
Supplementary Methods

April 23, 2021

Contents

1 Setup 2

2 Measurement-Error-Corrected Estimator 3
2.1 The Theoretical Regression and the Feasible Regression . . . . . . . . . . . . . . . . . . . . . 3
2.2 Bias from Estimating the Feasible Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Estimator for Coe�cients from the Theoretical Regression . . . . . . . . . . . . . . . . . . . . 6
2.4 Standard Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Two Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Implementation of the Estimator 9

4 Assumption That ei is Uncorrelated With Other Variables 9
4.1 Uncorrelatedness Is Implied When Unbiased Estimates of γj Are Used . . . . . . . . . . . . . 10
4.2 Magnitude of the Bias When γj Is Estimated Using LDpred-inf . . . . . . . . . . . . . . . . . 10

5 Potential Bias in the Standard Errors 14

6 Theoretical Framework with GWAS Controls 15

7 Polygenic Index Repository User Guide 15
7.1 GWAS and PGI-Weight Methodologies and the Additive SNP Factor . . . . . . . . . . . . . . 16
7.2 Potential Confounds to a Causal Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.3 Importance of Confounds Depends On the Application . . . . . . . . . . . . . . . . . . . . . . 17
7.4 Single- Versus Multi-Trait PGIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.5 Identifying Causal E�ects of a PGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.6 Genetic E�ects Can Operate Through Environmental Mechanisms . . . . . . . . . . . . . . . 18

1



1 Setup

Denote individual i's phenotype by y?i . For some genetic variant j, denote the allele count for individual i
by x?ij . Without loss of generality in this derivation, we use mean-centered transformation of the phenotype

and allele counts, yi ≡ y?i − E (y?i ) and xij ≡ x?ij − E
(
x?ij
)
. We denote the vector of mean-centered allele

counts across J SNPs for individual i by xi = (xi1, xi2, . . . , xiJ).
As a benchmark, consider the standardized best linear predictor of yi given the J SNPs, xi:

gi ≡
xiγ

sd (xiγ)
, (1)

where
γ ≡ arg min

γ̃
E
[
(yi − xiγ̃)

2
]
. (2)

Thus, gi is the weighted sum of genotypes that maximizes the expected power for predicting yi using a
linear combination of genotypes. If the set of J genetic variants is the set of all genetic variants, then gi
is referred to as the standardized additive genetic factor. The variance of yi explained by the standardized
additive genetic factor is called the narrow-sense heritability. When the set of J genetic variants is some set
of genotyped SNPs, we refer to gi as the standardized additive SNP factor and the variance of yi is referred
to as the SNP heritability.

We use h2SNP to denote the SNP heritability, which is the variation in yi explained by the additive SNP
factor. Because gi is standardized, the SNP heritability of yi is also the squared correlation of yi and gi:

h2SNP ≡
[Cov (yi, gi)]

2

Var (yi)Var (gi)
=

[Cov (yi, gi)]
2

Var (yi)
.

By basic properties of population regression, we can decompose yi into two uncorrelated components,

yi =
Cov (yi, gi)

Var (yi)
gi + εy,i

=
Cov (yi, gi)√

Var (yi)

1√
Var (yi)

gi + εy,i

=
hSNP√
Var (yi)

gi + εy,i,

where εi is the component of the phenotype that is uncorrelated with gi. We have ignored covariates in this
de�nition of the additive SNP factor. For a model that includes covariates, we may de�ne yi and each xij
as the phenotype and genotypes after having been residualized for the set of covariates.

A PGI for phenotype yi is also a weighted sum of genotypes,

ĝi ≡
∑
j

xij γ̂j . (3)

The PGI will have maximum predictive power only when γ̂j = γj for every SNP j. In practice, methods
for constructing a PGI calculate the γ̂j 's using GWAS summary statistics together with some procedure to
account for linkage disequilibrium (e.g., pruning and thresholding, LD-based shrinkage-based methods). The
PGI is then usually standardized to have mean zero and variance one. In the theory below, we treat the
PGI as if it has been standardized.

Projecting the PGI onto the space spanned by the standardized additive SNP factor, we can express the
PGI as

ĝi =
gi + ei

sd (gi + ei)
, (4)

where Cov (gi, ei) = 0. In Section 2.2 below, we assume that ei is uncorrelated with all other variables
when the prediction sample is independent of the sample used to estimate γ̂. (We highlight there where the
assumption is used.) As shown in Section 4, this assumption will be a very good approximation when the
PGI is constructed using LDpred-inf, as is the case for all the PGIs in the Repository.
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The predictive power of the PGI, R2, is therefore

R2 ≡ [Cov (yi, ĝi)]
2

Var (yi)Var (ĝi)

=
[Cov (yi, ĝi)]

2

Var (yi)

=

[
Cov

(
yi,

gi+ei
sd(gi+ei)

)]2
Var (yi)

=

[
Cov

(
yi,

gi
sd(gi+ei)

)]2
Var (yi)

=
1

Var (gi + ei)

[Cov (yi, gi)]
2

Var (yi)

=
h2SNP

Var (gi + ei)

=
h2SNP

Var (gi) + Var (ei)

=
h2SNP

1 + Var (ei)
< h2SNP .

This inequality shows that the predictive power of the PGI is strictly less than the heritability, but the
predictive power increases asymptotically towards h2SNP as the error in the PGI decreases. Also note that
this calculation implies

h2SNP
R2

= 1 + Var (ei) .

We denote this ratio by

ρ2 ≡ h2SNP
R2

. (5)

Using this notation, the PGI can be written as

ĝi =
gi + ei

sd (gi + ei)
=

gi + ei√
1 + Var (ei)

=
gi + ei
ρ

. (6)

The error in the PGI will bias any analysis that uses the PGI as a regressor instead of the additive SNP
factor. (We use the term bias in this case to refer to a di�erence between expected parameter estimates of a
model that includes the additive SNP factor and expected parameter estimates of a model that instead uses
the PGI. This is in contrast to whether the PGI itself is a biased predictor of the additive SNP factor or
of the phenotype1.) The �errors-in-variables� bias described here is closely related to what is often referred
to as �attenuation bias� because in special cases (such as a univariate regression), measurement error in the
regressor attenuates the coe�cient on that regressor.

In the following sections, we describe a correction for this bias. We assume that R2 and h2SNP are known
parameters. In practice, these parameters are not known and would need to be estimated. Using estimates
of R2 and h2SNP , as opposed to the true value of the parameters, a�ects the standard errors of the regression
estimates. We discuss this issue in section 5 below.

