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Abstract 
Polygenic indexes (PGIs) are DNA-based predictors. Their value for research in many scientific 

disciplines is rapidly growing. As a resource for researchers, we used a consistent methodology to 

construct PGIs for 47 phenotypes in 11 datasets. To maximize the PGIs’ prediction accuracies, we 

constructed them using genome-wide association studies—some of which are novel—from multiple 

data sources, including 23andMe and UK Biobank. We present a theoretical framework to help 

interpret analyses involving PGIs. A key insight is that a PGI can be understood as an unbiased but 

noisy measure of a latent variable we call the “additive SNP factor.” Regressions in which the true 

regressor is the additive SNP factor but the PGI is used as its proxy therefore suffer from errors-in-

variables bias. We derive an estimator that corrects for the bias, illustrate the correction, and make 

a Python tool for implementing it publicly available. 

 

Main 
The ability to predict complex outcomes from genotype data alone is rapidly increasing. The main 

catalyst behind the increases is the success of genome-wide association studies 1 (GWAS). GWAS 

estimate the relationship between a trait, called a “phenotype,” and each of millions of genetic variants. 

The “summary statistics” (coefficients and standard errors) from GWAS can be used to construct a DNA-

based predictor of the phenotype, calculated essentially as a coefficient-weighted sum of allele counts 2,3. 

There are a variety of terms used for such DNA-based predictors. In this paper, we will refer to them as 

“polygenic indexes” (see Box). 

 

As GWAS sample sizes have grown, coefficients are estimated more precisely, enabling the construction 

of more predictive PGIs. One example is the PGI for educational attainment. The original PGI was 

constructed from a GWAS of ~100,000 individuals and predicted ~2% of the variance in years of 

schooling across individuals 4. The third and most recent PGI for educational attainment (EA) predicts 

~12% of the variance 5. Qualitatively similar patterns have been observed in PGIs for other complex-trait 

phenotypes 1,6, including height, fertility, personality traits, and risk of many common diseases. 

 

PGIs became mainstream in human genetics remarkably quickly. While predictive genetic indexes have a 

long history in plant and animal genetics 7, the idea of using GWAS summary statistics to generate a PGI 

for humans was first proposed in 2007 2. The first study to empirically construct and validate a PGI was a 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.08.443158doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.443158
http://creativecommons.org/licenses/by/4.0/


4 

 

GWAS of bipolar disorder and schizophrenia published in 2009 3. Soon thereafter, command of methods 

used to construct PGIs became a standard part of the skill repertoire of analysts specializing in genome-

wide data. 

 

Today, PGIs are profoundly impacting research across the disciplinary spectrum. In medicine, much of 

the discussion revolves around their potential use as tools for identifying individuals who could benefit 

from enhanced screening and preventive therapies 8. Though much uncertainty remains about their 

ultimate clinical utility 9, one recent study of polygenic risk for five common diseases concluded that the 

science is sufficiently far along to contemplate incorporating polygenic prediction into clinical care 10. 

Researchers working at the intersection of the social and natural sciences have articulated visions of how 

PGIs could be productively leveraged in a number of ways to advance knowledge about important 

questions 11–13. Already, the various iterations of the EA PGI have been used, among other things, to trace 

out pathways for genetic influences that develop with age 14 and through school 15, study assortative 

mating 16,17, trace recent migration patterns 18,19, and improve analyses of the relationship between 

education and earnings 20. As PGIs become more predictive and available for more phenotypes, potential 

applications will multiply, and novel areas of research are likely to open up. 

 

To depict the rapid growth in research using PGIs, Figure 1 shows the percentage of PGI-related papers 

presented at the annual meetings of the Behavior Genetics Association. The percentage increased from 

zero in 2009 to 20% in 2019. The figure also shows how the percentages of papers classified as 

candidate-gene studies and twin/family/adoption studies—two other commonly used approaches—have 

evolved over time. The declining fraction of candidate-gene studies in the figure is consistent with the 

hypothesis of a paradigm shift, with candidate-gene-based approaches gradually being displaced by PGI-

based approaches 13. This shift occurred, at least in part, because PGIs are not subject to some well-known 

methodological limitations of candidate-gene studies 21–23.  

 

In this paper, we hope to promote productive behaviour-genetic research using PGIs in three ways. First 

and most centrally, we make a broad array of PGIs available via a Polygenic Index Repository, covering a 

number of datasets that may be useful to social scientists. By constructing the PGIs ourselves and making 

them available as variables downloadable from the data providers, our resource eliminates a number of 

roadblocks for researchers who would like to use PGIs in their research, as we detail below. The 

Repository contains PGIs for 47 phenotypes. To maximize prediction accuracy of the PGIs, we meta-

analysed summary statistics from multiple sources, including several novel large-scale GWASs conducted 

in UK Biobank and the personal genomics company 23andMe. 23andMe shared summary statistics from 
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37 separate association analyses, 9 of which have not been reported previously. Therefore, almost all 

PGIs in our initial release perform at least as well as currently available PGIs in terms of prediction 

accuracy. We will update the Repository regularly with additional PGIs and datasets. 

 

Second, we present a theoretical framework for interpreting associations with a PGI. Using this 

framework, we show that a PGI can be understood as an unbiased but noisy measure of what we call the 

“additive SNP factor,” which is the best linear predictor of the phenotype from the measured genetic 

variants. Because the PGI is a noisy measure, regressions that use the PGI as an explanatory variable 

suffer from errors-in-variables bias. Since different papers use different versions of a PGI, the magnitude 

of this bias varies. We hope that the theoretical framework helps establish a common language for 

discussions about the interpretation of PGIs and their effect sizes. 

 

Third, we propose an approach that improves the interpretability and comparability of research results 

based on PGIs: to use in place of ordinary least squares (OLS) regression, we derive an estimator that 

corrects for the errors-in-variables bias. (We are aware of four papers to date that have implemented a 

measurement-error correction along the lines we propose here 24–27. Our approach is most similar to that 

of ref. 26, who develops a nearly identical framework using a psychometrics modeling approach but 

focuses on the univariate case.) The estimator produces coefficients in units of the standardized additive 

SNP factor, which has a more meaningful interpretation than units of some particular PGI. We illustrate 

by applying the estimator to multivariate and gene-by-environment regressions from a recently published 

paper 20. We make a Python command-line tool publicly available for implementing the estimator.  

 

Results 

The Polygenic Index Repository 

The Polygenic Index Repository is a resource that addresses several practical obstacles that researchers 

interested in using PGIs must often confront. These include: 

1. Constructing PGIs from individual genotype data can be a time-consuming process, even for 

researchers trained to work with large datasets. 

2. Since the prediction accuracy of a PGI is increasing in the sample size of the underlying GWAS, 

it is generally desirable to generate PGI weights from GWAS summary statistics based on the 
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largest available samples. However, privacy and IRB restrictions often create administrative 

hurdles that limit access to summary statistics and force researchers to trade off the benefit of 

summary statistics from a larger sample against the costs of overcoming the hurdles. In practice, 

researchers often end up constructing PGIs using only publicly available summary statistics. 

3. Publicly available GWAS summary statistics are sometimes based on a discovery sample that 

includes the target cohort (or close relatives of cohort members) in which the researcher wishes to 

produce the PGI. Such sample overlap causes overfitting, which can lead to highly misleading 

results 9. (Sometimes, when GWAS consortia provide summary statistics upon request from a 

GWAS that is restricted so as to exclude the cohort, this barrier is surmounted at low cost.) 

4. Because different researchers construct PGIs from GWAS summary statistics using different 

methodologies, it is hard to compare and interpret results from different studies. 

 

We overcome #1 by constructing the PGIs ourselves and releasing them to the data providers, who in turn 

will make them available to researchers. This simultaneously addresses #2 because we use all the data 

available to us that may not be easily available to other researchers or to the data providers, including 

genome-wide summary statistics from 23andMe. Using these genome-wide summary statistics from 

23andMe is what primarily distinguishes our Repository from existing efforts by data providers to 

construct PGIs and make them available, such as the effort by the Health and Retirement Study 

(https://hrs.isr.umich.edu/data-products/genetic-data/products#pgs). It also distinguishes our Repository 

from efforts to make publicly available PGI weights directly available for download 28. To deal with #3, 

for each phenotype and each dataset, we construct a PGI from GWAS summary statistics that excludes 

that dataset. We overcome #4 by using a uniform methodology across the phenotypes. 

