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Abstract

We show that networks of excitatory neurons with stochastic spontaneous spiking

activity and short-term synaptic plasticity can exhibit spontaneous repetitive syn-

chronization in so-called population spikes. The major reason for this is that synap-

tic plasticity nonlinearly modulates the interaction between neurons. For large-scale

two-dimensional networks, where the connection probability decreases exponentially

with increasing distance between the neurons resulting in a small-world network

connectome, a population spike occurs in the form of circular traveling waves diverg-

ing from seemingly non-stationary nucleation sites. The latter is in drastic contrast

to the case of networks with a fixed fraction of steady pacemaker neurons, where

the set of a few spontaneously formed nucleation sites is stationary. Despite the

spatial non-stationarity of their nucleation, population spikes may occur surpris-

ingly regularly. From a theoretical viewpoint, these findings show that the regime

of nearly-periodic population spikes, which mimics respiratory rhythm, can occur

strictly without stochastic resonance. In addition, the observed spatiotemporal ef-

fects serve as an example of transient chimera patterns.

Keywords: Metric neuronal networks, Synaptic plasticity, Stochastic spiking, Spon-

taneous sync nucleation, Population spike, Transient chimera patterns
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1. Introduction

It is now generally accepted that synaptic plasticity is a key property of biological neu-

ronal networks, which determines their unsurpassed ability to process information [1]. For

example, it has been assumed that short-term synaptic plasticity [2] could be the basis of

working memory [3, 4]. On the other hand, abnormal manifestations of synaptic plasticity

may lead to severe consequences, e.g., to episodic spontaneous pathological synchronization

of spiking activity of neurons that underlies epilepsy [5].

Numerical simulations provide invaluable assistance in identifying the causes of emergent

collective phenomena based on synaptic plasticity. One of the phenomena that we focus on in

this paper is the regime of repetitive spontaneous population spikes (PSs) typical for planar

neuronal networks cultured in vitro [6, 7]. Despite the fact that numerical simulation of the

PS regime is easily accessible and there are numerous theoretical prerequisites for explaining

this phenomenon (e.g., [8–19]), a clear self-consistent and predictive theory of the emergence

of the PS regime is not yet available even in relatively simple neuronal network models. It

is worth noting that many theories based on mean-field or rate-based models naturally lose

the irregularity of PS occurrence (e.g., [20–22]) and, in the majority of cases, do not have

the same statistical properties as full-featured spiking neuronal network models (cp. [23]).

In turn, spike-based models demonstrating this regime are usually deterministic [24–

30], i.e. the dynamics of each neuron is described by deterministic equations (for a broader

overview, see [31]). Given this, the ’individuality’ of each specific neuron is determined either

by additive noise to the synaptic current [32–35], or by an individual constant ’background’

current, the value of which regulates the magnitude of neuronal excitability and the fraction

of pacemaker neurons [24–26, 29, 36, 37]. In the case of background currents, the neuronal

network model is entirely deterministic, yet it simulates the PS regime surprisingly well

(and, importantly, completely reproducibly), including the formation of PS nucleation sites

[29, 37].

However, experiments with brain slices indicate that there are two types of PSs in the

brain: one is deterministic, as in neuronal cultures and probably in their deterministic

models, and the other is stochastic [38]. (It is called stochastic because of the absence of

any repeating characteristic pattern of spiking activity preceding the occurrence of a PS,

cp. [39].) Also, there exists a disagreement between experimental findings even for cultured
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networks: PS spatial sources seemed steady for a given network of spinal cord neurons [40–

42] while these were estimated as random for a network of cortical neurons [43]. A possible

stochastic mechanism of synchronized cluster occurrence has been theoretically considered

in Ref. [44] for a network of FitzHugh-Nagumo neurons with electrical synapses (i.e., gap

junctions), phenomenological delay of interaction between neurons, and a standard additive

white noise.

Based on the Wilson-Cowan formalism, the so-called stochastic rate models [45–47] (see

also [48–51]), where the neuron dynamics is described not by the potential of the neuron’s

membrane, but by the time-dependent probability of spike generation, can capture the occur-

rence of the PS regime due to nonlinear phenomenological interaction between populations

of neurons. However, the relative freedom of choice of this interaction does not make it

possible to obtain either unambiguous and robust biological interpretation or quantitative

comparative assessment of results. Nevertheless, stochastic rate models have led to some

progress in understanding the oscillatory synchronization of stochastically spiking neurons.

For instance, using a very simplified probabilistic neuron model and a functional network

connectome extracted from experimental data, the authors of Ref. [51] were able to repro-

duce a characteristic set of spiking activity patterns obtained by calcium imaging in brain

slices with a small number (about 200) of sparsely spiking neurons, i.e. in the case of rel-

atively weak network events similar to population spikes in neuronal networks cultured in

vitro.

In this paper, we combine with each other the stochastic spontaneous spiking activity of

neurons and their deterministic synaptic interaction, which can naturally lead to ’determin-

istic’ spikes. We have found that networks of such neurons, both with the metric-free and

metric-dependent connectome, demonstrate the regime of repetitive PSs. In contrast to the

entirely deterministic model [29, 37], nucleation sites of PSs in the networks with metric-

dependent connectome, although do arise, are apparently not stationary. However, due to

the difficulty of numerical verification of this assumption, it can only be definitely stated

that (i) the number of different nucleation sites at stochastic spontaneous spiking activity of

neurons significantly exceeds the corresponding number in the case with a fixed fraction of

steady pacemaker neurons [29], and (ii) the relative activity of individual nucleation sites in

the stochastic case is on average significantly lower than in the case with steady pacemakers.

Finally, the results indicate that the hypothesis of ’trigger’ neurons, whose activity system-
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atically precedes the emergence of a PS [52–59], may need further development: even if the

probability of spontaneous spike generation was the same for all neurons of the network,

repetitive PSs still occurred (cp. [60]). Therefore, the search for such trigger neurons in

this case is transferred entirely to the properties of both the concrete implementation of the

network connectome and the distribution of amplitudes of synaptic current pulses, excluding

intrinsic properties of neurons.

2. Neuronal Network Model

The mathematical model of spiking neuronal network consists of three main components:

(i) a dynamic model of the neuron that includes a deterministic model of dynamics of the

neuron potential, as well as a model of stochastic spontaneous spike generation, (ii) a dy-

namic model of synaptic interaction between two neurons, and (iii) a static model of the

network connectome. In this paper, we consider networks composed only of excitatory neu-

rons, since the presence of inhibitory neurons (with the total fraction of 20% [61, 62]) is

not crucial for the considered effects yet masking them and delaying the statistics accumu-

lation [29, 37]. The network model has been studied by numerical simulations performed

using custom-made software NeuroSim-TM [29] written in the C programming language

(the source code and all generated data used for the Figures are available as the Supple-

mentary Material). In particular, ordinary differential equations for the dynamics of neuron

potentials and synaptic currents were solved numerically using the standard Euler method

with time step 4t = 0.1 ms and with the initial conditions that all neurons had the same

’resting’ value of the membrane potential, and all synapses had the same initial values of the

fractions of synaptic resources. (Note that though setting random initial conditions seems

to be a good alternative, it brings additional complexity and hinders the reproducibility of

simulations. Therefore, after making sure that the choice between the identical and random

initial conditions does not influence essentially the network dynamics, regulating only the

moment of the first PS, we have used the simpler variant of identical initial conditions.)