2 Measurement-Error-Corrected Estimator

2.1 The Theoretical Regression and the Feasible Regression

Let φi denote a mean zero phenotype of interest, and let gi denote a standardized additive SNP factor. Note
that φi and gi may correspond to di�erent phenotypes. In addition to gi, the model may include a vector of
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mean-zero covariates, which we denote by zi, where Σz ≡ Var (zi). The model may also include interactions
between gi and some subset of covariates in zi. Let zint,i denote the subset of covariates that we would like
to interact with gi where Σint,z ≡ Var (zint,i). We denote the vector of interactions by wi ≡ gizint,i, where
Σw ≡ Var (wi) and Σg,w ≡ Cov (gi,wi). The theoretical regression model we would like to estimate is:

φi = giβg + wiζg + ziδg + εg,i. (7)

We collect the coe�cients of this regression into a single vector, denoted αg ≡ (βg, ζg, δg). We group all
genetic variables (which are the variables a�ected by the measurement error) using the vector Gi ≡ (gi, wi),
where ΣG ≡ Var (Gi) and ΣG,z ≡ Cov (Gi, zi). The coe�cients αg ≡ (βg, ζg, δg) of the regression (7) are:

αg =

[
Var (Gi) Cov (Gi, zi)

Var (zi)

]−1 [
Cov (Gi, φi)
Cov (zi, φi)

]
=

[
ΣG ΣG,z

Σz

]−1 [
Cov (Gi, φi)
Cov (zi, φi)

]
= V−1g

[
Cov (Gi, φi)
Cov (zi, φi)

]
,

where

Vg ≡ Var

[
Gi

zi

]
=

[
ΣG ΣG,z

Σz

]
is the variance-covariance of all the regressors in the theoretical regression (7).

In practice, however, we do not observe gi and instead observe the PGI ĝi. Similarly, instead of wi,
we observe ŵi ≡ ĝizint,i, where Σŵ ≡ Var (ŵi); and instead of Gi, we observe Ĝi = (ĝi, ŵi), where

ΣĜ ≡ Var
(
Ĝi

)
. We use ΣĜz ≡ Cov

(
Ĝi, zi

)
to denote the covariance between Ĝi and zi. So the feasible

regression in this case is
φi = ĝiβĝ + ŵiζĝ + ziδĝ + εĝ,i, (8)

where we now subscript the regressors and error term by ĝ instead of g to distinguish them from the regressors
and error term in the theoretical regression. As before, we collect the coe�cients of this regression into a
single vector, denoted αĝ ≡ (βĝ, ζĝ, δĝ).

2.2 Bias from Estimating the Feasible Regression

To construct a measurement-error correction, we must �rst derive the relationship between αg and αĝ. The
relationship we derive is closely related to results previously derived by Abel (2017). The primary di�erences
between the relationship we derive and that of Abel (2017) are: (i) in our context, we can describe the amount
of measurement error as a function of estimable parameters, h2SNP and R2 (whereas Abel's formula treats
the amount of measurement error as known), and (ii) our formula accounts for the standardization of PGIs
rather than just assuming that the measurement error is an additive component of the observed value of the
regressor.

We begin by writing the coe�cients of the feasible regression, αĝ ≡ (βĝ, ζĝ, δĝ) in terms of the notation
de�ned above. The coe�cient vector is equal to

αĝ =

[
Var

(
Ĝi

)
Cov

(
Ĝi, zi

)
Var (zi)

]−1 [
Cov

(
Ĝi, φi

)
Cov (zi, φi)

]

=

[
ΣĜ ΣĜz

Σz

]−1 [
Cov

(
Ĝi, φi

)
Cov (zi, φi)

]

= V−1ĝ

[
Cov

(
Ĝi, φi

)
Cov (zi, φi)

]
, (9)

4



where

Vĝ ≡
[

ΣĜ ΣĜz

Σz

]
.

We now take each term that is related to the PGI and derive its relationship with a term related to the
additive SNP factor. Considering the �rst term in the right column vector of (9),

Cov
(
Ĝi, φi

)
=

[
Cov (ĝi, φi)
Cov (ŵi, φi)

]

=

 Cov
(
gi+ei
ρ , φi

)
Cov

(
gi+ei
ρ zint,i, φi

) 
=

1

ρ

[
Cov (gi, φi) + Cov (ei, φi)

Cov (gizint,i, φi) + Cov (eizint,i, φi)

]
=

1

ρ

[
Cov (gi, φi)

Cov (gizint,i, φi)

]
=

1

ρ

[
Cov (gi, φi)
Cov (wi, φi)

]
=

1

ρ
Cov (Gi, φi) .

Note that in the fourth line, we have used the assumption that ei is independent of all other varables. The
above calculation implies that [

Cov
(
Ĝi, φi

)
Cov (zi, φi)

]
= P−1

[
Cov (Gi, φi)
Cov (zi, φi)

]
, (10)

where

P =

[
ρI|G| 0

I|z|

]
.

Substituting (10) into (9), we get

αĝ = V−1ĝ

[
Cov

(
Ĝi, φi

)
Cov (zi, φi)

]

= V−1ĝ P−1
[
Cov (Gi, φi)
Cov (zi, φi)

]
= V−1ĝ P−1VgV

−1
g

[
Cov (Gi, φi)
Cov (zi, φi)

]
= V−1ĝ P−1Vgαg. (11)

We now need to derive the relationship between Vĝ and Vg. We begin by calculating

ΣĜ =

[
Var (ĝi) Cov (ŵi, ĝi)

Var (ŵi)

]
=

[
Var (ĝi) Cov (ĝizint,i, ĝi)

Var (ĝizint,i)

]

=

 Var
(
gi+ei
ρ

)
Cov

(
gi+ei
ρ zint,i,

gi+ei
ρ

)
Var

(
gi+ei
ρ zint,i

) 
=

(
1

ρ
I|G|

)[
Var (gi) + Var (ei) Cov (gizint,i, gi) + Cov (eizint,i, ei)

Var (gizint,i) + Var (eizint,i)

](
1

ρ
I|G|

)
=

(
1

ρ
I|G|

)
(ΣG + ΩG)

(
1

ρ
I|G|

)
,
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where

ΩG ≡
[
Var (ei) Cov (eizint,i, ei)

Var (eizint,i)