 

Figure 2 depicts the algorithm that determined which PGIs we constructed. In a preliminary step, we 

obtained GWAS summary statistics for a comprehensive list of 53 candidate phenotypes (see 

Supplementary Tables 1 and 2, meta-analyzed the summary statistics for each candidate phenotype, and 

calculated the expected �� from an out-of-sample regression of each candidate phenotype on a PGI 

derived from its GWAS summary statistics (see Methods for details). If the expected explanatory power 

exceeded �� � 0.01, then we used the meta-analysis output to construct a PGI for the phenotype. We call 

these the “single-trait PGIs.” For each candidate phenotype, we also identified a list of supplementary 

phenotypes: any other phenotype whose pairwise genetic correlation with the candidate exceeds 0.6 in 

absolute value. For each candidate with at least one supplementary phenotype, we then calculated the out-

of-sample expected �� of a PGI derived from a joint analysis of the candidate and supplementary 

phenotype summary statistics. If the expected �� exceeded 0.01, then we used the joint-analysis output to 
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construct a “multi-trait PGI” for the phenotype. When both single-trait and multi-trait PGIs are available, 

the multi-trait PGI generally has greater predictive power, but the single-trait PGI may be better suited for 

some applications (see Supplementary Methods). 

 

For each of the 47 phenotypes for which we constructed a single-trait and/or multi-trait PGI, Table 1 lists 

the total sample size included in the GWAS summary statistics (Total �), followed by the sample-size 

contributions from three separate sources. For comparison, we also report the sample size of the largest 

GWAS whose summary statistics are in the public domain (Public �). With three exceptions, Total � 

exceeds Public �. Two exceptions are height and BMI, where our UKB sample inclusion filters lead to a 

slightly smaller sample size than the Public �. The remaining exception is cognitive performance, where 

the sample size of our GWAS is smaller due to overlap between the discovery sample in the largest 

GWAS with publicly available summary statistics and some of our Repository cohorts. For the remaining 

phenotypes, the gains in sample size relative to the public � are often substantial, and driven by our 

inclusion of summary statistics from large-scale GWASs conducted in 23andMe, UKB, or both. Table 1 

also shows the 36 and 35 phenotypes for which we created single-trait and multi-trait PGIs, respectively. 

We created PGIs for these phenotypes in 11 Repository cohorts that shared their individual-level genetic 

data with us (regardless of whether the phenotype itself is measured in the cohort). Table 2 lists the 

datasets and some of their basic characteristics. Each data provider will make these PGIs available to 

researchers through their own data access procedures (see Supplementary Note). 

 

The UK Biobank is among the 11 cohorts included in the Polygenic Index Repository. Because of its 

large sample size (see Table 2), the UK Biobank contributes substantially to the available sample for the 

GWAS for many phenotypes. We therefore did not want to exclude the entire UK Biobank from the 

GWASs used to create the PGIs. Instead, we split the UK Biobank sample into three equal-sized 

partitions. We ran three 1/3-sample GWASs for each phenotype. To create the PGI for each partition, we 

included results from the other two partitions in the meta-analysis. Consequently, researchers can conduct 

analyses of a PGI in any one of the partitions and obtain unbiased results. However, we caution 

researchers against conducting analyses in two or three of the partitions and meta-analyzing across 

partitions; because the other partitions are used to create the PGI, the results obtained across different 

partitions (although individually unbiased) will be correlated. Meta-analysis standard errors will therefore 

be anticonservative, and this bias can be substantial (see Methods). Therefore, to maximize the usefulness 

of our PGIs for research involving related individuals or brain-scan data, we assigned to the same 

partition all pairs of individuals that are related up to second degree (and some pairs of third degree), as 

well as all individuals with brain-scan data. 
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For validating the predictive power of the PGIs, we used five cohorts for which we had access to 

individual-level genetic and phenotypic data: the Health and Retirement Study, a representative sample of 

Americans over the age of 50; the Wisconsin Longitudinal Study, a sample of individuals who graduated 

from high school in Wisconsin in 1957; the Dunedin Multidisciplinary Health and Development Study, a 

sample of residents of Dunedin, New Zealand, born in 1972-1973; the Environmental Risk (E-Risk) 

Longitudinal Twin Study, a birth cohort of twins born in England and Wales in 1994-1995; and the UKB 

(our third partition). The top panel of Figure 3 shows the observed �� and 95% confidence intervals for 

the single-trait PGIs in one or more validation cohorts, depending on which had a measure of the 

phenotype. Height, BMI, and educational attainment are shown separately because the y-axis scale is 

different. The bottom panel of Figure 3 shows the difference between the �� of the single-trait Repository 

PGI and that of a PGI we constructed using the largest non-overlapping GWAS whose summary statistics 

are in the public domain. The Repository PGIs are almost always at least as predictive as the PGIs based 

on publicly available GWAS results. For the corresponding results for the multi-trait PGIs, which 

generally have higher R2’s than the single-trait PGIs, see Supplementary Figure 1. 

 

We have written a User Guide (reproduced in the Supplementary Methods) that will be distributed by 

participating cohorts along with the Repository PGIs. It discusses interpretational issues, including those 

relevant for whether researchers should use the single-trait or multi-trait PGIs when both are available. 

 

Theoretical Framework for Polygenic Indexes 

To help interpret PGIs, we lay out a theoretical framework. Denote individual �’s phenotype value by ���. 

Denote individual �’s allele count at genetic variant 	 by 
��� � �0,1,2�. Without loss of generality, we use 

a mean-centred transformation of the phenotype and allele counts, such that �� � ��� � ������ and 


�� � 
��� � ��
��� � for each SNP 	. We denote the vector of mean-centered allele counts at � genetic 

variants by �� � �
�� , 
�� , … , 
����. As a benchmark, consider the standardized best linear predictor of the 

phenotype based on the allele counts: 

�� � ��
�������
���, 

where 

� � arg min
�	

�%��� � ��
��&��'. 
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That is, the optimal weight vector � is the vector of coefficients from the population regression of ��  on 

�� . This population regression may also include control variables; we omit them here to avoid cluttering 

notation, but in the Supplementary Methods we extend the framework to include them and explain why 

they do not affect the results in this paper. In the User Guide (also in the Supplementary Methods), we 

explain how control variables do matter for the interpretation of a PGI.  

 

When the set of genetic variants in ��  is all variants in the genome, ��  is referred to as the “standardized 

additive genetic factor.” The variance in the phenotype explained by ��  is called the “(narrow-sense) 

heritability,” often the object of interest in twin, family, and adoption studies that draw inferences without 

access to molecular genetic data. 

 

In studies with molecular genetic data—our focus here—the set of genetic variants in ��  is restricted to 

those measured or imputed from the single-nucleotide polymorphisms (SNPs) assayed by standard 

genotyping platforms (and which pass quality-control filters). In that case, the variance in the phenotype 

explained by ��  is called the “SNP heritability” 29, which we denote (
��� . We will refer to ��  as the 

standardized “additive SNP factor.” 

 

Since the population regression cannot be run, the vector � is unknown, so ��  cannot be constructed 

empirically. What can be constructed empirically is a “polygenic index (PGI),” �)� , which is a 

standardized, weighted sum of allele counts using some other weight vector �* calculated from GWAS 

summary statistics: 

�)� � ��
��*�����
��*� . 

In general, �* will not be equal to � because �* is calculated from GWAS summary statistics that are 

estimated in a finite sample. The key observation for our framework is that when �* is calculated using 

standard methods (that include all the SNPs in ��), such as LDpred 30 and PRS-CS 31, the resulting PGI 

can be expressed as 

�)� � ��� + ,��- , 
where ,�  is mean-zero estimation error that is uncorrelated with �� , and - � �����

��*�/�����
��� is a 

scaling factor that standardizes �)�. In words, the PGI is a standardized, noisy measure of the additive SNP 

factor, where the noise is classical measurement error. 

 

One way to characterize the amount of measurement error is the value -. In Methods, we show that 
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-� � 1 + /01�,�� � (
���

��
2 1, 

where (
���  is the SNP heritability (the predictive power of ��) and �� is the fraction of variance 

explained in a regression of the phenotype ��  on the PGI �)�  (the predictive power of �)�). The ratio 

(
��� /�� is greater than or equal to one because the weights that define ��  maximize the variance 

explained in �� , and therefore any other weights—including those used to construct the PGI—explain at 

most (
���  of the variation. Furthermore, the amount of measurement error - would achieve its minimum 

value of one only if the PGI weights were based on GWAS summary statistics from an infinite sample. 

Across studies, -� varies. For example, �� depends on the sample size of the GWAS underlying the PGI 

weights and the method of constructing PGI weights (e.g., LDpred vs. PRS-CS). However, -� can usually 

be estimated using estimates of (
���  and �� from the sample at hand or other samples that are 

sufficiently similar. 

 

Measurement-Error-Corrected Estimator for PGI Regressions 

Typical research with a PGI involves running a regression with the PGI as an explanatory variable and 

reporting results in units of standard deviations of the PGI. This approach, however, has two 

shortcomings. First, it is often unclear how to interpret these units, which depend on the amount of 

measurement error. Second and relatedly, the effect sizes are not comparable across PGIs that differ in 

their amount of measurement error. 

 

We argue that such a regression should be interpreted as aiming to approximate a regression with the 

standardized additive SNP factor as the explanatory factor. The PGI serves as an empirically feasible 

proxy for the standardized additive SNP factor. An analysis of the standardized additive SNP factor has a 

clearer interpretation than an analysis of the PGI and puts results in comparable units, regardless of which 

specific PGI was used in the analysis. Here we extend known results from errors-in-variables models to 

derive a consistent estimator for the coefficients from a regression with the standardized additive SNP 

factor as an explanatory variable. 