2.1. Neuron model

Qualitatively, the neuron model is based on two empirical facts. First, if pulsed stim-

ulation through incoming synapses is cumulatively strong enough for the neuron potential

to exceed a threshold value, then the neuron itself generates a spike in response. Second,

it has been experimentally established that in a long absence of incoming synaptic current
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pulses, neurons are able to spontaneously generate spikes on their own [63, 64]. Therefore,

the neuron model consists of two complementary parts: 1) a deterministic dynamic model of

the neuron potential that allows reproducibly describing spike-based synaptic interaction be-

tween neurons, and 2) a stochastic model of spontaneous spike generation. In other words,

the neuron model is a leaky input integrator superimposed with a homogeneous Poisson

process, modulated by absolute refractory period [65].

Quantitatively, we use the standard Leaky Integrate-and-Fire (LIF) neuron, which has

no ability for intrinsic bursting. Subthreshold dynamics of transmembrane potential V of

such a neuron is described by equation

τmdV/dt = −(V (t)− Vrest) + (Isyn(t) + Ibg)Rm, (1)

where Vrest is the neuron’s resting potential, τm is the characteristic relaxation time of V

towards Vrest, and Rm is the electrical resistance of the neuron’s membrane. The total

incoming synaptic current Isyn(t), as a function of time t, depends on the choice of the

dynamic model of a synapse and the number of incoming synapses. Ibg is an auxiliary

constant ’background’ current, the magnitude of which varies from neuron to neuron. The

background currents determine the neuron’s individuality, i.e., the diversity of neuronal

excitability, and the fraction of steady pacemakers in the network [63, 64, 66].

When the transmembrane potential reaches a threshold value Vth = V (tsp), it is sup-

posed that the neuron emits a spike, then V abruptly drops to a specified value Vreset,

Vrest ≤ Vreset < Vth, and retains this value during the absolute refractory period τref , then

dynamics of the potential is again described by Eq. (1). The result of the LIF neuron

dynamics is a sequence of spike generation moments {t(1)sp , t(2)sp , . . .}.

Numerical values of parameters for the deterministic part of the neuron model [26]: τm =

20 ms, Rm = 1 GΩ, Vrest = 0 mV, Vth = 15 mV, Vreset = 13.5 mV, and τref = 3 ms. Finally,

Eq. (1) had initial condition V (t = 0) = Vrest for all neurons.

It is worth explaining the reasons for introducing Vreset, an additional parameter for the

LIF neuron. From the computational viewpoint, at Vreset > Vrest the neuron’s excitability

is increased after the preceding spiking followed by the absolute refractory period. It may

facilitate the occurrence of PSs if the incoming synaptic signals are still intense, reducing the

time for gathering the PS statistics. From the biological viewpoint, this could also mimic

conditions where membrane potentials of neurons fluctuate stationary just a few millivolts
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below the spiking threshold, as shown by intracellular recordings during the ongoing spiking

activity of cortical neurons in vivo (sometimes referred as ’the high-conductance state’ [67]).

Importantly, setting Vreset = Vrest did not change the simulation results qualitatively.

In this paper, we set Ibg = 0 in Eq. (1) for all neurons in most simulations, except those

used in Figs. 1, 7, and 8 for comparison to the main results. A separate consideration of

the case Ibg 6= 0 can be found in Refs. [29, 37], below we have only outlined briefly its key

points.

If a neuron has the value of Ibg that exceeds a critical value Ic = (Vth − Vrest)/Rm, then

this neuron is a steady pacemaker (pm), i.e. it is able to emit spikes periodically with

frequency

νpm = (τref + τm ln[(Ibg − Ir)/(Ibg − Ic)])−1, (2)

where Ir = (Vreset − Vrest)/Rm, in the absence of incoming signals from other neurons. The

above specified parameters of the neuron model give the critical current value Ic = 15 pA

and Ir = 13.5 pA.

In turn, Ibg < Ic leads to an increase of depolarization of the neuron’s potential to some

asymptotic subthreshold value, i.e. to the effective renormalization of the neuronal resting

potential, V eff
rest (Ibg) = Vrest+IbgRm, if the neuron is uninfluenced through incoming synapses

for a relatively long time.

Provided that the background current values are distributed among neurons according to

the non-negative and upper-bounded part of the normal distribution, with the mean µ and

standard deviation σ, the relative fraction of steady pacemakers in an ensemble (in fact, in

a network) of N neurons is explicitly given by formula [37] (see also [68])

Npm/N =
erf( Imax−µ

σ
√
2

)− erf( Ic−µ
σ
√
2

)

erf( Imax−µ
σ
√
2

) + erf( µ

σ
√
2
)
, (3)

where Imax is the upper value of the background current. In all simulations the inequalities

σ < µ < Ic are assumed, resulting in Npm � N . For instance, with Imax = 20 pA,

µ = 7.7 pA and σ = 4.0 pA used in most simulations, one gets the fraction of pacemakers

Npm/N = 3.4% with the maximal νpm value 121 Hz.

To initiate spiking activity of the network neurons in the case of the absence of background

currents (Ibg ≡ 0), we set a probability psp of spontaneous generation of a spike per unit

time (i.e., within elementary time step 4t = 0.1 ms): for each neuron at every time step, a
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random real number from zero to one is generated and compared with psp. If this number is

less than psp, the potential of the neuron is set equal to the threshold value, i.e. the neuron

emits a spike (provided that this neuron has not emitted spike a little earlier and is not

in the refractory state). The presence of the absolute refractory period τref decreases the

probability of spontaneous spike generation per 4t to the average value [65]

p̄sp = psp/(1 + psp(τref/4t)), (4)

which determines the average spiking rate νsp = p̄sp/4t.

The normalized spiking activity of the neuronal network is defined as a ratio of the number

of neurons that emitted spikes during some averaging interval tavg to the total number N of

network neurons:

Ak ≡ A(tk) =
1

N

N∑
i=1

∑
j

tk∫
tk−1

δ(t− t(i,j)sp )dt, (5)

where tk = ktavg, k = 1, 2, . . . is the sequence of natural numbers, t0 = 0, and t
(i,j)
sp is the

moment when i-th neuron generates its j-th spike. In the limiting case tavg = 4t for N

disconnected, independently spiking neurons with the same initial condition, one can obtain

an exact linear recurrent sequence for Ak analytically (with nref = τref/4t) [65]:

Ak =

psp(1− psp)
k−1, k ≤ nref + 1,

pspAk−nref−1 + (1− psp)Ak−1, k > nref + 1.
(6)

Here Ak has an accurate meaning of spike generation probability for a statistical ensemble

of N neurons at k-th time step. At k →∞ this converges to A∞ = psp/(1 + pspnref ), i.e. to

the average value p̄sp determined by Eq. (4). Note that Eq. (6) describes transient damped

oscillations in the general case [65].

While simulating relatively large-scale networks with more than a few hundred neurons,

it is practical to set tavg > 4t, typically tavg ∼ τref . In the case of non-predefined tavg value,

the normalized average activity of N disconnected stochastic neurons is νsptavg. Based on

extensive experimental data on spontaneous neuronal activity both in vitro and in vivo

[69–78], we took psp = 0.0005 (or νsp ≈ 5 Hz) so that the baseline level of asynchronous

spontaneous network activity at tavg = 2 ms was equal to a few percent of the total number

of neurons, νsptavg ≈ 0.01.