]
is the component of the variance-covariance matrix of Ĝi that is due to error before standardization. Notice
that, in the fourth line above, we have again used the assumption of the independence of ei. De�ning

Ω ≡
[

ΩG 0
0

]
,

we have
Vĝ = P−1 (Vg + Ω) P−1. (12)

Finally, substituting (12) into (11) gives us an equation for how the coe�cients from the feasible regression,
αĝ, are biased relative to the coe�cients from the theoretical regression, αg:

αĝ = V−1ĝ P−1Vgαg

=
[
P−1 (Vg + Ω) P−1

]−1
P−1Vgαg

= P (Vg + Ω)
−1

Vgαg. (13)

2.3 Estimator for Coe�cients from the Theoretical Regression

Equation (13) can be rearranged to yield the simple regression-disattenuation estimator mentioned in the
main text:

αcorr ≡ V−1g (Vg + Ω) P−1αĝ. (14)

This estimator, however, is written in terms of Vg and Vg + Ω, which are unobserved. To obtain the
estimator we implement, we now derive expressions for Vg and Vg + Ω in terms of estimable quantities.

Beginning with Vg + Ω, equation (12) gives us

(Vg + Ω) = PP−1 (Vg + Ω) P−1P

= PVĝP. (15)

Now, turning to Vg, we begin by deriving expressions for ΣG and ΣG,z, which are quadrants of the matrix
Vg. We calculate

ΣG =

[
Var (gi) Cov (wi, gi)

Var (wi)

]
=

[
Var (gi) Cov (wi, gi)− ρ2Cov (ŵi, ĝi) + ρ2Cov (ŵi, ĝi)

Var (wi)− ρ2Var (ŵi) + ρ2Var (ŵi)

]

=

 Var (gi) Cov (wi, gi)− ρ2Cov
(
gi+ei
ρ zint,i,

gi+ei
ρ

)
+ ρ2Cov (ŵi, ĝi)

Var (wi)− ρ2Var
(
gi+ei
ρ zint,i

)
+ ρ2Var (ŵi)


=

[
Var (gi) Cov (wi, gi)− Cov (gizint,i, gi)− Cov (eizint,i, ei) + ρ2Cov (ŵi, ĝi)

Var (wi)−Var (gizint,i)−Var (eizint,i) + ρ2Var (ŵi)

]
=

[
Var (gi) Cov (wi, gi)− Cov (wi, gi)−Var (ei)E (zint,i) + ρ2Cov (ŵi, ĝi)

Var (wi)−Var (wi)−Var (ei)Var (zint,i) + ρ2Var (ŵi)

]
=

[
1 ρ2Cov (ŵi, ĝi)−

(
ρ2 − 1

)
E (zint,i)

ρ2Σŵ −
(
ρ2 − 1

)
Σint,z

]
. (16)
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Also,

ΣĜ,z =

[
Cov (ĝi, zi)
Cov (ŵi, zi)

]
=

[
Cov (ĝi, zi)

Cov (ĝizint,i, zi)

]

=

 Cov
(
gi+ei
ρ , zi

)
Cov

(
gi+ei
ρ zint,i, zi

) 
=

1

ρ

[
Cov (gi, zi)

Cov (gizint,i, zi)

]
=

1

ρ

[
Cov (gi, zi)
Cov (wi, zi)

]
=

1

ρ
ΣG,z.

Hence,

ΣG,z = ρΣĜ,z. (17)

Equations (16) and (17) then give us an expression for Vg in terms of observables:

Vg =

[
ΣG ρΣĜ,z

Σz

]
= P

[ 1
ρ2 ΣG ΣĜ,z

Σz

]
P, (18)

where the estimable expression for ΣG is given by(16) above.
Substituting these expressions for Vg and Vg + Ω, equations (18) and (15), into the estimator, equation

(14), gives us our estimator in terms of estimable quantities:

αcorr ≡ V−1g (Vg + Ω) P−1αĝ

=

(
P

[ 1
ρ2 ΣG ΣĜ,z

Σz

]
P

)−1
(PVĝP) P−1αĝ

= P−1
[ 1

ρ2 ΣG ΣĜ,z

Σz

]−1
Vĝαĝ

= Cαĝ, (19)

where

C ≡ P−1
[ 1

ρ2 ΣG ΣĜ,z

Σz

]−1
Vĝ. (20)

2.4 Standard Errors

To obtain standard errors for our estimator, note that equation (19) implies

Var (αcorr) = CAĝC
′. (21)

where Aĝ ≡ Var (αĝ). We calculate standard errors by taking the square root of the diagonal of this matrix.
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2.5 Two Special Cases

To understand the intuition for the estimator, we consider two special cases. First consider a univariate
regression of the phenotype on the PGI. In this case, Gi = [gi] and zi is empty. Thus

αcorr =

[
1

ρ

] [
1

ρ2

]−1
[1]αĝ

= ραĝ.

In this case, our estimator simply re-in�ates the coe�cient corresponding to the amount of attenuation due
to error in the PGI.

Turning to the standard error, by (21), the sampling variance of the corrected estimate is

Var (αcorr) = CAĝC
′

= ρVar (αĝ) ρ

= ρ2Var (αĝ) .

This means the standard error of the corrected estimate is

s.e. (α̂corr) = ρ s.e. (α̂ĝ) .

Since the standard error is in�ated by exactly the same factor ρ as the regression coe�cient, the t-statistic
and p-value of the measurement-error-corrected regression coe�cient remains the same as without the
measurement-error correction.

As a second special case, consider a multivariate regression with a single covariate that is independent of
the PGI and an interaction between the covariate and the PGI. In this case, we have

αcorr =

 1
ρ 0 0

1
ρ 0

1

 1
ρ2 0 0

1
ρ2 Σz 0

Σz

−1  1 0 0
Σz 0

Σz

αĝ
=

 ρ 0 0
ρ 0

1

αĝ,
where the �rst element of αĝ is the coe�cient associated with the PGI, the second element is the coe�cient
associated with the interaction, and the third element is the coe�cient associated with the covariate. Similar
to the univariate special case, the estimator in the simple, independent gene-by-environment interaction case
with no other covariates simply in�ates the coe�cients corresponding to covariates related to the PGI. We
conclude from this special that that as a �rst approximation, we should expect that the estimator will in�ate
each of the coe�cients associated with the PGI or its interactions by ρ. The estimator will deviate from this
benchmark to the extent that the PGI is correlated with the interacted environmental factor or any other
covariates included in the model.

