machine

3.1 Microfluidics device fabrication

The protocol used to fabricate the microfluidics chips is summarised as follows: First, the surface
of the master wafer was treated with silane to facilitate removal of PDMS from the surface. The
wafer was then taped to the bottom of a large petri dish to secure it in place. Mixed PDMS
(1:10 ratio of curing agent to base) was poured onto the master mould to achieve a thickness
of approximately 5 mm. The freshly poured PDMS was degassed for 1 h in a vacuum bell jar
to remove bubbles followed by curing at 65°C overnight. After cooling to room temperature,
chips were then carefully cut out using a scalpel and feeding channels created using a 0.75 mm
(ID) biopsy punch (World Precision Instruments Limited). Chips were cleaned by sonicating in
isopropanol for 30 min and then left to air dry overnight at 65°C in a closed petri dish (features
facing up). Coverslips (Duran, 24x60 mm, #1.5) were cleaned by sonicating in 1 M KOH for
30 min, followed by rinsing three times in Milli-Q water, and then sonication for a further 30
min in Milli-Q water. Coverslips were left to dry overnight at 65°C. Before bonding, chips and
coverslips were surface-activated in an oxygen plasma cleaner operated at high intensity under
vacuum for 60 s. Bonded chips were then left at 65°C for at least 10 min followed by storage in
parafilm-sealed petri dishes at room temperature.

Table 5: Microchannel dimensions used for different growth media.

Growth Medium Height (µm) Width (µm) Length (µm)
M9-glucose+amino-acids 1.36±0.08 1.4-1.6 26
M9-glucose 0.91±0.03 1.1-1.3 25±2
M9-glycerol 0.91±0.03 1.1-1.2 25±2

3.2 Mother machine data analysis

Additional notes on data curation for mother machine data sets: Initially cells had yet to fully
adapt to the imaging conditions as indicated by the mkate2 signal degrading for approximately
2 hours after imaging began, after which it stabilised. This data was discarded and not used for
data analysis. At most, 4 hours were truncated from the beginning of data sets. For growth rate
and division rate calculations, all non-growing cell cycles (defined by a minimum growth rate of
0.03 h−1) were discarded.
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4 Estimating the transition rate to the high SOS state
from mother machine experiments

To analyse the Mother Machine data we used a simple mathematical model (described in the
main text). Cells can switch from low to high SOS at rate α and we assume switching back to low
SOS is very rare so we neglect this possibility. We assume that this switching can be described
by a Poisson process. We estimated α by Maximum likelihood in each nutrient condition using
single-cell time-lapse recording of GFP intensity from the Mother Machine. Only mother cells
were included in the analysis.

Assuming conversion from low to high SOS can be described by a Poisson process, the time it
takes for a given lineage to pass some critical GFP intensity follows an exponential distribution
with rate α. We call such elapsed time tS . Then, for every lineage beginning at a low-SOS levels
(i.e. GFP below the threshold) we distinguish two outcomes: i) the lineage crosses the threshold
at a given time from the first observation, ii) the lineage does not cross the threshold over the
whole period when it is observed. Given tS is assumed to follow an exponential distribution, we
can estimate the probabilities associated to each event class.

For the first case, we will describe its probability as the probability that tS falls within the
current and previous time interval. Whereas the probability associated to the second case is the
probability that tS is larger than the total observed time for that lineage (i.e. 1 minus the c.d.f
of tS). Then

Case Description Probability

i Lineage crosses GFP theshold at time
t

P(t− t∆ > tS ≥ t|α) = e−αt (eαt∆ − 1)

ii Lineage does not crosses GFP theshold
at time t

P(tS > t|α) = 1− (1− e−αt) = e−αt

where t∆ is the time interval used for imaging.
With these definitions, we classify each lineage into both cases, and define a likelihood for each

set of observations. Let’s call the set of all elapsed times for the lineages in the first case by
T1, and the total observed time for all lineages in the second case by T2. Then we define the
likelihood of our observation as the product of the probabilities of their respective cases

L = L1L2 =
∏
t1∈T1

P(t1 − t∆ > tS ≥ t2|α)
∏
t2∈T2

P(tS > t2|α)

where the log-likelihood is

lnL(α) = |T1| ln
(
eαt∆ − 1

)
− α

(∑
t1∈T1

t1 +
∑
t2∈T2

t2

)
(1)

where |T1| is the size of the set T1, that is all observed cases that do cross the threshold. Also,
using the partial derivative the log-likelihood we can obtain the value of α with maximum
likelihood (αm), that is

αm =
1

t∆
ln

( ∑
t1∈T1

t1 +
∑
t2∈T2

t2∑
t1∈T1

t1 +
∑
t2∈T2

t2 − |T1|t∆

)
(2)

In order to estimate the confidence in the estimation of α, we uzed the Metropolis-Hastings
algorithm starting form αm. During each iteration of the Markov chain, candidates were gen-
erated by sampling α′ = αi−1 + δ where the index i represent the previous iteration, and
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δ ∼ uniform([−ε, ε]). Whenever some sampled candidate α′ was found to be negative, α′

was sampled again until it was not longer so. The acceptance ratio was computed using the log-
likelihood, and was equal to exp (lnL(α′)− lnL(αi)). Monte-Carlo simulations were performed
through 105 iterations using ε = 10−3.
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Figure 2: Estimation of the switching rate α from mother-machine experiments.
Given a GFP intensity (SOS) threshold, we assume that the conversion between low and high
SOS can be described by a Poisson process which allows us to derive explicit expressions for the
likelihood of SOS transitions based on the transition rate α. In particular, we can obtain the
value of α with maximum likelihood (panel A), and use Metropolis-Hastings algorithm to esti-
mate the p.d.f of α (panel B). In panel C we compare the empirical cumulative density function
of elapsed times to pass the given threshold (blue line), with the expected exponential distribu-
tion (red line). The green shared area represents the 90% confidence interval based on the p.d.f
estimates of α. This example was constructed using a GFP threshold of 8 A.U. using one of the
dataset for the strain carrying 2 palindromes in glucose + amino-acids condition.