 

The “theoretical regression” is what we call a regression with the (unobserved) standardized additive SNP 

factor as an explanatory variable. Consider an OLS regression of a phenotype 3� on the standardized 

additive SNP factor �� , a vector of covariates 4�, and a vector 5�  of interactions between ��  and a subset 

of the regressors in 4� (possibly all of them): 
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 3� � ��6 + 4�7 + 5�8 + 9,� , (1) 

where the � subscripts indicate that these are parameters from the theoretical regression. (Note that the 

phenotype 3� need not be the same phenotype ��  for which the standardized additive SNP factor is the 

best linear predictor. For example, some papers have studied the relationship between the PGI for 

educational attainment and test scores at younger ages 14. Note also that the covariates in 4� may be 

measured with error; equation (1) represents whatever regression is run by a researcher except that ��  is 

measured without error.) The “feasible regression” is what we call the regression using the PGI �)� in 

place of ��: 

 3� � �)�6� + 4�7� + 5* �8� + 9�,� , (2) 

where �� � is the vector of interactions with �)� in place of �� . We denote the vectors of coefficients from 

the theoretical and feasible regressions by : � �; , 7 , 8�� and :� � �;� , 7� , 8���, respectively. 

 

In what follows, we sketch the derivation of an estimator for : (for details, see the Supplementary 

Methods). The derivation assumes that the error in the PGI, ,� , is uncorrelated with 4� and 5� . In the 

Supplementary Methods, we show that this condition holds exactly if the PGI weights �* are unbiased 

estimates of �. We also show that if the PGI weights �* are estimated using LDpred-inf—as is true for the 

Repository PGIs—then the bias in our estimator due to plausible violations of this condition will typically 

be negligible.  

 

Extending the standard formula for errors-in-variables bias 32 in a multivariate regression to this setting, 

and under the assumption that ,�  is uncorrelated with 4� and 5� , the feasible-regression coefficients can 

be shown to be biased: 

 :� � <�= + >���=: ? : , (3) 

where < � @-A��|�| 00 A|�|  B, A|�| is the identity matrix with the dimensionality of �, = is the variance-

covariance matrix of ��� , 5� , 4���, and > is the component of the variance-covariance matrix of 

��)� , 5* � , 4��� that is due to error (see Supplementary Methods). In the special case of a univariate 

regression, in which the only covariate is a constant term, equation (3) implies that the regression slope 

coefficient 6�  converges to 
�

�
 6. This is a familiar form of attenuation bias, in which the degree of 

attenuation toward zero is greater the larger the amount of measurement error. In the multivariate case, 

however, the amount of attenuation bias for 6�  will also depend on the covariance matrix of ��  with 4�. 
Moreover, the other coefficients, 7� and 8�, will be biased as well, not necessarily toward zero. For 
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example, a covariate whose coefficient in equation (1) is zero can have a coefficient in equation (2) that is 

non-zero, leading to an incorrect rejection of the null hypothesis (Abel (2017), unpublished manuscript). 

 

The idea underlying our “corrected” estimator follows immediately from equation (3) by inverting the 

bias term: 

 :���� � =
���= + >�<��:� � : . (4) 

This expression is called a regression-disattenuation estimator. It cannot be implemented directly, 

however, because = involves the variance and covariances of the unobserved standardized additive SNP 

factor �� . However, the variance and covariances involving ��  differ from analogous terms involving �)�  
only due to measurement error, and the amount of measurement error is given by -. Therefore, the 

variance and covariances involving ��  can be inferred from estimable quantities. In the Supplementary 

Methods, we derive an expression for :����  in terms of - and population parameters that can be estimated 

consistently using the observed data. That expression is stated in Methods. We implement that version of 

the estimator. In the Supplementary Methods, we also derive standard errors for the regression 

coefficients, under the assumption that - is known. 

 

If the PGI is uncorrelated with the covariates, then the estimator will inflate the naïve OLS estimate 6C by 

the factor -. If, in addition, the covariates are uncorrelated with each other, then the estimator will also 

inflate 8D by the factor -. Correlation between the PGI and the covariates and correlation among the 

covariates will lead to deviations from this “rule of thumb” adjustment. 

 

In the univariate case where - is estimated within the same dataset as the PGI analysis is conducted, we 

show that while uncertainty in �E� causes downward bias in the standard error, uncertainty in (E
���  causes 

upward bias, and the net effect is likely to be standard errors that are slightly conservative. We conjecture 

that the standard errors will also typically be conservative in multivariate settings. If the - estimate is 

from a different dataset, then ignoring the uncertainty in - will unambiguously cause the standard errors 

to be anticonservative. 

 

We provide a Python command-line tool that implements the measurement-error correction based on a 

user-specified value of -.1 The package can also estimate - by calculating estimates of (
���  (using the 
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GREML method 29,33 or, for larger datasets, BOLT-REML34) and ��. When possible, we recommend 

users estimate - within the dataset they use to analyse the PGI. If the dataset is too small to reliably 

estimate - or lacks a measure of the phenotype corresponding to the PGI, an estimate of - from another 

dataset can be used under the assumption of perfect genetic correlation of the phenotype across datasets. 

In the Polygenic Index Repository, we provide pre-specified estimates of - for three participating datasets 

for which we have access to the phenotypic data corresponding to the PGI: HRS, WLS, and the third 

partition of UKB (see Supplementary Table 4). For many of the cohorts, the standard error on the (
���  

estimate is large, so we recommend a value of - based on existing (
���  and �� estimates from a larger 

sample. 

 

Although our estimator is derived for an OLS estimation framework, it will be approximately correct for 

logistic regression 35 and survival models 36 as long as the coefficient on the standardized additive SNP 

factor, 6, is not too large. For example, applying a measurement-error correction that would be correct 

for OLS will be a very accurate approximation for the coefficient in a survival model when the hazard 

ratio associated with a one-standard deviation difference in the variable measured without error is 1.11 36. 

However, the correction is roughly 20% too small when the hazard ratio is 1.65 36. 

 

Illustrative Application 

To illustrate our proposed measurement-error correction, we apply it to several analyses reported in a 

recent paper relating educational attainment (and labour market outcomes) to a PGI for educational 

attainment 20. The paper uses data from the HRS, one of our validation cohorts. As a preliminary analysis, 

the paper reports some straightforward tests of the relationship between educational attainment (EA) and 

the EA PGI. In Panel A of Table 3, we reproduce their univariate regression of EA on the PGI and their 

multivariate regression that additionally includes controls for mother’s and father’s EA. In the univariate 

regression, shown in column (1), a 1-standard-deviation increase in the PGI is associated with 0.823 

additional years of schooling. This association is reduced to 0.619 years in column (2), once the controls 

are included. 

 

The measurement-error-corrected univariate regression is shown in column (3) of Panel A. We estimate 

that a 1-standard-deviation increase in the additive SNP factor is associated with 1.288 additional years of 

schooling. Relative to the PGI coefficient in column (1), this coefficient is larger by a factor of 1.288 / 

0.823 = 1.57. In the regression with controls for parental education, shown in column (4), we estimate a 
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corrected coefficient of 1.123 additional years. Relative to column (2), this is an increase by a factor of 

1.123 / 0.610 = 1.84. Since for EA in the HRS, (E
��� F 0.25 and �E� F 0.10, according to the rule of 

thumb mentioned above, both coefficients should be expected to have increased by a factor of 1.58 

(F H0.25/0.10 ). The increase is larger than that from column (2) to (4) due to the positive correlations 

between the PGI, the controls, and the dependent variable. 

 

The results in Panel A illustrate a general implication of the measurement-error correction for mediation 

analyses: the correction deflates estimates of how much covariates mediate the effect of the PGI. There 

have been several mediation analyses in which researchers study how much the coefficient on a PGI is 

reduced when control variables—which are usually positively correlated with both the PGI and the 

dependent variable—are added to the regression 37–39. Going from column (1) to (2), the drop in the 

coefficient on the PGI would lead a researcher to conclude that parental education mediates (0.823 – 

0.610) / 0.823 = 26% of the effect of the PGI. Going from column (3) to (4) shows the corrected estimate 

of mediation is only (1.288 – 1.123) / 1.288 = 13%. The drop is larger for the uncorrected regressions 

because in those regressions, the control variables are proxying for part of the additive SNP factor that is 

not well captured by the PGI. Therefore, studies that do not correct for measurement error will tend to 

overestimate the extent to which the control variables mediate the effect of the PGI. 