2.2. Synapse model
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The dynamic model of the synapse incorporates a phenomenological model of short-term

synaptic plasticity [25, 26, 79, 80] (cp. [81, 82], reviewed in [83, 84]), which is consistent

with independent experiments [85, 86] (see also [87, 88]). For the sake of integrity, along

with the description for excitatory synapses, we also concisely provide the specifics of the

inhibitory synapses within the model.

A single contribution to the incoming synaptic current is determined as

Isyn(t) = Jy(t), (7)

where J is the maximal amplitude of synaptic current, the sign and magnitude of which

depend on the type of pre- and postsynaptic neurons (i.e., whether the neuron is excitatory

or inhibitory), and y(t) is a dimensionless parameter, 0 ≤ y ≤ 1, the dynamics of which is

determined by the following system of equations [26]:
dx/dt = z/τrec − uxδ(t− tsp − τdel),

dy/dt = −y/τI + uxδ(t− tsp − τdel),

dz/dt = y/τI − z/τrec,

(8)

where x, y and z are the fractions of synaptic resources in the recovered, active and inactive

states, respectively, x+ y+ z = 1, τrec, τI are the characteristic relaxation times (τrec � τI),

δ(. . .) is the Dirac delta function, tsp is the moment of spike generation at the presynaptic

neuron, τdel is the spike propagation delay (τdel ≡ 0 for metric-free networks; for metric

networks, see Eq. (14) below), and u is the fraction of recovered synaptic resource used to

transmit the signal across the synapse, 0 ≤ u ≤ 1. For the outgoing synapses of inhibitory

neurons, the dynamics of u is described by equation [25, 26]

du/dt = −u/τfacil + U(1− u)δ(t− tsp − τdel), (9)

where τfacil is the characteristic relaxation time, and 0 < U ≤ 1 is a constant parameter.

For the outgoing synapses of excitatory neurons, u remains constant and equals to U .

Qualitatively, the dynamics following from Eqs. (8) implies a reversible depression of

synaptic transmission due to the depletion of synaptic resources at intense incoming spike

train, while the additional Eq. (9) for inhibitory synapses enables them to overcome the

depression and to facilitate the transmission [80, 89, 90].

In numerical simulations all synaptic parameters, except τI , were taken from the fixed-sign

parts of the normal distributions with the mean values described below, i.e. each synapse
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had its own unique values of these parameters. The standard deviations for all distributed

parameters equal half of their mean values; see more detail in Refs. [29, 37].

Numerical values of parameters for the synapse model [26] (see also [80]): τI = 3 ms,

mean values for the normal distributions were τrec,ee = τrec,ei = 800 ms, τrec,ie = τrec,ii =

100 ms, τfacil,ie = τfacil,ii = 1000 ms, Jee = 38 pA, Jei = 54 pA, Jie = Jii = −72 pA,

Uee = Uei = 0.5, Uie = Uii = 0.04. Here, the first lowercase index denotes the type (e

= excitatory, i = inhibitory) of the presynaptic neuron, and the second index stands for

the type of the postsynaptic neuron. Initial conditions for Eqs. (8) were the same for all

synapses: x(t = 0) = 0.98, y(t = 0) = 0.01, z(t = 0) = 0.01.

2.3. Network connectome model

Despite that the main focus of this study is on the networks with spatially-dependent

connectome (’metric networks’) of small-world type, we preliminary consider a simpler case

of abstract ’metric-free’ networks with the binomial distribution of connections between neu-

rons. (Hereafter, the distribution of connections means the degree distribution in terms of

network science: the degree of a neuron is the number of connections it has to other neurons.

The connection strength is not implied anywhere in the description of the network connec-

tome model.) Even relatively small metric-free networks can exhibit irregular spontaneous

PSs [26], making this network type quite helpful for studies of statistical properties of the

PS regime.

Specifically, for a metric-free ’binomial’ network, its connectome is a directed graph, the

nodes of which are point neurons, with the binomial distribution of connections between

nodes. When creating a connectome realization, for each directed pair of neurons, a random

real number ξ is generated in the range from zero to one and compared with a given spatially-

independent probability pcon of the formation of unilateral synaptic connection between two

neurons. If ξ ≤ pcon, the connection is formed; otherwise, it is not formed. To reduce

the complexity of the resulting model, in what follows, we assume that the formation of

autaptic connections (i.e., self-connections, see [91]) is not allowed. Then, for a network of

N neurons, one gets the binomial distribution for the number n of outgoing (or, equally,

incoming) connections per neuron, P (n = k) = Ck
N−1p

k
con(1−pcon)N−1−k, with the mean value

n̄ = pcon(N − 1) and variance σ2
n = pcon(1 − pcon)(N − 1). The average number of network

connections is Ncon = n̄N = pconN(N − 1). Since usually N >> 1, in what follows, we will

always count (N−1) ≈ N . Also note that the coefficient of variation δn = σn/n̄ ∼ 1/
√
N , so

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.08.442778doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.442778


10

for N >> 1 deviations from the mean value are insignificant. In most numerical simulations

we studied networks of N = 500 excitatory neurons with pcon = 0.1 and n̄ ≈ pconN = 50

(see Fig. 1). In addition, we performed two large-scale simulations of binomial networks

of N = 106 excitatory neurons (Fig. 2) with pcon = 5 · 10−5 resulting in the same n̄ value.

The connectome of each network was created (or restored from a file) before starting the

dynamic simulation and remained unchanged, i.e. static, during the simulation.

In the case of spatially-dependent network topology, in order to set the connections

between neurons, one needs to assume (i) how neurons are distributed in space, i.e., to set

their spatial coordinates and a metric distance between every two neurons, and (ii) how the

probability of forming a unilateral connection depends on the distance between neurons.

In accordance with the technique for preparing two-dimensional neuronal cultures [7], we

assume that N point neurons are uniformly distributed over the square area L × L. Then

the probability density P (r) of detecting two neurons at distance r from each other is given

by (r is expressed in units of L) [29]

P (r) =

2r(π − 4r + r2), r ≤ 1,

4r(2 arcsin(1/r) + 2
√
r2 − 1− π/2− r2/2− 1), 1 < r ≤

√
2,

(10)

such that

√
2∫

0

P (r)dr = 1. Function P (r) has a single maximum at r = (4−
√

16− 3π)/3 ≈

0.5.

Next, we assume that the probability of forming a unilateral connection between every

two neurons decreases exponentially with increasing distance r between them [92–97] (cp.

[27, 98]),

pcon(r, λ) = exp(−r/λ), (11)

where λ is a characteristic connection length, which is also expressed in units of L. The

formula (11) is slightly idealized; its actual modification follows below (see Eq. (15)).

With a given function pcon(r, λ), the average number of connections in a network of N

neurons is Ncon(λ) =
N∑
i=1

N∑
j=1,j 6=i

pcon(rij, λ), where rij is the distance between the i-th and j-th

neurons. If neurons are uniformly distributed over the square area, rij is a random value

with the distribution density P (r) given by Eq. (10).