5 Estimating the steady-state population growth-rate from
single-cell division time distributions

Different division times distributions will result in populations “effectively” growing at different
rates, and to compute this value taking the average division time is not accurate (Painter and
Marr, 1968; Thomas, 2017). To avoid confusions, we wish to clarify that we are referring here
specifically to the growth-rate of the population size in number of cells.

The relation between the distribution of division times and the population growth-rate is given
by a functional equation and cannot be calculated explicitly (Painter and Marr, 1968; Thomas,
2017). Let’s call τ a random variable denoting the division time which follows a φ(τ) distribu-
tion and λ the steady-state population growth-rate. The population growth-rate λ satisfies the
following equation assuming that correlation between successive division event can be neglected:

1 = 2

∫ ∞
0

φ(τ) e−λτdτ (3)

In order to estimate λ from our experimental measurements, we follow a least-square strategy
where λ is the value that minimizes the distance to the expected relation in equation 3. However,
before we do this we need to estimate the distribution of division times φ(τ) from our experimental
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measurements, taking into account that our measurements of division times are discrete due to
the imaging protocol.

To simplify the problem, we divide φ(τ) into separate intervals with width identical to the
imaging acquisition interval (called t∆, and assume that the probability of observing a division
event within that interval is uniform. We will use here an index j ∈ N+

0 to denote each interval.
Finally, we make the simplification that the observed frequency of division events approximates
the actual distribution. Then, combining these assumptions we have

φ(τ) ≈ f(j)

t∆
,

where f(j) is the relative frequency of division events within an interval j. Note that for a given
value of τ the corresponding interval will be different: (j−1)t∆ < τ ≤ jt∆. Now we can combine
our simplifications to replace the right side term of equation 3 and obtain∫ ∞

0

φ(τ) e−λτdτ ≈
∞∑
j=1

f(j)

t∆

∫ jt∆

(j−1)t∆

e−λτdτ =
1

λt∆

(
eλt∆ − 1

) ∞∑
j=1

f(j)e−jλt∆

Then, we estimate λ as the value that minimizes the following expression:

λ = minimize
λ∈R+

1− 2
1

λt∆

(
eλt∆ − 1

) ∞∑
j=1

f(j)e−jλt∆

2

Figure 3 shows that the minimal λ value is unique, and also reproducible between experimental
repeats.

9



F
re

q
u

en
cy

[%
]

Gly Glu Glu+aa

wt

Division time [h]

F
re

q
u

en
cy

[%
]

Division time [h] Division time [h]

2-pal

S
q
u

a
re

d
d

iff
er

en
ce

Gly Glu Glu+aa

wt

λ [1/h]

S
q
u

ar
ed

d
iff

er
en

ce

λ [h] λ [h]

2-pal

Figure 3: Estimation of population growth-rate from single-cell divisions. On the top,
we display the division-time distributions for wild-type and 2-pal strains in three different media.
On the bottom, we show the cost function associated to a given growth-rate value. The growth-
rate with minimum value in the curve (dashed-line) corresponds to the estimated population
growth-rate given the division time statistics. Each color represents one biological repeat.
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6 Estimating the fraction of high SOS cell in a growing
population

Let’s consider n1 and n2 the number of cells in each state, and λ1 and λ2 the respective division
rates. We call n1 the number of “healthy” low SOS cells, and n2 the number of slow-dividing
cells with high SOS induction. Let us assume first-order kinetics for conversion between the two
populations, and call α the conversion rate constant from population one to population two,
and β the rate constant for the reverse reaction. Thus, the population dynamics is given by the
following equations

dn1

dt = (λ1 − α)n1 + βn2
dn2

dt = (λ2 − β)n2 + αn1

We are interested in the population fractions and call them f1 = n1

n1+n2
∈ [0, 1], and f2 = n2

n1+n2
∈

[0, 1]. Converting the dynamics into fractions we get:

df1

dt = −αf1 + βf2 + f1f2(λ1 − λ2)
df2

dt = αf1 − βf2 − f1f2(λ1 − λ2)
(4)

Notice that the total population growth is given by:

d(n1 + n2)

dt
= (λ1f1 + λ2f2) (n1 + n2) (5)

At steady-state, the population fractions are time-invariant. The solution for f1 and f2 at steady
state is given by:

f1 = 1
2

(
1 + α+β±

√
δ

λ2−λ1

)
f2 = 1

2

(
1− α+β±

√
δ

λ2−λ1

) (6)

where δ = (β + α+ λ2 − λ1)
2−4β(λ2−λ1). The steady-state can be approximated when α� β

(and therefore β is negligible as we assumed previously) and λ1 � λ2. Under this hypotheses
we have:

f2 ≈ α/λ1

f1 ≈ 1− α/λ1

(7)

Therefore, using this model, we can predict f2, the fraction of high SOS cells based on the pa-
rameters measured in the Mother Machine and compare this prediction to the experimentally
measured fraction of high SOS cells (see main text).
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