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Abstract

Neuroimaging relies on separate statistical inferences at tens of thousands of spatial locations. Such massively
univariate analysis typically requires adjustment for multiple testing in an attempt to maintain the family-
wise error rate at a nominal level of 5%. We discuss how this approach is associated with substantial
information loss because of an implicit but questionable assumption about the effect distribution across
spatial units. To improve inference efficiency, predictive accuracy, and generalizability, we propose a Bayesian
multilevel modeling framework. In addition, we make four actionable suggestions to alleviate information
waste and to improve reproducibility: (1) abandon strict dichotomization; (2) report full results; (3) quantify
effects, and (4) model data hierarchy.

1 Introduction

Statisticians classically asked the wrong question — and were willing to answer with a lie. They asked
“Are the effects of A and B different?” and they were willing to answer “no.”

All we know about the world teaches us that the effects of A and B are always different — in some decimal
place — for any A and B. Thus asking “are the effects different?” is foolish.

John W. Tukey, “The Philosophy of Multiple Comparisons”, Statistical Science (1991)

Functional magnetic resonance imaging (FMRI) is a mainstay technique of human neuroscience, which allows
the study of the neural correlates of many functions, including perception, emotion, and cognition. The basic
spatial unit of FMRI data is a voxel ranging from 1-3 mm on each side. As data are collected across time
when a person performs a task, or remains at “rest”, FMRI datasets contain a time series at each voxel.
Typically, tens of thousands of voxels are analyzed simultaneously. Such a “divide and conquer” approach
through massively univariate analysis necessitates some form of multiple testing adjustment via procedures
based on Bonferroni’s inequality, false discovery rate, or some other approach.

Conventional neuroimaging inferences follow the null hypothesis significance testing framework, where
the decision procedure dichotomizes the available evidence into two categories at the end. Thus, one part of
the evidence survives an adjusted threshold at the whole brain level and is considered statistically significant
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(informally interpreted as a “true” effect) while the other part is ignored (often misinterpreted as “not true”)
and by convention omitted and hidden from public view.

A recent study1 (referred to as “NARPS” hereafter) offers a salient opportunity for the neuroimaging
community to reflect about common practices in statistical modeling and the communication of study find-
ings. The study recruited 70 teams charged with the task of analyzing a particular FMRI dataset and
reporting results; the teams simply were asked to follow data analyses routinely employed in their labs at
the whole-brain voxel level (but note that nine specific research hypotheses were restricted to only three
brain regions). NARPS found large variability in reported decisions, which were deemed to be sensitive
to analysis choices ranging from preprocessing steps (e.g., spatial smoothing, head motion correction) to
the specific approach used to handle multiple testing. Based on these findings, NARPS outlined potential
recommendations for the field of neuroimaging research.

Despite useful lessons revealed by the NARPS investigation, the project also exemplifies the common
approach in neuroimaging of generating categorical inferential conclusions as encapsulated by the “significant
vs. nonsignificant” maxim. In this context, we address the following questions:

1) Are conventional multiple testing adjustment methods informationally wasteful?
2) The NARPS study suggested that there was “substantial variability” in reported results across teams of

investigators studying the same dataset. Is this conclusion dependent, at least in part, on the practice
of drawing inferences binarily (i.e., “significant” vs. “non significant”)?

3) How can the neuroimaging field improve analysis and reporting practices to improve replicability?

In this context, we consider inferential procedures not strictly couched in the standard null hypothesis
significance testing framework. Rather, we suggest that multilevel models, particularly when constructed
within a Bayesian framework, provide powerful tools for the analysis of neuroimaging studies given the data’s
inherent hierarchical structure. As our paper focuses on dichotomous thinking in neuroimaging, we do not
discuss the broader literature on Bayesian methods applied to FMRI2.