In addition, as the square area is a convex set of points, we have assumed that the

connections between neurons can be modeled by straight line segments. Importantly, the
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connections do not cross boundaries of the square. Due to this, neurons in the vicinity of

the boundaries have fewer connections.

With the above assumptions, the resulting distribution of connection lengths is given by

the product pcon(r, λ)P (r), which reaches its maximum at r ≈ λ for λ . 0.1 (see Supple-

mentary Material in [29] for more details).

The average number of network connections can be expressed as Ncon(λ) = p̄con(λ)N(N−

1), where the space-averaged probability

p̄con(λ) =

√
2∫

0

pcon(r, λ)P (r)dr (12)

increases monotonically with λ, asymptotically reaching unity at infinity. For pcon(r, λ)

determined by Eq. (11), at λ � 1 one gets p̄con(λ) ≈ 2πλ2. (For the whole range of λ, the

approximate analytical expression for p̄con(λ) is given in [29].) In turn, the average number

of outgoing (or incoming) connections per neuron is m̄ = p̄con(λ)(N − 1).

In addition, it is useful to determine explicitly the average fraction of network connections

with the lengths longer than or equal to l, where 0 ≤ l ≤
√

2. Denoting that fraction as

ncon(l), one gets

ncon(l) = g(l, λ)/g(0, λ), g(l, λ) =

√
2∫

l

pcon(r, λ)P (r)dr, (13)

with g(0, λ) = p̄con(λ). The dependence ncon(l) is shown on the right graph in Fig. S1 in

folder ’Additional Simulations’ of the Supplementary Material.

Finally, due to the fact that every connection between neurons has a metric length,

there exist spike propagation delays. Assuming a constant speed of spike propagation along

connections (essentially, axons), the delays are calculated by formula

τdel = τdel,min + r/vsp, (14)

where τdel is the total spike-propagation delay for a connection of length r, τdel,min is the

minimal delay same for all neurons, and vsp is the constant speed of spike propagation. Note

that the distribution of ’axonal’ delays (14) is also determined by the product pcon(r, λ)P (r).

To implement the network connectome models above, a random number generator (RNG)

is necessarily required. We show below that in the spatially-dependent case RNG may lead
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to a systematic bias for the fraction of long-range connections. As mentioned earlier, the

described model was implemented in the C programming language, which had been chosen

because of comparatively fast execution of a program code. The standard RNG in C can

generate a random integer number within the range from 0 to some predetermined value

RAND MAX, which may depend on the operating system but cannot be smaller than

32767. That integer number can be then transformed into the real one by normalizing it

by RAND MAX, resulting in the pseudo-uniform distribution from 0 to 1 that is used

to generate neuronal connections by comparing the random numbers with the probability

(11). However, as the smallest nonzero random number is pmin = 1/RAND MAX, there

is a systematic bias for nonzero probability values smaller than this limit: these values are

compared with zero and always lead to the connection formation. As a result, the actually

implemented model is as follows:

pcon(r, λ) = exp(−r/λ) + pminθ(r − r0), (15)

where r0 = λ ln(1/pmin) = λ ln(RAND MAX), and θ(. . .) is the unit step function: θ(x) = 1

for x > 0 and θ(x) = 0 for x ≤ 0. If RAND MAX turns to infinity, the second term in

(15) vanishes and we return to the initial model (11). Given RAND MAX = 32767 and

λ = 0.01, one gets pmin ≈ 3 · 10−5 and r0 ≈ 0.1. Note that for the large-scale binomial

networks with pcon = 5 · 10−5, no statistical deviation in the number of network connections

was detected.

Numerical values of parameters for the connectome of metric networks were as follows

[29, 37]: N = 50000, λ = 0.01L, τdel,min = 0.2 ms, and vsp = 0.2 L/ms with L = 1 mm by

default.

In all spatial simulations presented in the Results section, we used the connectome model

with pcon(r, λ) given by Eq. (15). For comparison, we have performed some key simulations

with network connectomes generated separately using advanced RNGs in MATLAB and

in the NumPy library for the Python programming language. These connectomes fully

correspond to the initial model (11) and, essentially, are based on the same set of spatial

coordinates of neurons as for the original connectomes with (15).

In particular, the average number of network connections for (15) is 4.8% greater than

that for (11), with most of these ’additional’ connections being long-range ones. In turn,

the average number of outgoing connections per neuron is m̄ = 32 for (15) vs m̄ = 31 for
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(11), with the unchanged standard deviation (= 6). Thus, effectively, every neuron acquires

one additional long-range connection.

As the fraction of additional connections is quite small, the simulation results have been

qualitatively unchanged (see Figures S1-S5 in folder ’Additional Simulations’ of the Sup-

plementary Material). The only noticeable stable effect was that the absence of additional

long-distance connections increases (in about two times) the duration of population spikes

and decreases (also in about two times) their amplitudes in the case where spontaneous

spiking of neurons occurs deterministically due to steady pacemakers [29, 37], i.e., neurons

with supercritical Ibg values (see Eq. (1)). In the case of stochastic spontaneous spiking,

the impact of long-distance connections on the formation of unstable nucleation patterns

seems to be generally less pronounced due to the lower excitability of neurons in response

to a given stimulation, as in this case Ibg = 0 for every neuron.

Finally, it is worth noting that the considered metric networks with N = 50000 and

λ = 0.01L, regardless of the particular definition ((11) or (15)) for pcon(r, λ), belong to

the small-world network type [99–102], with the following mean values of the clustering

coefficient (CC) and the shortest path length (SPL): CC ≈ 0.13 and SPL ≈ 4 for the model

(15), CC ≈ 0.15 and SPL ≈ 11 for the initial model (11), and CC ≈ p̄con and SPL ≈ 3 for the

metric-free binomial networks of the same size and with the same mean degree (for details,

see subfolder ’CC and SPL computation’ in ’Additional Simulations’ of the Supplementary

Material). Based on these numbers, the ’small-world-ness’ introduced in [100] drops more

than twice (from about 103 to 45) with replacing (15) by (11). It is worth noting that the

above values of CC and SPL for the metric networks generated using Eq. (15) (but not

(11)) are consistent with the independent estimates (see Fig. 3a in [103]).

3. Results

Provided stochastic spontaneous activity of neurons, the regime of repetitive population

spikes (PSs) has been found both in the metric-free ’binomial’ networks (Figs. 1 and 3) and

in the metric ones (Figs. 4-6).

In contrast to the binomial networks driven by constant background currents, where dur-

ing the intervals between PSs the spiking activity is mainly determined by steady pacemakers

and is therefore a sum of nearly periodic signals, in the network of neurons with stochastic

spontaneous activity the intervals between PSs are filled by predominantly stochastic ac-
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tivity (see the graphs A and B in Fig. 1). In addition, we have considered the case of a

’hybrid’ network, where most of the neurons have subcritical background currents (i.e., these

neurons are not pacemakers) and a smaller fraction has no background currents, but instead

these neurons can spontaneously emit spikes with the equal probability psp per time step.

As it turned out, PSs also occurred in this case (Fig. 1 C), and even more intensely than in

purely ’deterministic’ (Fig. 1 A) and purely ’stochastic’ (Fig. 1 B) cases. Specifically, for

the binomial networks demonstrated in Fig. 1 the PS periodicity was as follows: 555± 356

ms (mean ± SD) with coefficient of variation CV = 0.64 in the Ibg case (Fig. 1 A), 473± 63

ms with CV = 0.13 in the psp case (Fig. 1 B), and 169 ± 17 ms with CV = 0.10 in the

hybrid case (Fig. 1 C).