Using (21), we calculate the variance of the corrected estimates:

Var (αcorr) = CAĝC
′

=

 ρ 0 0
ρ 0

1

Var (αĝ)

 ρ 0 0
ρ 0

1


=

 ρ2Var (αĝ,1) ρ2Cov (αĝ,1, αĝ,2) ρCov (αĝ,1, αĝ,3)
ρ2Var (αĝ,2) ρCov (αĝ,2, αĝ,3)

Var (αĝ,3)

 ,
where αĝ,1, αĝ,2, and αĝ,3 are the three elements of αĝ. The standard errors are the square root of the
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diagonal of this matrix, giving us

s.e. (α̂corr) =


√
ρ2Var (α̂ĝ,1)√
ρ2Var (α̂ĝ,2)√
Var (α̂ĝ,3)


=

 ρ 0 0
ρ 0

1

Var (α̂ĝ) .

Thus, each of the standard errors of the corrected estimates is in�ated by exactly the same proportion as
the in�ation of its corresponding corrected estimates. Therefore, in this special case, the t-statistics and
p-values of all three measurement-error-corrected regression coe�cients remain the same as without the
measurement-error correction.

3 Implementation of the Estimator

In the derivation above, we have expressed everything in terms of population parameters. In order to obtain
a consistent estimator of αcorr and its standard error, we must write them in terms of the data that we
observe.

First, consider the parameter ρ. Our estimator ρ̂ is

ρ̂ ≡

√
ĥ2SNP
R̂2

.

The value ĥ2SNP is an estimate of SNP heritability of the phenotype yi in the prediction dataset, based on

the same set of J SNPs that make up the PGI. The value R̂2 is the estimated predictive power of the PGI
for yi in the prediction dataset.

Note that ĥ2SNP and R̂2 each correspond to the PGI phenotype yi rather than the (possibly di�erent)
phenotype in the regression analysis φi. If the phenotype yi is not available in the prediction dataset or
if the sample is too small to obtain reliable estimates, ĥ2SNP and R̂2, ρ̂ could instead be estimated from a
di�erent sample without introducing any bias as long as the genetic correlation of yi is perfect between the
two samples. (The heritability may di�er in the samples, but the genetic correlation must be one. This
may happen if the individuals are drawn from the same population in the two samples, but the phenotype
is measured with greater error in one of them.) Given that a researcher would choose to do this only in the
absence of enough data on yi in the regression sample, perfect genetic correlation cannot be reliably tested
and would therefore become an important assumption underlying use of the correction.

Turning to the other parameters besides ρ, in all cases we replace the population variance-covariance
matrices with the consistent (sample-analog) estimates of these matrices. For example,

Σ̂z ≡
1

N
Z′Z,

were N is the sample size in the regression sample and Z is the N×|zi| matrix of covariates in the regression.
Since ρ̂ and each variance-covariance matrix is a consistent estimator of its population counterpart, α̂corr

is a consistent estimator of αcorr.

4 Assumption That ei is Uncorrelated With Other Variables

Recall from equation (4), we have expressed the PGI as

ĝi =
gi + ei

sd (gi + ei)
,

where, by construction, Cov (gi, ei) = 0. We assumed that ei is uncorrelated with all other covariates in
the model. In this section, we show that if the SNP weights for the PGI are unbiased estimates of the
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SNP weights for the additive SNP factor, then this uncorrelatedness assumption is exactly true. We then
show that when SNP weights for the PGI are estimated using LDpred-inf�which is the method we use
for the Repository and which does not generate unbiased estimates�given typical parameter values for
PGIs in the Repository, the bias in our measurement-error-corrected estimator due to the violation of the
uncorrelatedness assumption is negligible.

4.1 Uncorrelatedness Is Implied When Unbiased Estimates of γj Are Used

A su�cient condition for our Cov (gi, ei) = 0 assumption to hold is that the SNP weights for the PGI are
unbiased estimates of the SNP weights for the additive SNP factor. To state it more formally, recall that
the standardized additive SNP factor is

gi =
xiγ

sd (xiγ)
,

and the PGI is

ĝi =
xiγ̂

sd (xiγ̂)
.

The su�cient condition is that γ̂ is an unbiased estimate of γ. This would be the case, for example, if γ̂ is
estimated by ordinary least squares or logistic regression (rather than a Bayesian approach, such as LDpred,
which tends to shrink coe�cient estimates relative to those from ordinary least squares). This is roughly
equivalent to what is done when PGIs are constructed using �Pruning and Thresholding� methods as long
as the PGI weights are estimated in a di�erent sample than the sample used to select the SNPs that are
included in the PGI. (Note, however, that because �Pruning and Thresholding� methods construct a PGI
using fewer SNPs, the resulting PGI is proxying for an additive SNP factor that is based on fewer SNPs and
hence has a lower h2SNP .) Because γ̂ is unbiased,

γ̂ = γ + eγ ,

where E (eγ) = 0. Since eγ is sampling error, eγ is independent of all variables in independent samples.
Therefore, the measurement error in the PGI, ei = xieγ , is also independent of all variables in independent
samples.

4.2 Magnitude of the Bias When γj Is Estimated Using LDpred-inf

For the Repository, we construct the PGI weights using LDpred-inf. To be precise about this method, it is
helpful to express the length-N vector of phenotype values for the N individuals in the discovery sample as

Y = Xγ + E,

where X is the N ×K matrix of K genotypes, and E is a vector of residuals, which is uncorrelated with X.
The LDpred-inf estimator for γ̂ is:

γ̂ =

(
X′X +

1

σ2
γ

I

)−1
X′Y,

where σ2
γ ≡ Var (γ) =

h2
SNP

K is the prior variance of the additive SNP factor weights. This is equivalent to the
ridge regression estimator, with a particular choice of the regularization parameter. This estimator reduces
the problem of multicollinearity (due to LD) at the cost of some bias in the estimates. We can calculate the
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relationship between γ̂ and γ as

γ̂ =

(
X′X +

1

σ2
γ

I

)−1
X′Y

=

(
X′X +

1

σ2
γ

I

)−1
X′ (Xγ + E)

=

(
N Σ̂X +

1

σ2
γ

I

)−1 (
N Σ̂X

)
γ + eγ̂

=

(
Σ̂X +

1

Nσ2
γ

I

)−1
Σ̂Xγ + eγ̂ , (22)

where Σ̂X ≡ 1
NX′X is the sample variance-covariance matrix of X and eγ̂ ≡

(
X′X + 1

σ2
γ
I
)−1

X′E is the

estimation error of γ̂.
To evaluate the magnitude of the bias in �nite samples, we quantify it in a simple case where we regress

the phenotype φi on the standardized additive SNP factor gi and a single (scalar) covariate zi. Without loss
of generality, we orient zi such that gi and zi have positive covariance. As in the main text, we use αg to
denote the coe�cients of this theoretical regression:

φi =
[
gi zi

]
αg + εi.