2 Massively univariate analysis and multiple testing

We start with a brief refresher of the conventional statistical framework typically adopted in neuroimaging.
Statistical testing begins by accepting the null hypothesis but then rejecting it in favor of the alternative
hypothesis if the data for the effect in question (e.g., task A vs. task B) is unlikely to be observed under
the condition of null effect. Because the basic data unit is the voxel, one faces the problem of performing
tens of thousands of inferences across space simultaneously. As the spatial units are not independent of one
another, adopting an adjustment such as Bonferroni’s is unreasonably conservative. Instead, the field has
gradually settled into employing a cluster-based approach: what is the size of the activation cluster that
would be unlikely to be observed under the null scenario?

Accordingly, a two-step procedure is utilized: first threshold the voxelwise statistical evidence at a
particular (or a range of) voxelwise p-value (e.g., 0.001) and then consider only contiguous clusters of
evidence (Fig. 1). Several adjustment methods have been developed to address multiple testing by leveraging
the spatial relatedness among neighboring voxels. The stringency of the procedures has been extensively
debated over the past decades, with the overall probability of having clusters of a minimum spatial extent
given a null effect estimated by two common approaches: a parametric method3,4 and a permutation-based
approach5. For the former, recent recommendations have resulted in the convention of adopting a primary
threshold of voxelwise p = 0.001 followed by cluster-size determination6,7; for the latter, the threshold is
based on the integration between a range of statistical evidence and the associated spatial extent5.

Four limitations are associated with multiple testing adjustment leveraged through spatial extent8.
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Figure 1: Statistical inferences in neuroimaging. (A) Schematic view of standard analysis: each voxel among tens of
thousands of voxels is tested against the null hypothesis (voxel not drawn to scale). (B) Clusters of contiguous voxels
with strong statistical evidence are adopted to address the multiple testing problem. (C) Full statistical evidence for
an example dataset is shown without thresholding. (D) The statistical evidence in (C) is thresholded at voxelwise
p = 0.001 and a cluster threshold of 20 voxels. The left inset shows the voxelwise statistical values from (C) while the
right inset illustrates the surviving cluster. (E) The map of effect estimates that complements the statistical values
in (C), providing percent signal change or other index of response strength, is shown. (F) For presenting results,
we recommend showing the map of effect estimates, while using the statistical information for little or moderate
thresholding: “highlight” parts with strong statistical evidence, but do not “hide” the rest.

1) Conceptual inconsistency. Consider that the staples of neuroimaging research are the maps of statistical
evidence and associated tables. Both typically present only the statistic (e.g., t) values. However,
this change of focus is inconsistent with cluster-based inference: after multiple testing adjustment
the proper unit of inference is the cluster, not the voxel. Once “significant” clusters are determined,
one should only speak of clusters and the voxels inside each cluster should no longer be considered
meaningful inferentially. In other words, the statistical evidence for each surviving cluster is deemed
at the “significance” level of 0.05 and the voxelwise statistic values lose direct interpretability. Although
this issue has been discussed in the past7, it remains underappreciated, and researchers commonly do
not adjust their presentations to match the cluster-level effective resolution.

2) Heavy penalty against small regions. With the statistical threshold at the spatial unit level traded off
with cluster extent, larger regions might be able to survive with relatively weaker statistical strength
while smaller regions would have to require much stronger statistical strength. Therefore, multiple
testing adjustment always penalizes small clusters. Regardless of the specific adjustment method,
anatomically small regions (e.g., those in the subcortex) are intrinsically disadvantaged even if they
have the same amount of statistical evidence.

3) Sensitivity to data domain. As the penalty for multiplicity becomes heavier when more spatial units are
involved, one could explore various surviving clusters by changing the data space (e.g., “small volume
correction”), resulting in some extent of arbitrariness: one cluster may survive or fail depending on
the data volume. Because of this vulnerability, it is not easy to draw a clear line between a justifiable
reduction of data and an exploratory search.

4) Difficulty of assigning uncertainty. As the final results are inferred at the cluster level, there is no
clear uncertainty that can be attached to the effect at the cluster level. Recent effort has been taken
to address the issue of assigning uncertainty at the spatial extent level9. A cluster either survives or
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not under a dichotomous decision; on the other hand, it remains challenging to have, for example, a
standard error (“error bar”) associated with the average effect at the cluster level.