Note that the very possibility of an occurrence of recurring PSs is embedded in the model

of short-term synaptic plasticity, provided that the stationary network activity between PSs

is low enough to allow the synaptic resources to be replenished. This condition is well fulfilled

in the case of constant background currents, where the majority of neurons are silent most

of the time and PSs are triggered due to stimulating activity of steady pacemakers when the

efficiency of synaptic connections between most neurons is sufficiently high (see Fig. 1 in

[26] and Fig. 2 in [29]). In the case of the same probability psp of spontaneous spiking, when

all neurons are independently active and equally excitable, the required balance of available

synaptic resources and, as a consequence, the emergence of repeating PSs are not guaranteed.

In turn, the hybrid case was designed to explore the influence on PSs by the primal spiking

activity that was changed from deterministic and relatively high-rate activity of a small set

of steady pacemakers to completely stochastic and low-rate activity of a substantially (in

several times) larger set of quasi-pacemakers.

Even more striking differences between these three cases (i.e. Ibg, psp and the hybrid

ones) are revealed by the distribution of intervals between successive spikes (or action po-

tentials so as not to confuse with PSs) for every neuron of the network. The corresponding

distributions of inter-spike intervals (ISI) are shown in Fig. 2. In fully deterministic Ibg case

the ISI distribution is comparatively broad and ragged. It exhibits multiple peaks, which

are conserved even after excluding the activity of pacemaker neurons from the ISI sampling.

The peaks at the beginning (shown on the separate inset in Fig. 2), in the range up to 35

ms, are more regular than subsequent ones and are most sensitive to pacemaker activity.

Notably, these peaks could be attributed to some form of stochastic resonance (see Discus-
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FIG. 1. Three examples (A, B, C) of spontaneous population spikes occurring in ’binomial’ neuronal

networks of 500 excitatory LIF neurons with pairwise connection probability pcon = 0.1: raster

(top) and network spiking activity, averaged over 2 ms and normalized to the total number of

neurons (bottom). Population spikes are the vertical stripes in the raster and the peaks in the

activity plot. The networks differ only in neuron parameters (Ibg and/or psp), in all the rest (the

connectome, distributions of synaptic parameters) the networks have been intentionally made the

same. (A) The case with normally distributed values of the background current Ibg and steady

pacemakers (3.4% of all neurons, see Sect. 2.1). (B) The case where probability psp = 0.0005 of

spontaneous generation of a spike per unit time (4t = 0.1 ms) is the same for all neurons. (C)

A hybrid case where 400 neurons have Ibg < Ic and psp = 0 (i.e. these neurons are definitely not

pacemakers) and 100 neurons have Ibg = 0 and psp = 0.0005 (i.e. these neurons are stochastic

quasi-pacemakers). On the raster graphs, note the pronounced differences in the low-level network

activity between population spikes for the considered cases.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.08.442778doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.442778


16

0 100 200 300 400 500
100

101

102

103

104

105

106   Ibg case including pacemakers
  Ibg case excluding pacemakers
  psp case
  hybrid case

 

 

C
ou

nt
s

ISI [ms]

0 200 400 600 800 1000 1200 1400 1600 1800
100

101

102

103

104

105

0 5 10 15 20 25 30 35 40

102

103

104

105

 

 

C
ou

nt
s

ISI [ms]

 

 

C
ou

nt
s

ISI [ms]

0 25 50 75 100 125 150 175 200 225
100

101

102

103

104

105

106

 

 

C
ou

nt
s

ISI [ms]

hybrid case

0 100 200 300 400 500 600
100

101

102

103

104

105

 

 

C
ou

nt
s

ISI [ms]

psp caseIbg case

FIG. 2. Distributions of Inter-Spike Intervals (ISI) for the ’binomial’ neuronal networks as those

in Fig. 1. Emphasise that these are for ’elementary’ neuronal spikes, not population spikes. Top

left graph: The case of constant background currents resulting in a fixed fraction of pacemaker

neurons (’Ibg case’, see also Fig. 1A). The inset shows enlarged view of the region at the origin of the

arrow. Gray distribution is for the ISI statistics excluding pacemakers, the red one corresponds to

the full ISI statistics. Top right graph: The case of stochastic spontaneous spiking with probability

psp = 0.0005 (’psp case’, see also Fig. 1B). Bottom left graph: The hybrid case, see caption for

Fig. 1C. Bottom right graph: Combination of three preceding plots. The ISI distributions clearly

show qualitative statistical differences in the three cases.

sion below). In turn, fully stochastic psp case exhibits almost monotonically descending ISI

distribution, with small peaks only at the large ISI values. Finally, in the hybrid case the

ISI distribution starts as in the psp case but further it has a large peak within 135-165 ms

that is about the mean PS periodicity. As shown further, the qualitatively different ISI

distributions for the binomial networks partially conserve for the spatial networks.
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Importantly, the PS regime in the binomial networks is easily scalable with the number

of network neurons by means of keeping the same mean number of connections per neuron.

Indeed, for relatively large-scale binomial networks of one million excitatory LIF neurons the

PSs occurrence is conserved and, moreover, it becomes even more regular, nearly periodic

(especially in the case where psp value is the same for all neurons), see Fig. 3. As shown

further, two-dimensional networks having a different type of network topology can also

exhibit similar temporal regularity of PSs coexisting with highly irregular spatial dynamics

(cp. [15]).

For the metric networks with stochastic spontaneous activity of neurons, compared to

the case with a fraction of steady pacemakers, PSs also arise from nucleation sites (Figs.

4-6). However, the number of nucleation sites is significantly (in many times) larger, and

their relative activation rates are on average significantly smaller, than in the case of steady

pacemakers. Moreover, the simulation results indicate that the location of nucleation sites

may be non-stationary in principle, i.e. these can occur in any place where local synaptic

connections have enough resources to excite a minimal critical number of neurons. At the

same time, it is quite clear from visual observations that the location of different nucleation

sites is not completely independent. In particular, we did not see a tendency to uniform

covering the area of the network by randomly arising nucleation sites with increasing the

simulation time, although this issue requires further study (e.g., determining the minimal

size of a nucleation site and the minimal distance at which two closely located nucleation

sites can be distinguished from each other).