The coe�cients from the feasible regression are

αĝ =

[
Var (ĝi) Cov (ĝi, zi)

Var (zi)

]−1 [
Cov (ĝi, φi)
Cov (zi, φi)

]
.

Our measurement-error-corrected estimator is

αcorr =

[ 1
ρ 0

1

] [ 1
ρ2 Cov (ĝi, zi)

Var (zi)

]−1 [
Var (ĝi) Cov (ĝi, zi)

Var (zi)

]
αĝ

=

[ 1
ρ 0

1

] [ 1
ρ2 Cov (ĝi, zi)

Var (zi)

]−1 [
Cov (ĝi, φi)
Cov (zi, φi)

]
=

[ 1
ρ 0

1

] [ 1
ρ2 Cov (ĝi, zi)

Var (zi)

]−1 [
Cov

(
ĝi,
[
gi zi

]
α+ εi

)
Cov

(
zi,
[
gi zi

]
α+ εi

) ]
=

[ 1
ρ 0

1

] [ 1
ρ2 Cov (ĝi, zi)

Var (zi)

]−1 [
Cov (ĝi, gi) Cov (ĝi, zi)
Cov (gi, zi) Var (zi)

]
α

=
1

Var(zi)
ρ2 − Cov (ĝi, zi)

2

[ 1
ρ 0

1

] [
Var (zi) −Cov (ĝi, zi)

1
ρ2

] [
Cov (ĝi, gi) Cov (ĝi, zi)
Cov (gi, zi) Var (zi)

]
α

=
1

Var(zi)
ρ2 − Cov (ĝi, zi)

2

[ 1
ρVar (zi) − 1

ρCov (ĝi, zi)

−Cov (ĝi, zi)
1
ρ2

] [
Cov (ĝi, gi) Cov (ĝi, zi)
Cov (gi, zi) Var (zi)

]
α

=


1
ρVar(zi)Cov(ĝi,gi)−

1
ρCov(gi,zi)Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
0

1
ρ2

Cov(gi,zi)−Cov(ĝi,zi)Cov(ĝi,gi)
Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α

=


1
ρVar(zi)Cov(ĝi,gi)−

1
ρCov(gi,zi)Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
0

1
ρ2

Cov(gi,zi)−Cov(ĝi,zi)Cov(ĝi,gi)
Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α.
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Using Cov (ĝi, gi) = Cov
(
gi+ei
ρ , gi

)
= 1

ρ , we have

αcorr =


1
ρ2

Var(zi)− 1
ρCov(gi,zi)Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
0

1
ρ2

Cov(gi,zi)− 1
ρCov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α

=


1
ρ2

Var(zi)−Cov(ĝi,zi)2+Cov(ĝi,zi)
2− 1

ρCov(gi,zi)Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
0

1
ρ2

Cov(gi,zi)− 1
ρCov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α

=

 1 +
Cov(ĝi,zi)[Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
0

− 1
ρ [Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α.
This means that the bias is

αcorr − α =

 1 +
Cov(ĝi,zi)[Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
0

− 1
ρ [Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
1

α− α

=


Cov(ĝi,zi)[Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
0

− 1
ρ [Cov(ĝi,zi)− 1

ρCov(gi,zi)]
Var(zi)
ρ2

−Cov(ĝi,zi)2
0

α

=

[
Cov (ĝi, zi)−

1

ρ
Cov (gi, zi)

]
Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2

− 1
ρ

Var(zi)
ρ2

−Cov(ĝi,zi)2

α1, (23)

where α1 is the �rst element of α.

We next express the �rst factor,
[
Cov (ĝi, zi)− 1

ρCov (gi, zi)
]
, in terms of observable or estimable quanti-

ties. To do this, consider the best linear predictor of zi using the same SNPs that make up gi. That predictor
would have weights

ξ ≡ arg min
ξ̃

E
[(
yi − xiξ̃

)2]
(so xiξ is the additive SNP factor for zi). Therefore,[

Cov (ĝi, zi)−
1

ρ
Cov (gi, zi)

]
=

[
Cov

(
xiγ̂

ρ
, xiξ

)
− 1

ρ
Cov (xiγ, xiξ)

]
=

1

ρ

[
Cov

(
xi

[(
Σ̂X +

1

Nσ2
γ

I

)−1
Σ̂Xγ + eγ̂

]
, xiξ

)
− Cov (xiγ, xiξ)

]

=
1

ρ

[
Cov

(
xi

(
Σ̂X +

1

Nσ2
γ

I

)−1
Σ̂Xγ, xiξ

)
− Cov (xiγ, xiξ)

]

=
1

ρ

[
γ′Σ̂X

(
Σ̂X +

1

Nσ2
γ

I

)−1
Var (xi)− γ′Var (xi)

]
ξ

=
1

ρ
γ′

[
Σ̂X

(
Σ̂X +

1

Nσ2
γ

I

)−1
ΣX − ΣX

]
ξ.
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The second line follows from substituting equation (22) into the �rst line. By Woodbury's Identity, we have[
Cov (ĝi, zi)−

1

ρ
Cov (gi, zi)

]
=

1

ρ
γ′
[
Σ̂X

(
Σ̂−1X − Σ̂−1X

(
Σ̂−1X + nσ2

γI
)−1

Σ̂−1X

)
ΣX − ΣX

]
ξ

=
1

ρ
γ′
[
Σ̂XΣ̂−1X ΣX − Σ̂XΣ̂−1X

(
Σ̂−1X + nσ2

γI
)−1

Σ̂−1X ΣX − ΣX

]
ξ

=
1

ρ
γ′
[
ΣX −

(
Σ̂−1X + nσ2

γI
)−1

Σ̂−1X ΣX − ΣX

]
ξ

= −1

ρ
γ′
(

Σ̂−1X + nσ2
γI
)−1

Σ̂−1X ΣXξ. (24)

Next imagine a weighted regression of ξ onto γ with weights
(
Σ−1X + nσ2

γI
)−1

. This produces

ξ =
σξγ
σ2
γ

γ + µ,

with σγξ ≡ Cov (γ, ξ) and with the residual µ having the property γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXµ = 0. Since
we have oriented gi and zi to have positive covariance, σγξ > 0. Substituting both of these equations into
(24) gives us[

Cov (ĝi, zi)−
1

ρ
Cov (gi, zi)

]
= −1

ρ
γ′
(

Σ̂−1X + nσ2
γI
)−1

Σ̂−1X ΣX

(
σξγ
σ2
γ

γ + µ

)
= −1

ρ

[
σξγ
σ2
γ

γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ + γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXµ

]
= −1

ρ

σξγ
σ2
γ

γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ.