 

The results in Panel B illustrate a fairly general implication of the measurement-error correction for PGI-

by-environment interaction analyses: in contrast to how it affects mediation estimates, the correction 

tends to increase the magnitude of PGI-by-environment interaction estimates. A main result of 

Papageorge and Thom is about two such interactions: a higher PGI is associated with a weaker 

relationship between childhood SES and high school completion but a stronger relationship between 

childhood SES and college completion 20. Columns (1) and (2) reproduce two specifications that show 

this result: a regression of high school completion on the PGI, self-reported childhood SES, their 

interaction, and controls; and the analogous regression for college completion. The key finding is that the 

interaction term is negative in column (1) but positive in column (2). As shown in columns (3) and (4), 

once the additive SNP factor is considered instead of the PGI, the interaction coefficients for both the 

high school and college regressions move farther away from zero, strengthening the main result of the 

paper. In general, PGI-by-environment interaction studies that do not correct for measurement error will 

tend to underestimate the magnitude of the interaction because the interaction term will tend to be 

attenuated by the measurement error. Note, however, that this conclusion may not hold if other regressors 

are correlated with the interaction term. 
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Discussion 
We described the initial release of the Polygenic Index Repository, which contains PGIs for 47 

phenotypes. A major goal of this effort is to disseminate PGIs with greater predictive power than the PGIs 

typically used. To maximize prediction accuracy of the PGIs, we meta-analysed data from multiple 

sources, including 23andMe and the UK Biobank.  

 

We also derived a measurement-error-corrected estimator that can be used instead of OLS regressions 

where the independent variables include a PGI or a PGI and its interactions. While some lack of 

comparability of results across studies is inevitable (e.g., due to differences across samples in SNP 

heritabilities), one goal of both the Repository and the proposed estimator is to increase comparability. 

For example, when constructing the PGIs, we applied to each cohort uniform sets of inclusion criteria for 

individuals and markers in the genotype data. The estimator contributes to improving comparability by 

putting regression coefficients in units of the additive SNP factor, regardless of the predictive power of 

the particular PGI available to the researchers. 

 

Because genetic associations are easily misinterpreted, researchers who use PGIs should be especially 

careful to understand and convey the appropriate interpretation of their findings. For example, it is 

important to keep in mind that PGI associations may be mediated by environmental factors, and these 

factors may be modifiable. To facilitate understanding of these and other interpretational issues, we have 

written a User Guide that cohorts will distribute to users of the Repository PGIs (see Supplementary 

Methods). 

 

As more GWAS summary statistics become available in the years ahead, and better methods for 

constructing PGIs are developed, we plan to update the Repository regularly with more predictive PGIs 

that leverage these advances. For example, future releases will incorporate PGIs of novel phenotypes for 

which it is not currently feasible to construct PGIs with meaningful predictive power. We emphasize, 

however, that although PGIs have attained levels of predictive power that can be useful to researchers, the 

limited heritability of behavioural phenotypes such as those in the Repository implies that the PGIs will 

never be able to predict any individual’s phenotype with much precision. Additionally, since GWAS 

summary statistics have only been available in large samples of individuals from European ancestries, 

currently available PGIs have limited portability to individuals of non-European ancestries 40. In future 

releases of the Repository, once sufficient data becomes available to create PGIs that have non-negligible 

predictive power for other ancestry groups, we will update the Repository to contain such PGIs. 
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Methods 
The polygenic indexes (PGIs) shared through the Repository are based on summary statistics from three 

types of sources: novel GWASs conducted in UK Biobank (UKB), GWASs conducted in samples of 

volunteer research participants from 23andMe, and other published genome-wide association studies 

(GWAS). In Section I below, we begin by describing how the summary statistics used in our main 

analyses were generated, quality-controlled and meta-analysed to generate a set of files used as inputs into 

construction of the single-trait and multi-trait PGIs. In Section II, we define and justify the �� criterion 

we used to determine which PGIs to include in the first release of the Repository. We then describe 

quality-control filters applied to the individual-level genotype data supplied by each Repository cohort. 

We conclude by describing the methods used to construct the cohort PGIs. In Section III we state our 

measurement-error-corrected estimator and its standard error in terms of estimable quantities. Section IV 

describes our estimation of - in the HRS, WLS and UKB. Section V describes the data underlying Figure 

1. 

I. Summary Statistics 

UKB GWAS 

Supplementary Table 5 lists all UKB phenotypes for which we ran novel GWASs. Before running the 

GWASs, we filtered out poor-quality genotypes: (i) samples identified as putatively carrying sex-

chromosome configurations that are neither XX nor XY, (ii) samples identified as outliers in 

heterozygosity and missingness rates, (iii) samples whose sex inferred from sex chromosomes does not 

match self-reported gender, and (iv) samples with missing sex, birth year, genotyping batch, or PC 

information. We also restricted the sample to individuals we will refer to as of “European ancestries,” 

defined as the first genetic PC provided by UKB being greater than 0 and individual self-reporting to be 

of “British”, “Irish”, or “Any other white background.” 

 

In order to make PGIs for the UK Biobank (UKB) without having to exclude the entire UKB from the 

discovery GWAS, we split the UK Biobank sample into three equal-sized partitions and, for each 

partition, used the summary statistics from the other two partitions when generating its PGI. The first 

partition (UKB1) is composed of UKB participants with brain-scan data (as indicated by data field 

12188), all pairs of UKB participants related up to second degree, and the pairs of relatives of third-
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degree relatedness with greatest relatedness. Pairs of individuals of third-degree relatedness were ordered 

based on the maximum relatedness coefficient they have with another participant and assigned to the first 

partition in decreasing relatedness order until the partition was full. Remaining individuals with third-

degree relatives were assigned to the second partition. Finally, individuals with no third degree or closer 

relatives were randomly assigned to the second (UKB2) or third (UKB3) partition. 

 

For all phenotypes in Supplementary Table 5, we ran three separate GWASs, one for each partition. 

Briefly, each GWAS in UKB was conducted using mixed-linear models implemented by the software 

BOLT-LMM 41. The dependent variable in each analysis is a phenotype that has been residualized on sex, 

a third-degree polynomial in birth year (defined as �I�1J(�,01 – 1900�/10�, their interactions, 106 

genotyping batch dummies, and the first 40 of the PCs released by the UK Biobank. Details on how each 

phenotype is coded are provided in Supplementary Table 5. For the variance-component estimation in 

BOLT-LMM (but not the association analyses), we restricted the set of markers to the set of 622,788 

hard-called SNP genotypes that remained after filtering for 1% minor allele frequency and 60% 

imputation accuracy and pruning with an 1� threshold of 0.3. Our subsequent association analyses were 

performed on imputed SNP dosages provided by UKB. 

 

Using the UK Biobank split-sample PGI 

Splitting the UKB into thirds as described above increases the predictive power of the PGI within each 

third (relative to omitting the UKB from the GWAS sample). Researchers may desire to conduct analyses 

that simultaneously include individuals from different partitions of the data or to meta-analyse results 

across different partitions. Such analyses will produce estimates that are unbiased, but the standard errors 

will be incorrectly calibrated. To see why, consider a linear model 

L� � M�; + N� , 
where M�  is a vector of covariates that includes a PGI. Imagine that the data �O, M� include individuals 

from different partitions of the data. As a result of the sample-splitting procedure above, Cov�M� , N�� � 0, 

which implies that the OLS estimator for ; will be unbiased. However, because some of the individuals 

in the data were used to generate the PGI for other individuals in the data, Cov�M� , N�� ? 0 whenever 

individuals � and 	 are in different partitions. As a result, 

 Var�;D� � Var%�M�M���M�O' 
 � Var%�M�M���M�T' (5) 

 ? �M�M���M�Var�T�M�M�M���. (6) 
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The expression (6) is the standard general formula for the sampling variance of OLS estimates. It is not 

equal to (5) due to the correlation between �M�M���M� and T. If we knew the correlation between these 

two vectors, we could calculate correct standard errors in this setting, but the correlation structure is 

complex, and we are unaware of any current method that produces correct standard errors. For this 

reason, we recommend that researchers only do analyses on sets of individuals within a partition. If 

researchers choose to do analyses with individuals across different partitions, they should include the 

strong caveat that their standard errors may be poorly calibrated. 

 

23andMe GWAS 

Our analyses use summary statistics from GWASs conducted by 23andMe in samples of European-

ancestry volunteer research participants for 37 different phenotypes. Supplementary Table 6 provides an 

overview of these summary statistics. 28 out of the 37 are from previously published studies5,42–55. For 

these, we cite the original study in the column labelled “Citation”. The remaining 9 are based on novel, 

and previously unreported, GWASs. Two of the novel GWASs are for phenotypes (Subjective Well-

Being and Risk) for which GWASs had been previously published by 23andMe but with a smaller 

sample. The remaining summary statistics have not been previously published by 23andMe. 