In addition, compared to the deterministic case of background currents (see Fig. 7 be-

low and Ref. [29]), one can observe that the propagation speed of spiking activity waves

from nucleation sites is relatively slow, as if long-range connections were disabled, although

this was not the case. The explanation is that in the absence of background currents the

excitability of neurons by synaptic currents is lowered so that more incoming spikes are

necessary to make a neuron fire, meaning that the expanding spatial front of synchronous

spiking activates a narrower outer neighboring area. As the connections between neurons

are effectively less influential, nucleation sites in the stochastic case are activated more inde-

pendently from each other than in the deterministic one: in the first case, PSs often occur

from a few nucleation sites almost simultaneously (see Figs. 4-6), and, in the latter, PSs

typically arise from one of a few ’primary’ steady nucleation sites (Fig. 7) [29, 37]. Based
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FIG. 3. Two examples (A and B) of spontaneous population spikes (PSs) occurring in large

’binomial’ neuronal networks (with different connectomes etc., unlike the case in Fig. 1) of one

million excitatory LIF neurons with pcon = 5 · 10−5 and stochastic spontaneous spiking activity:

raster (top) and network spiking activity, averaged over 2 ms and normalized to the total number

of neurons (bottom). To reduce the size, the raster graphs show only 0.3% of randomly sieved

points (the downsampling algorithm: a random number is generated for each point of the initial

raster, and if it is less than the specified value, the raster point is saved on the graph). (A) The case

where probability psp = 0.0003 of spontaneous spike generation per 4t = 0.1 ms is the same for all

neurons. PS periodicity is 855± 9 ms (mean ± SD). (B) The case where psp value is individual for

every neuron, being distributed according to the non-negative and upper-bounded (by 0.001) part

of the normal distribution with the mean 0.0003 and standard deviation 0.0001. PS periodicity is

927± 12 ms. Note a surprising nearly-periodic regularity (CV ≈ 0.01) of the PSs in both cases.

on the observations, it is natural to assume that (i) there exists a certain set of nucleation

sites, which is predetermined by the initial distributions of ’key’ network parameters (see
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FIG. 4. Simulation of spiking activity of a neuronal network consisting of 50 thousand excitatory

LIF neurons statistically uniformly distributed over the square L× L. Synaptic connections have

been formed with probability pcon = exp(−r/λ) + pminθ(r − r0), see Eq. (15), where λ = 0.01L,

pmin ≈ 3 · 10−5, and r0 ≈ 0.1L. This gives 32± 6 (mean ± SD) outgoing connections per neuron.

All neurons have the same value psp = 0.0005 of the probability of spontaneous generation of a

spike per unit time (4t = 0.1 ms). Upper graph: Network spiking activity, averaged over 2 ms and

normalized to the total number of neurons, during 10 seconds of the simulation. Each population

spike is denoted by a sequence of Latin letters (uppercase and lowercase letters are not the same),

indicating the activation sequence of nucleation sites underlying that population spike. Middle

graph: LEFT: Network activity (top) and its raster (bottom) during the population spike marked

by the arrow in the upper graph. RIGHT: Six snapshots of the instantaneous spatial spiking activity

of neurons for the corresponding moments (labeled by the numbers from 1 to 6) of the population

spike. Each frame corresponds to the whole area L × L. Blue dots depict inactive neurons and

red dots highlight active neurons. Bottom graph: LEFT: Spatial distribution of neurons with a

certain value of spontaneous spiking rate νsp ≈ psp/4t. As for this simulation all neurons have the

same psp, the distribution is absolutely uniform. RIGHT: Schematic reconstruction of the spatial

pattern of emergent nucleation sites (depicted by filled gray circles) for all population spikes shown

in the upper graph. The graphs show 15 PSs and 35 nucleation sites with 11 primary ones (labeled

as A, E, J, P, S, F, W, D, Y, Q, h), with only 2 of them (A, P) activated more than once.
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FIG. 5. Simulation of spiking activity for the same neuronal network as in Fig. 4 except the set of

psp values for the neurons: unlike the former case in Fig. 4, where psp is the same for all neurons,

now psp values are distributed among neurons according to the non-negative and upper-bounded

(by 0.001) part of the normal distribution with the mean 0.0005 and standard deviation 0.0001.

All graphs have the same meaning as those in Fig. 4. Note a dispersed spatial distribution of

neurons with a certain νsp value and a different spatial pattern of emergent nucleation sites (left

and right bottom graphs, respectively) compared to the case in Fig. 4. One can see 15 PSs and

44 nucleation sites with 12 primary ones (A, H, L, P, T, I, Z, R, B, k, n, C), with only 2 of them

(I, Z) activated more than once.

Discussion for details) and (ii) each nucleation site can be activated only by some number

of certain combinations of initial (incoming from the outside and/or local) spikes. Then in

the stochastic case, on the one hand, due to the reduced excitability of neurons, one needs

more spikes to activate a nucleation site and, on the other hand, due to the independent and
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equal ability of spontaneous spike generation, the number of neurons capable of activating

the nucleation site is much larger than in the deterministic case with a small fraction of

steady pacemakers. Because of the latter, the stochastic activation of nucleation sites al-

lows a larger number of them to get revealed, compared to the case of constant background

currents. Another direct consequence is that introducing the scatter in the probability of

spontaneous spiking, i.e., making neurons non-equal in this regard, would lead to decreasing

the number of the ’activating’ neurons and, accordingly, to a smaller number of activated

nucleation sites.

Indeed, increasing the scatter of psp values in simulations, there is a tendency to decreasing

the number of independent nucleation sites, i.e. more and more PSs arise from the same

nucleation sites (cp. in Figs. 4-6). Moreover, a few of the nucleation sites retain their

former location with the scatter increase, indicating that higher dispersion of neurons over

psp values effectively enhances the influence of the network connectome on the spatial map

of nucleation sites.

The above assumption is also consistent with the simulation results for spatial networks

with the ’hybrid’ distribution of neuronal excitability, when 80% of neurons are deterministic

non-pacemakers, i.e. these have subcritical background currents and psp = 0, and 20% of

neurons are stochastic quasi-pacemakers having psp = 0.0005 and zero background currents

(Fig. 8). The results show a substantial fraction of stable nucleation sites in this case.

Finally, for the spatial networks the PS periodicity was as follows: 644 ± 61 ms with

CV = 0.09 in the psp case (Fig. 4), 200 ± 4 ms with CV = 0.02 in the Ibg case (Fig. 7),

and 207 ± 5 ms with CV = 0.02 in the hybrid case (Fig. 8). As before, one of the most

interesting results has been revealed in the corresponding neuronal ISI distributions (Fig.

9). In contrast to the metric-free binomial networks (see Fig. 2), the ISI distribution in the

Ibg case exhibits a pronounced ’distant’ peak at ISI = 180 ms that approximately coincides

with the peak in the hybrid case. In addition, one can see quasi-periodic structure of the

ISI distribution at large ISI values in the Ibg case and, less clearly, in the hybrid one. In

turn, the hybrid and psp cases for the metric networks are qualitatively the same as those

for the metric-free networks. The pronounced distant peak in the ISI distributions occurs

approximately at the mean value of PS periodicity (see above), if PSs are almost periodic

(CV � 1) and have a non-random internal structure (i.e., the spatiotemporal patterns of

neuronal spikes during PSs are not fully random, but rather structured and repeatable).
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FIG. 6. Simulation of spiking activity for the same neuronal network as in Fig. 5 except a different

set of psp values for the neurons: now psp values are distributed with the standard deviation 0.0002,

all the rest is the same as in Fig. 5 (each graph also has the same meaning as before). Note the

increased dispersion of the spatial distribution of neurons with a certain νsp value and a new spatial

pattern of emergent nucleation sites (left and right bottom graphs, respectively) compared to the

cases in Figs. 4 and 5. In this case, there are 14 PSs and 28 nucleation sites with 10 primary ones

(A, E, H, J, G, R, P, C, L, a), again, with only 2 of them (E, H) activated more than once.

Note that in the psp case there is also a distant peak at the mean PS periodicity, but it is

very small.