Next, in order to put an upper bound on the magnitude of bias, we will show that γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ <
1
nσ2

γ
γ′γ. Again using Woodbury's Identity, we have

γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ −
1

nσ2
γ

γ′γ = γ′
[(

Σ−1X + nσ2
γI
)−1

Σ̂−1X ΣX −
1

nσ2
γ

I

]
γ

= γ′

[
1

nσ2
γ

I−
(

1

nσ2
γ

I

)(
ΣX +

1

nσ2
γ

I

)−1(
1

nσ2
γ

I

)
Σ̂−1X ΣX −

1

nσ2
γ

I

]
γ

= − 1

n2σ4
γ

γ′
(

ΣX +
1

nσ2
γ

I

)−1
Σ̂−1X ΣXγ

< 0.

The last step here follows because ΣX and 1
nσ2

γ
I are positive de�nite matrices. So this implies that
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γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ <
1
nσ2

γ
γ′γ. Since both sides of this inequality are positive, this implies that[

Cov (ĝi, zi)−
1

ρ
Cov (gi, zi)

]
= −1

ρ

σξγ
σ2
γ

γ′
(
Σ−1X + nσ2

γI
)−1

Σ̂−1X ΣXγ

> −1

ρ

σξγ
σ2
γ

1

nσ2
γ

γ′γ

= −1

ρ

σξγ
σ2
γ

1

nσ2
γ

Meσ
2
γ

= −1

ρ

σξγ
σ2
γ

Me

n

= −1

ρ
rξγ

σξ
σγ

Me

n

= −1

ρ
rξγ

√
h2z

h2SNP

Me

n
.

whereMe is the e�ective population size, rξγ is the correlation of ξ and γ, and h
2
z is the SNP heritability of zi.

The parameters rξγ and h2z are unknown, but the magnitude of this term will be largest when rξγ = h2z = 1.
So we have [

Cov (ĝi, zi)−
1

ρ
Cov (gi, zi)

]
> −1

ρ

Me

nhSNP
. (25)

Substituting (25) into (23) therefore gives us an upper bound on the magnitude of the bias of the corrected
estimates:

bupper = −1

ρ

1

nhSNP


Cov(ĝi,zi)

Var(zi)
ρ2

−Cov(ĝi,zi)2

− 1
ρ

Var(zi)
ρ2

−Cov(ĝi,zi)2

α1. (26)

Each of the values in this expression is observed or estimable. This means we can replace each of these
parameters with their corresponding estimates to approximate the magnitude of the bias. Calculations
using equation (26) imply that when Repository PGIs are used (for which the weights are calculated using
LDpred-inf), the bias due to the violation of the Cov (ei, zi) = 0 assumption will typically be small.

For example, using values from the Papageorge and Thom application used in this paper, if zi represents
mother's educational attainment, we estimate ρ̂ = 1.51, ĥ2SNP = 0.25, n = 293, 723, Var (zi) = 9.02,
Cov (ĝi, zi) = 0.53 and α̂1 = 1.16. (Note that this value of α1 is actually based on controlling for mother and
father's education, but since this exercise is just meant to get a approximation of the order or magnitude of
the bias, we have not re-evaluated the model with only one covariate.) Substituting these values into (26)
gives us

bupper =

[
−6.50× 10−7

8.13× 10−7

]
.

This is several orders of magnitude smaller than the measurement-error correction.

5 Potential Bias in the Standard Errors

The standard errors from (21) ignore the estimation error introduced by using ρ̂ rather than ρ. We argue here
that ignoring this source of uncertainty induces little bias to our standard errors for α̂corr if ρ is estimated
in the same sample as αĝ.

Consider the univariate case: regressing the phenotype φi on only the PGI ĝi. In that case,

α̂corr = ρ̂α̂ĝ

=
ĥSNP

R̂
α̂ĝ.
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Note that R̂ and α̂ĝ correspond to how well the PGI predicts yi and φi, respectively, in sample. For this

reason, the error in R̂ and α̂ĝ will be positively correlated, which will reduce the standard error of α̂corr.

In contrast, the error in ĥSNP will also be correlated with the error in α̂ĝ, which will increase the standard

error. In the further simple setting where φi = yi, note that α̂ĝ = R̂, which implies that

α̂corr = ρ̂α̂ĝ

=
ĥSNP

R̂
R̂

= ĥSNP .

So the true standard error is equal to the standard error of ĥSNP .
If ρ̂ is calculated in a di�erent dataset than the dataset used in the regression, the error in ĥSNP and R̂

will be uncorrelated with the error in α̂ĝ. This means that the standard errors reported by our measurement-

error software will be anti-conservative. However, since the error in ĥSNP and R̂ will be positively correlated,
the sampling variance in ρ̂ will likely be small, suggesting that the bias in the standard errors will also likely
be small relative to the magnitude of the reported standard error.

6 Theoretical Framework with GWAS Controls

The theoretical framework in the main text is derived for PGI weights estimated in a GWAS conducted using
ordinary least squares (OLS), without any control variables. In practice, PGI weights are virtually always
derived from a GWAS that includes at least some basic set of control variables (typically sex, age, and at least
four principal components (PCs) of the genotype data). We omit the covariates in the main text because
doing so simpli�es the exposition without altering any of the theoretical properties of the true additive SNP
factor that we focus on in the main text. However, the choice of covariates is one of many dimensions of
GWAS methodology that may matter in important ways in practical applications where a researcher is trying
to interpret a PGI from a speci�c GWAS. To illustrate, we show below that the theoretical framework can be
extended to account for the vector of control variables, C, included in the GWAS. The theoretical regression
equation that de�nes the vector needs to be modi�ed to include the control variables:

(γC , κ) = arg min
(γ̃C ,κ̃)

E[(yi − x′iγ̃C − C ′iκ̃)2],

where we use the C superscript to highlight the fact that the optimal weight vector with controls, γc, generally
di�ers from the optimal weight vector without controls, which we denoted γ in the main text. Although the
additive SNP factor gCi ≡ x′iγ

C is in general di�erent from gi ≡ x′iγ, as it is derived from γC rather than
γ, everything proceeds from here onward like in the main text. Since gci is a best linear predictor, it can
be understood as a standardized, noisy measure of an unobserved, latent variable, and the error-in-variables
bias and the measurement-error-corrected estimator formulas remain the same, with coe�cients from the
conditional analyses replacing the univariate coe�cients. Compared to the main text, the only di�erence is
that gci is now the best linear predictor of the phenotype conditional on the controls.