Supplementary Table 6 describes the details of the association model used for each phenotype. For details 

on 23andMe’s genotyping and imputation, see Supplementary Tables 17 and 18 in Lee et al.5  

 

Quality control of summary statistics 

We applied a uniform set of quality-control filters to each original file with summary statistics (both those 

from novel GWASs and previously published GWASs). We closely followed the quality-control pipeline 

detailed in section 1.5.1 of Okbay et al. 37 and implemented in the software EasyQC 56. Our QC protocol 

departed from Okbay et al. in the following steps: 

- We used data from the Haplotype Reference Consortium reference panel (r1.1) 57 to check for 

strand misalignment, allele mismatch, chromosome and base pair position concordance, and allele 

frequency discrepancies (instead of using data from the 1000 Genomes Phase 1 58). (Mapping file 

and allele frequency data were downloaded from the EasyQC website, from the following urls, 

respectively: https://homepages.uni-regensburg.de/~wit59712/easyqc/HRC/HRC.r1-

1.GRCh37.wgs.mac5.sites.tab.rsid_map.gz , https://homepages.uni-

regensburg.de/~wit59712/easyqc/HRC/HRC.r1-1.GRCh37.wgs.mac5.sites.tab.cptid.maf001.gz .) 

- For simplicity and uniformity, we applied a more conservative imputation accuracy filter of 0.7 to 

all input files irrespective of the software that was used for imputation. 
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- We applied a uniform minor allele frequency filter of 0.01 to all input files. Stricter filters varying 

by sample size were not necessary because the studies that we analysed were much larger than 

some of those in Okbay et al. 

- We filtered out standard-error outliers. To do so, we first estimated the standard deviation (U)�) of 

the phenotype in each input file by regressing the reported standard errors on the following 

approximation to the standard error of a coefficient estimated by OLS when the phenotype is 

standardized: 

V�����,� � 1√� X 1
Y2 X Z[\� X �1 � Z[\��, 

where Z[\� is the minor allele frequency of SNP 	 and � is the GWAS sample size. We filtered 

out markers with 

�����,�


��
] � �

�
  or  


�����,�


��
^ 2U)�. This filter allowed us to identify and remove 

markers for which the reported GWAS sample size deviated considerably from the sample size 

implied by the marker’s standard error. This filter was particularly relevant for publicly available 

summary statistics, where marker-specific sample sizes were typically not reported. (Having an 

accurate number for the sample size is important for LDpred 30.)  

 

Before each filtered file was cleared for subsequent meta-analyses, we also prepared and visually 

inspected a number of diagnostic plots, as described in Okbay et al. Our final analyses are limited to files 

whose diagnostic plots did not suggest any anomalies. Finally, we examined the genetic correlation 

between input files (estimated using the LDSC software package 59) for each phenotype to make sure 

phenotype coding was in the same direction across 23andMe, UKB, and published studies. 

Supplementary Table 7 summarizes the number of SNPs dropped in each filtering step in the files that 

passed all diagnostic checks. 

 

Single-Trait Input GWAS 

In this section, we describe the construction of single-trait input GWASs used in several of our 

downstream analyses, including as inputs for the single-trait and multi-trait PGIs. The single-trait input 

GWAS for a phenotype is obtained by meta-analysing summary statistics from up to three sources of 

information: analyses in UKB, analyses in 23andMe, and summary statistics from a previously published 

study of the phenotype5,42,49,50,52,60–73. The input GWAS for a phenotype is the same across most cohorts. 

However, when there is overlap between a Repository cohort and cohorts that contributed to summary 

statistics from previously published studies, or in order to construct a PGI for a UKB partition that is 
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based on summary statistics including the rest of the UKB sample, we restrict the meta-analyses to 

summary statistics based on non-overlapping data. Details on the construction of single-trait input GWAS 

are in Supplementary Table 8. 

 

To illustrate the general procedure, consider the single-trait input GWAS for neuroticism in ELSA and 

EGCUT. Supplementary Table 8 shows that the largest meta-analysis of neuroticism (NEURO1) yielded 

a final sample of � � 484,560 individuals by combining data from UKB (� � 361,688), 23andMe 

(� � 59,206) and a previously published study (� � 63,666). Since the column does not indicate any 

overlap with ELSA, the single-trait input GWAS for neuroticism in ELSA is the set of summary statistics 

from this meta-analysis. EGCUT, however, is listed in Supplementary Table 8 as overlapping with the 

NEURO1 meta-analysis. The reason is that EGCUT contributed to the summary statistics of the 

previously published study (it is one of the cohorts in de Moor et al. 66). To eliminate overlap, EGCUT’s 

single-trait input is therefore generated by meta-analysing the summary statistics from UKB (� �
361,688) and 23andMe (� � 59,206) only. This restricted meta-analysis is listed in the table as 

NEURO2. Similarly, the largest single-trait input GWAS for neuroticism includes the UKB, so all three 

UKB partitions are listed as overlapping with it. To eliminate overlap, the single-trait input for each UKB 

partition (which are labelled NEURO3, NEURO4, and NEURO5) is generated by meta-analysing 

23andMe, de Moor et al., and the remaining two UKB partitions. 

 

Each input GWAS is conducted by meta-analysing the relevant input files in MTAG 74. All analyses are 

conducted allowing for sample overlap and setting all genetic correlations equal to unity. However, we 

allow the SNP-heritability parameter to vary across input files. Even though MTAG produces a separate 

output file for each input file, the assumption of perfect genetic correlation ensures that the SNP 

coefficients in each output file are a constant multiple of each other (hence the PGIs generated by the 

output files are the same). In all analyses that follow, we adopt the convention of designating the output 

file with the highest estimated SNP heritability as the input GWAS (this matters for the expected �� 

calculation but nothing else). The details of the heritability estimation are described below, in the 

subsection “Criterion for Inclusion in Repository” in Section II. 

 

Multi-Trait Input GWAS 

For several phenotypes in the first-wave release of the Repository, we provide multi-trait PGIs. Here, we 

describe the multi-trait input GWAS used to generate each of these. 
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In a first step, we used LDSC 59 to estimate genetic correlations between the phenotypes in 

Supplementary Table 8. For phenotypes with multiple single-trait input GWAS files, we used the version 

with the largest Total �. This restriction leaves 53 single-trait input GWAS files, each of which is 

associated with a distinct phenotype. Because there may be sample overlap between the meta-analysed 

summary statistics, we used GWAS-equivalent sample sizes as reported by MTAG when estimating 

genetic correlations. (This was the case for Age First Birth, Number Ever Born (men), Number Ever Born 

(women), and Asthma/Eczema/Rhinitis. For the first three phenotypes, we meta-analysed the publicly 

available summary statistics from Barban et al. 73, which included the first release of UKB, with UKB full 

release. Similarly, for Asthma/Eczema/Rhinitis, we meta-analysed publicly available summary statistics 

from Ferreira et al. 49, which included the first release of UKB, with UKB full release.) The set of 

pairwise genetic correlations is reported in Supplementary Table 9. 

 

In a second step, we identified each Repository phenotype’s supplementary phenotypes. A phenotype is 

supplementary to a target phenotype (and vice versa) if the pairwise genetic correlation between the 

phenotypes exceeds 0.6 in absolute value. Under this definition, the estimates in Supplementary Table 9 

identify each target phenotype’s supplementary phenotypes. These are listed in the column “Input files” 

of Supplementary Table 10 (set to “No Supplementary Phenotypes” if the phenotype has genetic 

correlation less than 0.6 with all other phenotypes). For 37 of the 53 Repository phenotypes, we identified 

at least one supplementary phenotype. 

 

In a final step, for each of these 37 phenotypes, and for each Repository cohort, we ran a multivariate 

MTAG analysis on the target phenotype together with its supplementary phenotypes, using the version of 

the target phenotype and each supplementary phenotype for which the cohort is listed in the column 

“Repository Datasets Sumstats are Used For” in Supplementary Table 8. (In some cases, the same version 

of the target phenotype and each supplementary phenotype were used for more than one cohort; in those 

cases, we ran the MTAG analysis only once for that group of cohorts.) 

 

Each MTAG analysis produces multiple output files—one for the target phenotype and one for each of 

the supplementary phenotypes—but we only retain the summary statistics for the target phenotype. In 

what follows, we refer to each such file as a multi-trait input GWAS. 

II. Constructing Repository PGIs 

Criterion for Inclusion in Repository 
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The previous section described how we generated single-trait and multi-trait input GWASs from which it 

is straightforward to generate single-trait and multi-trait PGIs for a large number of phenotypes. We now 

describe how we determined, for each candidate phenotype, whether to include neither the single- nor 

multi-trait PGI, both PGIs, or one of the two in the initial release of the Repository. The structure of our 

algorithm is outlined in Figure 2. This section provides the details. 

 

For both single- and multi-trait PGIs, we limited the initial set of PGIs released to those with an out-of-

sample expected �� above 1%. While the threshold itself is arbitrary, the decision to have a threshold was 

driven by two considerations: the value of a PGI for research is increasing in its predictive power, and we 

worried that a PGI with low predictive power could cause more harm than good if researchers are tempted 

to conduct underpowered studies. 

 

We calculated the expected predictive power of each PGI (that might potentially be included in the 

Repository) using the following formula from Daetwyler et al. 75: 

����� � �(
��� ��
(
��� + Z�, 

where (
���  is the phenotype’s SNP heritability, Z is the effective number of independent SNPs which 

we assume to be equal to 60,000 9, and � is the GWAS sample size for the phenotype.  