3. Discussion

Qualitatively, the repetitive PS regime occurs if (1) the average number of connections

per neuron, (2) the average amplitude of the synaptic current pulse, and (3) the probability
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FIG. 7. Simulation of spiking activity for the same metric neuronal network as in Fig. 4 except that

instead of stochastic spontaneous spiking with probability psp all neurons have normally distributed

values of the background current Ibg (as in Fig. 1A), resulting in some fraction of steady pacemakers

(3.4% of all neurons, see Sect. 2.1). All graphs have the same meaning as those in Fig. 4, except

for the bottom left graph, which now shows spatial distribution of neurons with a certain value of

Ibg. The pacemaker neurons have Ibg > Ic = 15 pA. In a drastic contrast to the case of stochastic

spontaneous spiking (Figs. 4-6), here 49 population spikes shown on the top graph occur from only

five steady nucleation sites depicted on the bottom right graph by filled gray circles, with the color

depth reflecting their relative activation rate.

of spontaneous spike generation (or, in the case of background currents, the fraction of

pacemaker neurons) are all greater than certain minimum values. The first condition is

for the network connectome, the second is for synaptic interaction, and the third is for the

(self-)excitability of network neurons, i.e., for the static variability of internal properties of
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FIG. 8. The hybrid case for metric networks: simulation of spiking activity for the same neuronal

network as in Fig. 4 except that 80% of neurons have Ibg < Ic and psp = 0 (i.e. these neurons

are not pacemakers) and 20% of neurons have Ibg = 0 and psp = 0.0005 (i.e. these neurons are

stochastic quasi-pacemakers), just like in Fig. 1C for the binomial network. All graphs have the

same meaning as those in Fig. 7. Note that despite a large number of nucleation sites (similarly

to the cases in Figs. 4-6) a substantial fraction of them is relatively stable, i.e. population spikes

(PSs) occur more than once from some nucleation sites during the simulation. In particular, 47

population spikes shown on the top graph occur from only eight ’primary’ nucleation sites (A, C,

F, G, I, M, K, W) of 28 sites in total, with five sites (C, G, I, M, K) activated more than once.

the neurons. Each pair of the aforementioned minimum values, at the fixed third value,

is hyperbolically (i.e. inversely proportional) dependent on each other. Still, the main

nontrivial reason for the regime of irregularly repetitive PSs arising in the simulations is that

synaptic plasticity nonlinearly modulates the interaction between neurons. Provided this, a
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FIG. 9. Distributions of Inter-Spike Intervals (ISI) for the ’spatial’ neuronal networks as those in

Figs. 4, 7 and 8. All notations and colors are the same as for Fig. 2. Emphasise that, as in Fig.

2, these distributions are for ’elementary’ neuronal spikes, not population spikes. One can see that

the psp case and the hybrid case are qualitatively similar for ’binomial’ and ’spatial’ networks. In

turn, the Ibg case (i.e. fixed fraction of pacemakers) differs qualitatively: unlike binomial networks,

the spatial ones have a large peak at ISI = 180-190 ms that matches the mean timing between

successive population spikes, which occur almost periodically (CV� 1, see Fig. 7).

dispersion of the three key parameters (in particular, psp values) facilitates the occurrence

of the PS regime.

The high observed regularity of the PS occurrence in networks of excitatory neurons may

lead to a natural association with the respiratory rhythm generation. Indeed, many pre-

vious works have shown that this association is quite grounded, by revealing the essential

role of emergent network properties for rhythm generation in the pre-Bötzinger complex

(PBC) [104–107], which is a relatively autonomous local network of neurons located in the
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brain stem that produces spiking activity driving the rhythm of mammalian breathing.

Unlike the hypothesis on the dominant influence of a fraction of pacemaker neurons (e.g.,

[108, 109]), with a possible global mutual inhibition of network neurons [110, 111], there are

studies related to the PBC and a ’group pacemaker’ hypothesis that consider only excita-

tory non-pacemaker neurons with additive noise and dynamic synapses [112–114]. However,

these studies use relatively complex biophysical neuron model of Hodgkin-Huxley type,

with a rich internal dynamics including limit cycles, which can be activated via stochas-

tic resonance (SR) [115–120]. In comparison with results [112–114], our neuronal network

model with stochastic spontaneous activity of neurons is much simpler and, importantly, it

shows that nearly periodic PS regime can occur strictly without stochastic resonance. In

addition, stochastic spontaneous activity of neurons in the model correlates directly with

experimentally-observed stochastic activation of respiratory network activity [121–124].

At the same time, it is worth noting that there exist aperiodic [125–127], self-induced

[128, 129], and adaptive [130–132] forms of SR, leading to the non-trivial problem of its

identification in neuronal networks. A typical yet insufficient SR signature in this case is

the multimodal distribution of neuronal inter-spike intervals (ISI). The fully deterministic

version of our network model, with background currents and a fraction of steady pacemaker

neurons, indeed exhibits the multimodal ISI distribution at the PS regime, in contrast with

its stochastic version. Moreover, multimodality of the ISI distribution is conserved even after

excluding the activity of pacemaker neurons from network statistics of neuronal spiking. In

turn, the stochastic version of the network model, which is in the focus of this paper, could

be related to coherence resonance [133–136] (reviewed in [117]).

It should also be noted that for sufficiently large value of psp (such that νspτref & 1)

and sufficiently weak synaptic interaction the identical initial conditions for all neurons and

all synapses, together with the same absolute refractory period τref for all neurons, may

lead to global long-term transient oscillations of network spiking activity (see Fig. 1 in Ref.

[65]) with the period determined by τref . One can imagine that these transient oscillations

could lead to sustained ones due to the small but nonlinear influence of synaptic coupling.

However, everywhere in this work, we adhere to the condition νspτref � 1 under which this

regime-artifact cannot occur.

Concerning artifacts, it is worth mentioning the reports on noise-induced coherent oscil-

lations in randomly connected neuronal networks [137, 138]: here, ’noise-induced’ could be
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understood only in the sense that noise causes dynamics in the system, regardless of any

coherent effects (term ’noise-driven’ seems more appropriate in the context). In turn, the

coherent oscillations could occur due to a noise-dependent effect of excessive summation of

single contributions (taken in the form of alpha-functions in [138]) to the total incoming

synaptic current for each neuron, i.e. the oscillations may be a noise-induced artifact of the

model. Despite there exist truly noise-induced collective effects, like SR, we argue that this

terminology should be used with caution because of probable deceiving artifacts, which are

often unseen in the structure of complex dynamic computational models, particularly the

neuronal network models comprising of highly-nonlinear deterministic models of neuronal

and synaptic dynamics (e.g., [139]).

Finally, spatial patterns of PS nucleation sites (i.e., coherent spots) in the case of stochas-

tically spontaneously spiking neurons can be naturally attributed to the so-called chimera

patterns (or states) [140–144] (reviewed in [145–147]), when two usually mutually-exclusive

collective modes coexist simultaneously in different spatial locations.