7 Polygenic Index Repository User Guide

In this section, we lay out some of the interpretational issues that are likely to arise as researchers begin to
use PGIs from the Repository, and we outline how we suggest thinking through those issues. The executive
summary is as follows:

1. The methodologies used to conduct the GWAS and to construct the PGI weights jointly determine the
additive SNP factor that is proxied for by the PGI.

2. These methodologies, together with the PGI phenotype, determine the relative importance of various
potential confounds to a causal interpretation of PGI associations.
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3. Whether and which confounds should be highlighted (or can be safely ignored) depends on the appli-
cation.

4. While a multi-trait PGI generally has higher predictive power than its corresponding single-trait PGI, it
is subject to additional potential confounds. This tradeo� should be evaluated when deciding whether
to use a single-trait or multi-trait PGI.

5. Currently, the most feasible way to cleanly identify causal e�ects of a PGI is to conduct a within-family
analysis (where the PGI is analyzed in a sibling sample, with sibling �xed e�ects). In the absence of
clean identi�cation of a causal e�ect, researchers should highlight the potential confounds to a causal
interpretation.

6. In interpreting PGI associations (whether causal or not), it is important to keep in mind that genetic
e�ects can operate through environmental mechanisms, and these mechanisms may be modi�able. For
this reason, terminology such as �genetic endowment� should be avoided. Researchers should remind
readers of the potential role of environmental mechanisms in explaining PGI associations.

The following subsections, numbered 1 through 6, provide more detail on the points above. In addition to
attending to these interpretational issues, we urge users of the Repository to conduct power calculations
prior to undertaking analyses; to pursue analyses only if they are adequately powered; and, when feasible,
to preregister planned analyses (along with the power calculations).

We note that the GWAS from which the Repository PGIs are constructed were conducted in European-
ancestry samples (where �European-ancestry� is operationalized di�erently depending on the study but
almost always involves sample restrictions based on the genetic PCs; e.g., for our UKB GWAS, see the
�UKB GWAS� subsection of Section I in Methods). Due to the limited portability of such GWAS results
to other ancestries, for the PGIs released to participating datasets, the current version of the Repository is
restricted to individuals of European ancestries, as de�ned by how their genetic PCs cluster together with
those classi�ed as having European ancestries in the 1000 Genomes Project (see the �Subject-level QC in
Repository Cohorts� subsection of Section II in Methods).

7.1 GWAS and PGI-Weight Methodologies and the Additive SNP Factor

In the Supplementary Methods section 6, we showed how the set of control variables used in a GWAS a�ects
the additive SNP factor proxied for by a PGI. The choice of controls, however, is just one of many dimensions
of GWAS methodology. A change to any of these dimensions is likely to result in a di�erent additive SNP
factor (with a di�erent interpretation). For example, it is increasingly common for datasets to conduct
association analyses using mixed-linear models2,3 rather than OLS. Since mixed-linear models often produce
estimates that are more robust to strati�cation, the additive SNP factor will be akin to that generated by
an OLS-based GWAS with some additional controls for strati�cation. Knowledge of the methodology of the
GWAS underlying a particular PGI is therefore often a necessary �rst step for understanding what additive
SNP factor a speci�c PGI is proxying for. For example, the methodologies underlying the GWASs we
conducted in UKB for the PGIs in the Repository are described in the �UKB GWAS� subsection of Section
I in Methods. Information about association models in 23andMe GWAS can be found in Supplementary
Table 6.

The PGI-weight methodology can matter, as well. For example, our Repository PGI weights are calcu-
lated from the GWAS results using the HapMap3 set of SNPs, which primarily captures common genetic
variation. If PGI weights were instead calculated based on results from SNPs that capture a di�erent mix
of common and rare genetic variation, then the additive SNP factor corresponding to that PGI would have
a di�erent interpretation: it would be the best linear predictor based on that set of SNPs.

7.2 Potential Confounds to a Causal Interpretation

It is increasingly understood that standard GWAS approaches with a limited set of controls � for example,
sex, age, and up to 10 PCs, as in most of the GWAS underlying the Repository PGIs � generate PGIs
that can be subject to a number of confounds to a causal interpretation4�7. For example, PGIs for educa-
tional attainment derive a substantial share of their overall predictive power from their positive association
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with rearing environment. In behavior-genetic parlance, this positive correlation arises due to the vertical
transmission of the parental phenotypes (parents' phenotypes impact their children's phenotypes). In recent
molecular-genetic research, this source of positive gene-environment correlation has been labelled �genetic
nurture� 5. This e�ect can be further exacerbated by assortative mating at the genetic level.

As another example, when the PCs are estimated in a small sample, they are often not very accurate
proxies for ancestry. Failure to adequately control for genetic ancestry gives rise to �population strati�ca-
tion� 8: because the PGI is correlated with ancestry, which in turn is correlated with ethnicity and regional
background, it picks up cultural or environmental factors that are correlated with these factors. In many
empirical applications, the goal is to estimate an association that is net of any such cultural and environ-
mental confounds. In such cases, it may be possible to mitigate concerns that the underlying GWAS may
have relied on inaccurate ancestry controls by including a richer-than-usual set of environmental controls in
the analysis of the PGI (i.e., in the vector zi in equations (1) and (2) in the main text).9.

The relevance of potential confounds could vary across phenotypes4,6,7. For example, genetic nurture
e�ects are much smaller for height than educational attainment. Although the noisiness of PCs as measures
of ancestry in a given sample is the same across phenotypes, the noisiness is likely to be substantially more
problematic for educational attainment than for height because �ner ancestral distinctions (which require
more PCs to capture) probably matter for the social and environmental factors that in�uence educational
attainment. More generally, it seems likely that potential confounds to a causal interpretation matter more
for PGIs for social and behavioral phenotypes than for PGIs for more biologically proximal phenotypes.