 

We first used the formula above to project the expected predictive power of each potential single-trait 

PGI. Our projections for the 53 potential PGIs and the underlying parameter values assumed are shown in 

Supplementary Table 1. We set (
���  equal to the SNP heritability estimated by LDSC in the summary 

statistics from the single-trait input GWAS file with the largest sample size for a phenotype. We set � 

equal to the GWAS-equivalent sample size reported in the MTAG output. For the 37 phenotypes with at 

least one supplementary phenotype, we generated similar projections for the multi-trait PGIs, using the 

Multi-Trait Input GWAS files instead. The results of the 37 projections, and the underlying parameter 

values assumed, are shown in Supplementary Table 2.  

 

We find that our criterion results in 47 phenotypes with at least one PGI in the Repository (see Figure 2). 

For 12 phenotypes, our procedure results in the release of a single-trait PGI but no multi-trait PGI; these 

are the phenotypes with no supplementary phenotypes. For 11 other phenotypes, our procedure results in 

the release of a multi-trait PGI but no single-trait PGI; these are typically phenotypes without large 

GWASs but for which we have multiple supplementary phenotypes with large GWASs. Finally, our 
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procedure yields 24 phenotypes with both single- and multi-trait PGIs that satisfy our inclusion criterion 

and 6 phenotypes for which neither PGI qualifies. 

 

Genotyping and Imputation in Repository Cohorts 

Genotyping was performed using a range of commercially available arrays. Cohorts were encouraged to 

upload genotypes imputed against the 1000 Genomes Phase 3 76 or HRC 57 imputation panels. Some 

cohorts provided only genotyped SNPs or data imputed against an older panel. In those cases, we 

performed the imputation against the HRC reference panel (version 1.1) using the Michigan Imputation 

Server 77. Supplementary Table 11 provides study-specific details on the genotyping arrays, pre-

imputation quality control filters, imputation software used, and reference samples. 

 

Genotype Data QC in Repository Cohorts 

We restricted the set of markers to the SNPs present in the third phase of the international HapMap 

project (HapMap 3) 78 in order to reduce computational burden (relative to using all reported SNPs) while 

keeping a set of markers that covers most of the common variation in individuals with European 

ancestries. 

 

Subject-level QC in Repository Cohorts 

We restricted the samples to individuals with European ancestries. Exclusion criteria were based on the 

first four principal components of the genetic data. In order to obtain the principal components, for each 

cohort, we first converted the imputed genotype dosages for HapMap3 SNPs into hard calls. We then 

merged the data with all samples from the third phase of the 1000 Genomes Project, restricting to SNPs 

that had a call rate greater than 99% and minor allele frequency greater than 1% in the merged sample. 

We calculated the principal components (PCs) in the 1000 Genomes subsample and projected these onto 

the remaining individuals in the merged data. In order to select European-ancestry samples, we plotted the 

first four PCs against each other and visually identified the individuals that cluster together with the 1000 

Genomes EUR sample.  

 

Creation of PCs in Repository Cohorts 

In the Repository cohorts, before constructing PCs, we removed markers with imputation accuracy less 

than 70% or minor allele frequency less than 1%, as well as markers in long-range LD blocks 

(chr5:44mb-51.5mb, chr6:25mb-33.5mb, chr8:8mb-12mb, chr11:45mb-57mb). Next, we restricted the 

sample to individuals with European ancestries, as described immediately above. We further pruned the 
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markers to obtain a set of approximately independent markers, using a rolling window of 1000 base pairs 

(incremented in steps of 5) and an �� threshold of 0.1. We used this set of markers to estimate a genetic 

relatedness matrix. We identified all pairs of individuals with a relatedness coefficient greater than 0.05 as 

calculated by Plink1.9 79. We excluded one individual from each pair, calculated the first 20 PCs for the 

resulting sample of unrelated individuals using Plink 1.9, and projected the PCs onto the sample of 

unrelated individuals. 

 

Constructing PGIs 

All PGIs in the initial release of the Repository were constructed in Plink2 79 using imputed genotype 

probabilities. Prior to constructing the PGIs, we adjusted the SNP weights for linkage disequilibrium 

(LD) using LDpred 30. We estimated the LD patterns using genotype data from the public release of the 

HRC Reference Panel (version 1.1) after applying the following quality-control filters. First, we limited 

the set of variants to HapMap3 SNPs and filtered out variants with genotyping call rate <0.98 and 

individuals with genotype missingness rate >0.02. Next, we calculated the genomic relatedness matrix 

and dropped one individual out of each pair with relatedness coefficient >0.025. We clustered the 

remaining individuals based on their identity-by-state distances using Plink1.9 and dropped an individual 

if the Z-score corresponding to their distance to their nearest neighbour is less than -5. In the remaining 

sample that we fed into LDpred for LD estimation, there were 1,214,408 SNPs and 14,028 individuals. At 

the coordination step of LDpred, we used the option “--max-freq-discrep” in order to exclude markers that 

have a frequency discrepancy greater than 0.1 between the summary statistics and genotype data. We also 

used the “--z-from-se” option so that c statistics were obtained from the GWAS coefficient estimates and 

their standard errors rather than from d values (the default) because the latter led to issues in LDpred for 

markers with extremely small d values. For each PGI, we used the LD window recommended by 

Vilhjalmsson et al. 30,  i.e., the number of markers common between the LD reference data, cohort 

genotype data and summary statistics left after the remaining LDpred quality control filters (MAF > 0.01, 

no allele mismatch, no ambiguous alleles), divided by 3,000. The fraction of causal markers was set to 1 

for each phenotype to ensure consistency across phenotypes.  

 

Prediction Analyses  

We conducted a validation exercise for our new PGIs in the HRS, WLS, Dunedin, E-Risk, and UKB 

(third partition) cohorts. Supplementary Table 12 describes the phenotypes used as outcomes in these 

analyses for all cohorts except UKB. The UKB phenotypes are described in Supplementary Table 5. (The 

UKB phenotypes used in the prediction exercise differ slightly from the GWAS phenotypes described in 
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Supplementary Table 5 in that they were not residualized on the PCs and genotyping batch dummies. 

Instead, we have controlled for these covariates in the regressions when calculating incremental �� as 

described below.) As a general rule, if a single measurement in time was available, we residualized the 

phenotype on a second-degree polynomial in age, sex, and their interactions. If multiple measurements 

were available, we either did the same residualization in each wave and took the mean across waves or we 

took the maximum across waves and then residualized on birth year, sex, and their interactions.  

 

Supplementary Table 3 shows the results from the prediction analyses. The incremental �� was calculated 

as the difference in explained variance when adding the PGI to a regression of the residualized phenotype 

on the first 10 principal components of the genetic data. In the UKB prediction analyses, we included an 

additional 10 principal components and 106 genotyping batch dummies. We obtained 95% confidence 

intervals around the incremental ��’s by bootstrapping with 1000 repetitions. Supplementary Table 3 also 

shows the predictive power of “public PGIs”, which are PGIs constructed using our Repository pipeline 

based on the largest publicly available GWAS on the phenotype that does not have sample overlap with 

the prediction cohort 4,5,62–70,73,37,80–85,42,49,50,52,55,60,61 (we also use http://www.nealelab.is/uk-biobank/). The 

details of the input GWAS used for each validation cohort for the construction of the “public PGIs” are in 

Supplementary Table 13.  

 

III. Measurement-Error-Corrected Estimator 

Equation (4) in the main text gives an expression for our measurement-error-corrected estimator, but it 

cannot be implemented directly because = and e are based on unobserved variables. In the 

Supplementary Methods we derive an equivalent expression in terms of variables that can all be 

consistently estimated using sample analogues: 

 :!"## � f g �

��
h$ h$%,&h&

i��  =:� , (7) 

where 

h$ � j 1 -�Cov�5*, �)��-�h' � �-� � 1�h()*,&

k, 
h$%,& � Cov%��)� , 5* ��, 4�', h& � Var�4��, h' � Var�5* ��, h()*,& � Var�4()*,��, and 4()*,�  is the vector of the 

covariates that are interacted with ��  to form the vector 5� . 

To obtain standard errors for :!"##, we calculate 

 Var�:!"##� � lm�l�, (8) 
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where m� � Var�:�� and 

 l � f g �

��
h$ h$%,&h&

i��  = . (9) 

The standard errors are the square root of the diagonal of Var�:!"##�. Note that equations (7)-(9) are 

written in terms of population variance-covariance matrices, model coefficients, and the parameter -. To 

implement this correction, we replace each of these terms with its sample counterpart. 

IV. Estimation of � in HRS, WLS and UKB  

We estimated the value of - for all PGIs satisfying the criterion for inclusion in the Repository in three of 

our validation datasets: HRS, WLS and UKB (partition 3). Recall from the main text that - is defined as  

- � n(
���

��
, 

where (
���  is the SNP heritability and �� is the fraction of variance explained in a regression of the 

phenotype on the PGI. 