Figure 2: A schematic of conventional information extraction in neuroimaging. (A) The processing chain starts with
raw data. Massively univariate analysis (MUA) produces an effect estimate and its uncertainty (standard error) at
every spatial unit. These are reduced to a single statistic map, which is then dichotomized using thresholding with
multiple testing adjustment (MTA); finally, many studies summarize the regions based solely on their peak values,
ignoring spatial extent. (B) The inherent trade-off between “information” and “digestibility” (y-axis has arbitrary
units). While summarizing peak locations of dichotomized regions is a highly digestible form of output, this also
entails a severe information loss. Here, we argue that providing the non-dichotomized effect estimate and standard
errors, if possible, would be preferable, striking a better balance between information loss and interpretability.

It is worth remembering a key goal of data processing and statistical modeling: to take a massive amount
of data that is not interpretable in its raw state, and to extract and distill meaningful information. The
preprocessing parts aim to reduce distortion effects, where as statistical models aim to account for various
effects. Overall, there is a broad trade-off along the “analysis pipeline”: we increase the digestibility of
the information at the cost of reducing information. Fig. 2 illustrates these key aspects of the process
of information extraction in standard FMRI analysis. The input data of time series across the brain for
multiple participants are rich in information, but of course not easily interpretable or “digestible.” After
multiple preprocessing steps followed by massively univariate analysis, the original data are condensed into
two pieces of information at each spatial unit: the effect estimate and the standard error. Whereas this
process entails considerable reduction of information, it produces usefully digestible results; we highlight
this trade-off in Fig. 2B. Here, “information” refers broadly to the amount and content of data present in a
stage (e.g., for the raw data, the number of groups, participants, time series lengths, etc.). “Digestibility”
refers to the ease with which the data are presentable and understandable (e.g., two 3D volumes vs. one; a 3D
volume vs a table of values). Following common practice, many investigators then discard effect magnitude
information to focus on summary statistics, which are then used to make binarized inferences by taking
into account multiple testing. These steps certainly aid in reporting results and summarizing potentially
some notable aspects of the data. However, below, we argue that the overall procedure leads to information
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waste, and that the gained digestibility is relatively small (in addition to generating problems when results
are compared across studies). Whereas we focus our discussion on whole-brain voxel-based analyses, similar
issues apply in other types of analysis for region-based and matrix-based data.

2.1 The implicit assumption of massively univariate analysis

Massively univariate analysis, by definition, models all voxels simultaneously with the assumption that
all voxels (typically covering the entire brain) are unrelated to one another and that they do not share
information. As a corollary, this also assumes that all possible effects have the same probability of being
observed, which is to say that the effects follow a uniform distribution from −∞ to +∞ (Fig. 3A), at times
discussed as the principle of indifference or the principle of insufficient reason 10. Adopting this “indifference”
approach might be reasonable, especially when the distribution of effects is unknown. However, it may result
in information loss and lead to costly statistical accommodations.

In this context, we ask the following question: Do FMRI effects across the brain actually follow a uniform
distribution, as tacitly assumed in massively univariate analysis, or are they closer to a symmetric bell-shaped
distribution? We suggest that a better starting point would be a Gaussian (or possibly something with
heavier tails, like Student’s t) distribution (Fig. 3B). Conceptually, a Gaussian distribution is a reasonable
choice if the effects track an average while also exhibiting a certain extent of variability.

(A) Assumed uniform distribution (B) Histogram of effect estimates

Figure 3: Distributions of effects (“activation strength”) across space. (A) Under the conventional massively univari-
ate analysis framework, effects across all spatial units (voxels) are implicitly assumed to be drawn from a uniform
distribution. Accordingly, the effect at each spatial unit can assume any value within (−∞, +∞) with equal likeli-
hood. (B) Histogram of effect estimates (percent signal change) across 153768 voxels in the brain from a particular
study. Contrary to the assumption of uniform distribution implicitly made in massively univariate models, the effects
approximately trace a Gaussian (or Student’s t) distribution.