4. Conclusion

We have proposed two (metric-free and metric) neuronal network models that demon-

strate the spontaneous occurrence of repetitive population spikes, as well as their unstable

nucleation sites in the two-dimensional metric case, despite stochastic spontaneous spiking

activity of the network neurons. The results indicate that the regime of nearly-periodic

population spikes, which mimics respiratory rhythm, can occur strictly without stochastic

resonance and inhibitory interaction between neurons.
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Figure S1. Fraction of connections with the given length (left graph) and with the longer

length (right graph): the blue curves represent the data for the network connectome used in

simulations for Figures 4-8, with pcon(r, λ) = exp(−r/λ)+pminθ(r−r0) and r0 = λ ln(1/pmin)

(see Eq. (15)), leading to the systematic bias for the fraction of long-range connections. For

pmin = 1/RAND MAX ≈ 3 · 10−5 and λ = 0.01L used in all spatial simulations, one gets

r0 ≈ 0.1L that clearly corresponds with what is seen on the graphs. In turn, the green

curves are the data for the network connectome used in simulations for Figures S2 and S4 in

\Additional_Simulations folder, with pcon(r, λ) = exp(−r/λ) (see Eq. (11)) and without

the bias.

The inset in each graph is the same graph with the logarithmic scale on the vertical axis.

The fractions of connections with the longer length shown on the right graph can be accu-

rately described analytically by Eq. (13) for ncon(l) (though the integral can be computed

only numerically) substituting there the corresponding expressions for pcon(r, λ). Please see

subfolder \Fract_long_conn_Eq13_integral_computation_in_MATLAB in

\Data_for_FigureS1... for the details.
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Figure S2. Simulation of spiking activity of a neuronal network consisting of 50 thousand

excitatory LIF neurons statistically uniformly distributed over the square L × L. Spatial

coordinates of the neurons are the same as those in Fig. 4 in the main text. Synaptic

connections have been formed with probability pcon(r, λ) = exp(−r/λ), where λ = 0.01L.

This gives 31 ± 6 (mean ± SD) outgoing connections per neuron. Except the network

connectome, all other parameters of the simulation are the same as those in Fig. 4. In

particular, all neurons have the same value psp = 0.0005 of the probability of spontaneous
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generation of a spike per unit time (4t = 0.1 ms).

Upper graph: Network spiking activity, averaged over 2 ms and normalized to the total

number of neurons, during 10 seconds of the simulation. Each population spike is denoted

by a sequence of Latin letters (uppercase and lowercase letters are not the same), indicating

the activation sequence of nucleation sites underlying that population spike.

Middle graph: LEFT: Network activity (top) and its raster (bottom) during the population

spike marked by the arrow in the upper graph. RIGHT: Six snapshots of the instantaneous

spatial spiking activity of neurons for the corresponding moments (labeled by the numbers

from 1 to 6) of the population spike. Each frame corresponds to the whole area L×L. Blue

dots depict inactive neurons and red dots highlight active neurons.

Bottom graph: LEFT: Spatial distribution of neurons with a certain value of spontaneous

spiking rate νsp ≈ psp/4t. As for this simulation all neurons have the same psp, the dis-

tribution is absolutely uniform. RIGHT: Schematic reconstruction of the spatial pattern of

emergent nucleation sites (depicted by filled gray circles) for all population spikes shown in

the upper graph.
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Figure S3. Simulation of spiking activity of a neuronal network consisting of 50 thousand

excitatory LIF neurons statistically uniformly distributed over the square L × L. Spatial

coordinates of the neurons are the same as those in Fig. 4 in the main text and in Fig. S2 in

the Suppl. Material. Synaptic connections have been formed with probability pcon(r, λ) =

exp(−r/λ), where λ = 0.01L. Except a newly-generated network connectome, all other

parameters of the simulation are the same as those in Fig. 4 and Fig. S2.

Upper graph: Network spiking activity, averaged over 2 ms and normalized to the total
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number of neurons, during 10 seconds of the simulation. Each population spike is denoted

by a sequence of Latin letters (uppercase and lowercase letters are not the same), indicating

the activation sequence of nucleation sites underlying that population spike.

Middle graph: LEFT: Network activity (top) and its raster (bottom) during the population

spike marked by the arrow in the upper graph. RIGHT: Six snapshots of the instantaneous

spatial spiking activity of neurons for the corresponding moments (labeled by the numbers

from 1 to 6) of the population spike. Each frame corresponds to the whole area L×L. Blue

dots depict inactive neurons and red dots highlight active neurons.

Bottom graph: LEFT: Spatial distribution of neurons with a certain value of spontaneous

spiking rate νsp. As for this simulation all neurons have the same νsp ≈ 5 Hz, the distribution

is absolutely uniform. RIGHT: Schematic reconstruction of the spatial pattern of emergent

nucleation sites (depicted by filled gray circles) for all population spikes shown in the upper

graph.
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Figure S4. Simulation of spiking activity for the same metric neuronal network as in Fig.

S2 except that instead of stochastic spontaneous spiking with probability psp all neurons

have normally distributed values of the background current Ibg (as in Fig. 1A and Fig. 7

in the main text), resulting in some fraction of steady pacemakers (3.4% of all neurons, see

Sect. 2.1). All graphs have the same meaning as those in Fig. 7.

Upper graph: Network spiking activity, averaged over 2 ms and normalized to the total

number of neurons, during 10 seconds of the simulation. Each population spike is denoted
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by a sequence of Latin letters (uppercase and lowercase letters are not the same), indicating

the activation sequence of nucleation sites underlying that population spike.

Middle graph: LEFT: Network activity (top) and its raster (bottom) during the population

spike marked by the arrow in the upper graph. RIGHT: Six snapshots of the instantaneous

spatial spiking activity of neurons for the corresponding moments (labeled by the numbers

from 1 to 6) of the population spike. Each frame corresponds to the whole area L×L. Blue

dots depict inactive neurons and red dots highlight active neurons.

Bottom graph: LEFT: Spatial distribution of neurons with a certain value of Ibg. The

pacemaker neurons have Ibg > Ic = 15 pA. RIGHT: Schematic reconstruction of the steady

spatial pattern of emergent nucleation sites (depicted by filled gray circles with the color

depth reflecting their relative activation rate) for all population spikes shown in the upper

graph.
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Figure S5. Simulation of spiking activity for the same metric neuronal network as in Fig.

S3 except that instead of stochastic spontaneous spiking with probability psp all neurons

have normally distributed values of the background current Ibg (as in Fig. 1A and Fig. 7 in

the main text, and in Fig. S4 in the Suppl. Material), resulting in some fraction of steady

pacemakers (3.4% of all neurons, see Sect. 2.1). All graphs have the same meaning as those

in Fig. 7 and Fig. S4.

Upper graph: Network spiking activity, averaged over 2 ms and normalized to the total
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number of neurons, during 10 seconds of the simulation. Each population spike is denoted

by a sequence of Latin letters (uppercase and lowercase letters are not the same), indicating

the activation sequence of nucleation sites underlying that population spike.

Middle graph: LEFT: Network activity (top) and its raster (bottom) during the population

spike marked by the arrow in the upper graph. RIGHT: Six snapshots of the instantaneous

spatial spiking activity of neurons for the corresponding moments (labeled by the numbers

from 1 to 6) of the population spike. Each frame corresponds to the whole area L×L. Blue

dots depict inactive neurons and red dots highlight active neurons.

Bottom graph: LEFT: Spatial distribution of neurons with a certain value of Ibg. The

pacemaker neurons have Ibg > Ic = 15 pA. RIGHT: Schematic reconstruction of the steady

spatial pattern of emergent nucleation sites (depicted by filled gray circles with the color

depth reflecting their relative activation rate) for all population spikes shown in the upper

graph.
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