 

In order to estimate (
���  and ��, we first took the residualized phenotypes described in section 

“Prediction Analyses” and additionally residualized these on 20 PCs in HRS and WLS, and 40 PCs and 

batch effects in UKB3. We did the same for the PGIs. In HRS and WLS, we estimated (
���  with 

genomic-relatedness-matrix restricted maximum likelihood (GREML) implemented in GCTA 

v1.93.0beta29,33 using HapMap3 SNPs with MAF > 1%. Prior to the (
���  estimation, we dropped one 

individual from each pair with a relatedness greater than 0.025. We estimated �� as the explained 

variance in a simple regression of the residualized phenotype on the residualized PGI. Standard errors for 

��, (
��� , and - were estimated with a 100-block jackknife procedure.  

 

In UKB3, because of the large sample size, we faced computational constraints. We therefore used the 

REML implementation in BOLT v2.334 (with the --remlNoRefine option). Moreover, we estimated 

standard errors only for three phenotypes: friend satisfaction, educational attainment, and height. We 

chose these three phenotypes so as to have one each corresponding to a single-trait PGI with low (friend 

satisfaction), medium (educational attainment) and high predictive power (height).  

 

Supplementary Table 4 lists the estimates of - for HRS, WLS and UKB3, along with the underlying  

(
���  and �� estimates and standard errors where available.  
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V. Categorization of Behavior Genetics Association Annual Meeting 

Presentations 

To obtain the data for Figure 1, we first created a dataset containing the titles, authors, and abstracts of all 

presentations at the 2009-2019 Behavior Genetics Association Annual Meetings. The information about 

the presentations is printed each year in issue six of the association journal Behavior Genetics. There were 

2,034 presentations in this initial dataset. Included in the initial dataset were 36 symposia and 5 papers 

that were submitted as a part of symposia; all 41 of these are omitted from the final dataset. The final 

dataset contains a total of 1,993 presentations. 

 

After some trial-and-error and visual inspection of several dozen abstracts, we arrived at the algorithm 

below for categorizing studies: 

• We categorized a presentation as a “PGI study” if the title or the abstract contains at least one of 

the following keywords: 'PGS', 'PRS', 'PGRS', 'polygenic score', 'polygenic risk score', 'genetic 

risk score', 'GRS'. 

• We categorized a presentation as a “twin, family, or adoption study” if it satisfies at least one of 

the following conditions: 

- The abstract contains 'twin' at least twice.  

- The title contains the word 'twin'.  

- The title or abstract contain at least one of the following keywords: 'twin registry', 'center for 

twin research', 'twin project', 'twin panel', 'twin study at the', ‘twin study (LTS)', '(RFAB) 

twin study', 'twin register', 'twin pairs', 'nonidentical twins', 'identical twins', 'pairs of twins', 

'twin sample', ' MZ', ' DZ', 'monozygotic', 'dizygotic', 'pairs of twins', 'adopted', 'adoptee', 

'adoptive', 'adoption design', 'biological parent', 'adoptive parent', 'adoption-sibling', 

'genetically-unrelated', 'genetically-related', 'siblings reared together', 'siblings reared apart', 

'mother and child', 'father and child', 'parent and child', 'intergenerational', 'transracial', 

'biometric', 'path analy', 'Cholesky', 'children-of-twins', 'children of twins', 'common 

environment', 'unique environment', 'ACE', 'ACDE'. 

• We categorized a presentation as a “candidate-gene study” if it satisfies at least one of the 

following conditions: 

- The title contains ‘candidate gene’ or at least one of the following candidate gene keywords: 

'HTR2', 'MAOA', '5-HTT', '5HTT', 'DRD', 'SLC6', 'BDNF', 'COMT', 'TPH', 'MTHFR', 

'APOE', 'DTNBP1', 'DBH', 'ABCB1', 'VNTR', 'CRHR', 'AKT', 'NRG', 'AVP', 'rs0', 'rs1', 'rs2', 

'rs3', 'rs4', 'rs5', 'rs6', 'rs7', 'rs8', 'rs9'. 
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- The abstract contains at least one of the above candidate-gene keywords.  

- The abstract contains 'candidate' at least twice and 'candidate gene' at least once.  

However, a presentation was removed from the candidate-gene study category if the abstract contains 

GWAS keywords: 'wide association analysis', 'wide association study', 'GWAS'. 

 

To quantify how accurately the algorithmic classifications predict categorizations based on human 

evaluations, we asked two researchers with expertise in behaviour genetics to categorize 65 randomly 

sampled presentations. The raters worked independently, without any external assistance, and based their 

categorizations solely on information supplied about the title and abstract. Each rater assigned three 

yes/no labels—representing candidate-gene study; twin, family or adoption study; or PGI study—to each 

presentation. Raters sought to make labelling decisions consistent with the labels’ typical usage in the 

literature. We defined “agreement” on a presentation as an identical judgment about each of the three 

labels (i.e., if the raters disagreed about any of the three categories, they were considered as not agreeing). 

Even under this strict definition, we found an interrater agreement of 94%. The agreement between the 

algorithm’s and one rater’s categorizations was 86%, and that between the algorithm’s and the other 

rater’s categorizations was 83%. 

 

Data availability 
For how to access the Repository PGIs and other data from each participating dataset, see Supplementary 

Note; upon publication, an up-to-date list of participating datasets and data access procedures will be 

maintained at https://www.thessgac.org/pgi-repository. For each phenotype that we analyse, we report 

GWAS and MTAG summary statistics and PGI (LDpred) weights for all SNPs from the largest discovery 

sample for that analysis, unless the sample includes 23andMe. SNP-level summary statistics from 

analyses based entirely or in part on 23andMe data can only be reported for up to 10,000 SNPs. 

Therefore, if the largest GWAS or MTAG analysis for a phenotype includes 23andMe, we report 

summary statistics for only the genome-wide significant SNPs from that analysis. In addition, we report 

summary statistics and PGI (LDpred) weights for all SNPs from the largest GWAS or MTAG analysis 

that does not include 23andMe. These summary statistics and PGI weights can be downloaded from 

http://www.thessgac.org/data upon publication. The data underlying Figure 1 will also be available at 

http://www.thessgac.org/data. Researchers at non-profit institutions can obtain access to the genome-wide 

summary statistics from 23andMe used in this paper by completing the 23andMe Publication Dataset 

Access Request Form, available at https://research.23andme.com/dataset-access/. 
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Code availability 
Upon publication, the software used for the measurement-error correction will be 

available at https://github.com/JonJala/pgi_correct. The code for constructing PGIs and principal 

components, for the illustrative application, and for analyzing the data displayed in Figure 1 will be 

available at http://www.thessgac.org/data. 
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Tables 
 

Table 1. Repository phenotypes and GWAS sample sizes  

Phenotype GWAS Sample Size      PGIs Released  Suppl. Phenotypes 

  Total  23andMe  UKB Other  Public N   Single  Multi    

Anthropometric                

1 Body Mass Index (BMI) 760,630   - 438,476 322,154  795,640   X      

2 Height 698,334   - 445,054 253,280  709,706   X      

                          

Cognition and Education                        

3 Childhood Reading 172,503   172,503 - -  -   X      

4 Cognitive Performance 260,354   - 225,056 35,298   269,867   X X   5, 6, 7 

5 Educational Attainment 1,047,538   365,536 - 682,002   766,345   X X   4, 6, 8, 33, 45 

6 Highest Math  430,439   430,439 - -   -   X X   4, 5, 7, 8, 33 

7 Self-Rated Math Ability 564,692   564,692 - -   -   X X   4, 6  

                          

Fertility and Sexual Development                        

8 Age First Birth 407,884   9,370 156733* 241,781   241,781   X X   5, 6, 11, 12, 19, 22 

9 Age First Menses (Women) 329,345   76,831 - 252,514   252,514   X X   10 

10 Age Voice Deepened (Men)  55,871   55,871 - -   -     X   9 

11 Number Ever Born (Men) 260,991   - 168,056* 92,935   165,492     X   8, 12 

12 Number Ever Born (Women) 399,803   - 188,208* 211,595   211,595   X X   8, 11 

                    

Health and Health Behaviors                        
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13 Alcohol Misuse 151,067   19,407 131,660 -   -   X X   24 

14 Allergy - Cat 46,646   46,646 - -   -     X   15, 16, 17, 18, 26 

15 Allergy - Dust 46,646   46,646 - -   -     X   14, 16, 17, 18, 26 

16 Allergy - Pollen 46,646   46,646 - -   -     X   14, 15, 17, 19, 26 

17 Asthma 445,965   - 445,965 -   361,141   X X   14, 15, 16, 18, 26 

18 Asthma/Eczema/Rhinitis 685,716   135,538 307,609* 242,569   242,569   X X   14, 15, 16, 17, 26 

19 Attention Deficit 

Hyperactivity Disorder 

(ADHD) 

117,754   62,380 - 55,374   55,374   X X   8, 22 

20 Cannabis Use 202,180   22,771 144,112 35,297   117,911   X      

21 Cigarettes per Day 340,140   76,186 - 263,954   263,954   X      

22 Chronic Obstructive 

Pulmonary Disease (COPD) 