7.3 Importance of Confounds Depends On the Application

The degree to which potential confounds to a causal interpretation matter depends on how the PGI is
used. For example, if a PGI is used as a control variable to increase precision for a randomized treatment
evaluation 10,11, then the goal is simply to use controls that absorb as much residual variance as possible (and
avoid controlling for any variables realized after the randomized intervention). Since the PGI is simply being
used as a predictive variable, its interpretation is irrelevant in that case. As a contrasting example, consider
the illustrative application in the main text that tests how much parental education mediates the predictive
power of the PGI for educational attainment. There, the PGI should be understood as capturing some of
the genetic nurture e�ects and ancestry associations with education. In most applications, the potential
confounds do matter and should be highlighted.

7.4 Single- Versus Multi-Trait PGIs

MTAG coe�cient estimates are a weighted sum of GWAS coe�cient estimates. Relative to GWAS estimates,
MTAG coe�cients have a lower expected mean-squared error, which means that multi-trait PGIs will in
general have greater predictive power.

Multi-trait PGIs, however, do not necessarily have the same interpretation as single-trait PGIs. Because
MTAG estimates are a weighted average of GWAS estimates for several traits, the multi-trait PGI based on
MTAG estimates is roughly a weighted average of PGIs for the set of included traits. As a result, a multi-
trait PGI may be correlated with an outcome variable if that outcome variable is genetically correlated with
a supplementary phenotype for the multi-trait PGI. This can even be the case if the outcome variable and
the target phenotype are not genetically correlated.

Therefore, results using the multi-trait PGI have the same interpretation as results using the
single-trait PGI in analyses where

(i) the dependent variable and the PGI correspond to the same phenotype, and

(ii) no other covariates are included in the regression that are genetically correlated with any of the
supplementary phenotypes used to construct the multi-trait PGI.

However, results from the multi-trait PGI should be interpreted di�erently than results from the
single-trait PGI�perhaps being driven by a supplementary phenotype rather than the target
phenotype�if either (i) or (ii) is violated. In that case, the risk of spurious results increases when (a)
the GWAS sample size for the target GWAS is small relative to the GWAS sample size of the supplementary
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phenotypes, and (b) the genetic correlation between the target phenotype and the supplementary phenotypes
is only moderate. Researchers who use multi-trait PGIs should make clear to readers how large the potential
for a confounded interpretation is and how much it matters for the application at hand.

As described in Section 3 above, in settings where the PGI is just being used as a covariate (e.g., as
a control variable in a randomized controlled trial), the confounds associated with using the multi-trait
PGI may be less important. In all settings, however, it is good practice to describe which supplementary
phenotypes were included in the multi-trait PGI if they are included in an analysis.

7.5 Identifying Causal E�ects of a PGI

A clean way to identify the causal e�ects of a PGI is to conduct the analysis in a sibling sample and control
for family �xed e�ects. This strategy exploits a natural experiment: conditional on a pair of biological
parents, genetic inheritance is random. A robustly estimated non-zero within-family association from a large
and attrition-free sample would provide strong evidence of a causal e�ect of the PGI. The coe�cient estimate
could be interpreted as a weighted average of treatment e�ects from hypothetical experiments that randomly
modify PGIs at conception12,13.

The additive SNP factors corresponding to the PGIs in the Repository are not the best linear predic-
tors conditional on a pair of biological parents (because the GWAS underlying the PGI weights do not
control for the biological parents). The PGIs proxying for additive SNP factors that would be the best
linear predictors for such a �within-family analysis� would be PGIs constructed from GWAS that control for
parental genotypes or from GWAS (in sibling samples) that control for family �xed e�ects. Unfortunately,
to date genotyped family-based samples have been too small to produce reliable �within-family PGIs.� The
Repository does not yet contain any such PGIs. Ultimately, however, when genotyped family-based samples
become su�ciently large, the resulting within-family PGIs will be more predictive for within-family analyses
than PGIs constructed from currently-standard (between-family) GWAS.

7.6 Genetic E�ects Can Operate Through Environmental Mechanisms

We encourage researchers who use PGIs in their research to be mindful of three important issues of inter-
pretation for the causal e�ects of a PGI. First, a PGI could exert its e�ects through the environment14.
Consider a PGI for BMI10. Suppose a within-family association analysis yields unambiguous evidence of a
within-family association between the PGI and BMI. Even though the within-family design provides strong
support for a causal interpretation, this does not imply that the SNPs in the PGI must be in�uencing BMI
through some narrowly physiological mechanism. In principle, the sibling di�erences in BMI could arise
because of sibling di�erences in genes that in�uence the proneness to eat sweets, exercise habits, or myriads
of other behaviors with downstream e�ects on BMI. PGIs for seemingly �biological� phenotypes can thus
have a substantial behavioral component. A PGI for lung health may similarly derive predictive power from
SNPs that in�uence lung health very indirectly, through smoking habits15,16.

Second and relatedly, it is therefore a fallacy to assume that any genetic sources of heterogeneity captured
by a PGI are immutable, or at least harder to modify than environmental sources of heterogeneity. Indeed,
the possibility of identifying modi�able mechanisms through which PGIs exert some of their e�ects motivates
some of the research using PGIs17,18. To continue the BMI example, the widespread replacement of sugar by
low-calorie sweeteners or better behavioral tools for avoiding temptation could eliminate or reduce the e�ect
of the PGI on BMI. Because of these issues, we urge caution in describing PGIs as �genetic endowments,�
or related terminology that may, however inadvertently, promote the common misunderstanding that genes
are a resource that is easily separable from choices made in light of that resource.

Third, because the additive genetic factor depends on the environment, the PGI may be context de-
pendent. That is, the same PGI may have a di�erent predictive power in two di�erent samples if there
are di�erences in the population sampled, the sampling methodology, or the phenotype measure. For ex-
ample, the research participants from the UKB were recruited through the mail and had a 5.5% response
rate. Those that responded to the recruitment mailers were more healthy and more educated than the UK
population as a whole19,20. Because UKB participants make up a large fraction of the discovery sample for
many phenotypes, it may be that the PGI from this Repository does not correspond to a PGI that would
be produced from a representative sample or a sample of individuals not from the UK.
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