445,965   - 445,965 -   91,787     X   8, 19, 30  

23 Depressive Symptoms 942,579   307,354 404,984 230,241   500,199   X X   30, 40, 43, 47 

24 Drinks per Week 941,287   403,938 - 537,349   537,349   X X   13 

25 Ever Smoker 1,255,948   623,146 - 632,802   632,802   X      

26 Hayfever 445,963    445,963 -   360,527   X X   14, 15, 16, 17, 18, 

Eczema† 

27 Migraine 693,993   283,985 410,008 -   361,194   X      

28 Nearsightedness 367,906   191,843 176,063 -   360,677   X      

29 Physical Activity 357,039   265,934 - 91,105   91,105   X      

30 Self-Rated Health 1,203,099   758,713 444,386 -   359,681   X X   22, 23, 37  

         -                

Personality and Well-Being       -                

31 Adventurousness 557,923   557,923 - -   -   X X   46 

32 Cognitive Empathy 46,861   46,861 - -   -     X   Agreeableness† 

33 Delay Discounting  23,217   23,217 - -   -     X   5, 6 
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34 Extraversion 122,255   59,225 - 63,030   63,030   X X   35 

35 Left Out of Social Activity  507,804   507804 - -   -   X X   34, 38, 40, 47 

36 Life Satisfaction: Family 168,313   - 168,313 -   118,818   X X   38, 39, 47 

37 Life Satisfaction: Finance 169,051   - 169,051 -   119,394     X   30, 40, 47 

38 Life Satisfaction: Friends 168,001   - 168,001 -   118,649   X X   35, 36, 39, 47 

39 Life Satisfaction: Work  115,038   - 115,038 -   82,190     X   36, 38, 47 

40 Loneliness 439,525   - 439,525 -   355,583     X   23, 35, 37, 43, 47 

41 Morning Person 493,043   91,967 401,076 -   449,734   X      

42 Narcissism 452,535   452,535 - -   -   X      

43 Neuroticism 484,560   59,206 361,688 63,666   380,060   X X   23, 40, 47 

44 Openness 76,551   59,176 - 17,375   17,375   X      

45 Religious Attendance 444,842   - 444,842 -   360,063   X X   5 

46 Risk 1,427,867   969,309 - 458,558   466,571   X X   31 

47 Subjective Well-Being 1,022,510   728,752 169,219 124,539   204,978   X X   23, 35, 36, 37, 38, 39, 

40, 43 

 

 

Notes: *For Age First Birth, Number Ever Born (Men), Number Ever Born (Women) and Asthma/Eczema/Rhinitis, the publicly available 

summary statistics include the first release of UKB. Therefore, there is sample overlap between our UKB GWAS and publicly available summary 

statistics. For these phenotypes, in the UKB column, we report the UKB sample size excluding samples from the publicly available GWAS. †For 

Eczema and Agreeableness, both the single- and multi-trait PGIs had an expected predictive power less than 0.01, so they were used only as 

supplementary phenotypes for other phenotypes. Therefore, they are not included in the table and are not represented by a number. The GWAS 

sample for Eczema consists of only UKB, with � � 440,177. The GWAS sample for Agreeableness consists only of 23andMe, with � � 59,176. 
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Table 2. Datasets participating in the Repository 

Dataset  � Country 
Population- or 

Family-based 

Dunedin Multidisciplinary Health and Development Study 887 
New 

Zealand 
Population 

English Longitudinal Study of Ageing (ELSA)  7,310 UK Population 

Environmental Risk (E-Risk) Longitudinal Twin Study 2,316 UK Family 

Estonian Genome Center, University of Tartu (EGCUT) 51,719 Estonia Population 

Health and Retirement Study (HRS) 12,090 USA Population 

Minnesota Center for Twin and Family Research (MCTFR) 7,654 USA Family 

National Longitudinal Study of Adolescent to Adult Health 

(Add Health) 
5,689 USA Family 

Swedish Twin Registry (STR) 38,072 Sweden Family 

Texas Twin Project 556 USA Family 

UK Biobank (UKB) 445,985 UK Population 

Wisconsin Longitudinal Study (WLS)  8,949 USA Family 

 

Notes: The “�” column gives the number of participants in each dataset for whom the PGIs in Table 1 are 

supplied in the initial release of the Repository (i.e., those who passed the subject-level exclusion filters 

described in Methods). “Population- or Family-based” refers to how individuals were recruited to the 

dataset. 
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Table 3. Application of measurement-error correction 

Panel A. Association Between EA and the PGI, Without and With Controls for Parental EA 

 Original  Corrected 

 (1)  (2)  (3)  (4) 

EA PGI 0.844 

(0.026) 

 0.619      

(0.024) 

 1.318 

(0.041) 

 1.104      

(0.042) 

Father’s EA -  0.154 

(0.010) 

 -  0.112      

(0.010) 

Mother’s EA -  0.176 

(0.011) 

 -  0.141      

(0.012) 

# Obs. 8,537  8,537        8,537  8,537      

        

Panel B. Interaction Between PGI and Family SES Predicting High School and College 

Completion  

 (1)  (2)  (3)  (4) 

 High school  College  High school  College 

EA PGI 0.095 

(0.008) 
 

0.055 

(0.008) 
 

0.166 

(0.014) 
 

0.103 

(0.014) 

Family SES 0.069 

(0.009) 
 

0.031 

(0.010) 
 

0.063 

(0.009) 
 

0.034 

(0.010) 

EA PGI X Family 

SES 

-0.047 

(0.009) 
 

0.068 

(0.010) 
 

-0.084 

(0.015) 
 

0.101 

(0.016) 

# Obs. 8,387  8,387  8,387  8,387 

 

Notes: Each column reports estimated regression coefficients, with standard errors in parentheses. Panel 

A: Columns (1) and (2) replicate results from Papageorge and Thom’s Table 2 columns 1 and 2. Panel B: 

Columns (1) and (2) replicate results from Papageorge and Thom’s Table B.2 panel B columns 2 and 4. 

Panels A and B: Columns (3) and (4) apply our measurement-error-corrected estimator to the feasible-

regression results in Columns (1) and (2). A value of � � 1.52 was used in the correction. All regressions 

include indicators for birth year, sex, interactions of birth year and sex, and 10 principal components of 

the genetic data (coefficients not reported). The regressions in Panel B also control for mother and 

father’s educational attainment and an indicator for whether these values are missing (these data are 

missing for 2000 individuals).  Our panel B regressions differ from Papageorge and Thom as we do not 
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include a cubic of the PGI as control variables. We omitted the cubic terms because our measurement-

error-corrected estimator does not account for non-linear transformations of the PGI.  

 

 

Box. Note on Terminology 

In this paper, we use the term “polygenic index” instead of the commonly used terms “polygenic score” 

and “polygenic risk score.” Most of us prefer the term polygenic index because we are persuaded by the 

argument that it is less likely to give the impression of a value judgment where one is not intended. The 

term polygenic index was first proposed by Martha Minow at a meeting of the Trustees of the Russell 

Sage Foundation. 
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Figure 1: Type of study in presentations at Behavior Genetics Association Annual Meetings

Notes: For a description of the data underlying this figure, see Methods. Out of 1,993 presentations in
total (over the 2009-2019 period), the percentages that are in exactly 0, 1, 2, or 3 categories are 26.76%,
67.56%, 5.5%, and 0.2%, respectively.
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Figure 2: Algorithm determining which single-trait and multi-trait PGIs were generated for
the Repository
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(35 phenotypes)
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Notes: See Table 1 for the 36 single-trait PGIs and 35 multi-trait PGIs included in the Repository.
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Figure 3: Predictive power of Repository single-trait PGIs
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(b)
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Notes: Error bars show 95% confidence intervals from bootstrapping with 1,000 repetitions. Panel (A):
Incremental R2 from adding Repository’s single-trait PGI to a regression of the phenotype on 10 principal
components of the genetic relatedness matrix for HRS, WLS, Dunedin and ERisk, and on 20 principal
components and 106 genotyping batch dummies for UKB. Prior to the regression, phenotypes are
residualized on a second-degree polynomial for age or birth year, sex, and their interactions (see
Supplementary Tables 5 and 12). For the sample sizes of the GWAS that the PGIs are based on, see
Supplementary Table 478. Panel (B): Difference in incremental R2 between Repository single-trait PGI
and PGI constructed from publicly available summary statistics using our Repository pipeline. (Note that
the latter do not include PGI directly available from cohortdatasets, such as the ones accessible from the
HRS website.) If no publicly available summary statistics are available for a phenotype, then the difference
in incremental R2 is equal to the incremental R2 of the single-trait PGI and is represented by an open
circle. “Cigarettes per Day” in Dunedin was omitted from the Figure because the confidence interval
(-5.99% to 0.94%) around the point estimate (-2.38%) required extending the y-axis substantially, making
the figure hard to read. For the GWAS sample sizes of the PGIs based on publicly available summary
statistics, see Supplementary Table 13.
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