In addition to potentially excessive penalties due to information waste, the principle of indifference has
another important ramification: overfitting. Under massively univariate analysis, the model is free to fit
the voxel’s data in any way it can as all effects are equally likely. As the field of machine learning has
demonstrated repeatedly, overfitting is a serious problem because of compromised generalizability (is it
possible to learn from a sample to predict out-of-sample test cases?). Thus, whereas the standard massively
univariate approach accurately estimates the effect at the spatial unit level (via least squares or maximum
likelihood), the approach tends to fit individual voxels overly close to the sample data at hand, possibly
paying the cost of overfitting the data with reduced predictive accuracy when future data are considered.

What can be done to address the issues of information waste and overfitting? As a first step, we sug-
gest that voxelwise modeling should take a holistic view, considering the effects as distributed normally (or
according to Student’s t). The reasoning here is analogous to when we assume that effects are normally
distributed across subjects (termed “random-effects” in linear mixed-effects modeling) in neuroimaging stud-
ies, allowing inferences at the population level. In a similar fashion, we propose conceptualizing voxel-level
effects in terms of sampling from a normally distributed hypothetical pool of effects, instead of adopting the
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stance of complete ignorance (i.e., uniform distribution).
Technically, we can say that the voxel-effect distribution, N (µ, σ2), forms a prior distribution in the

Bayesian sense where both the mean µ and the standard deviation σ are estimated from the data. On
the one hand, the variability of the data across spatial units (see Fig. 3B) determines the magnitude of σ.
On the other hand, the estimated σ influences the estimates across the spatial units through a process of
“information sharing”, regularization or partial pooling. For example, if most of the individual effects are
estimated to be small and close to zero, σ is estimated to be small, which further tends to decrease the
individual effects, a situation also referred to as shrinkage.

We do not claim that the conventional approach is not valid. Instead, we suggest that the indifference
assumption is an inefficient way of modeling the data, which can benefit from information sharing across
space. Note that when NARPS summarized all the studies to make meta-analytic statements, they did
not assume a uniform distribution of effects across teams; instead, they assumed that the results across
studies would follow a Gaussian distribution. In other words, they did not treat the teams as “isolated
trees”. Interestingly, they did not adjust for multiple testing when interpreting individual team inferences,
even though 70 teams simultaneously analyzed the data and provided separate results. We agree that the
adoption of a Gaussian prior is a sensible approach: it assumes that the results track an average population
effect, while exhibiting variability across teams. However, we propose that such utilization of priors does not
have to be limited to or stopped at meta analysis across different analytical pipelines; rather, information
integration through a “forest perspective” can be equally applied to modeling across all hierarchies, including
voxel, region, and participant levels.

3 Problems of dichotomous thinking

Data compression is essential in science so that complex information originating from large datasets can
be encapsulated in terms of key findings (Fig. 2). Nevertheless, we believe that neuroimaging’s common
practice of adhering to multiple testing adjustment together with dichotomization (“significant or not”) is
detrimental to scientific progress. Take the process of examining the results by first insisting on the use of
a cluster-based approach through a strict voxelwise threshold (p < 0.001) coupled with a minimum cluster
extent (say, 50 voxels). In many instances, the analyst will miss the opportunity to make important novel
observations; maybe some non-surviving clusters are just over 30 voxels (not to mention 49 voxels), for
instance. The permutation-based approach to handling multiple testing suffers from the same issue.

In the last decade, statisticians and practitioners have extensively discussed pervasive issues with the
practice of significance testing11. As typically practiced in neuroimaging, solely focusing on and reporting
statistical results that have survived significance filtering leads to issues such as overestimation (“winner’s
curse”, publication bias12,13 or type M error14) and type S error (incorrect sign)14, A widespread problem is
the disconnect between null hypothesis significance testing and the way investigators think of their research
hypothesis. The p-value is the probability (or the extent of inconsistency or “surprise”) of a random process
generating the current data or potentially more extreme observations if a null effect were actually true
(conditioned on the experimental design, the adopted model, and underlying assumptions). In contrast, an
investigator is likely more interested in the probability of a research hypothesis (e.g., a positive effect) given
the data. Misinterpretations of the p-value frequently lead to conceptual confusion15. The p-values are also
affected by the extent to which the model in question (and its assumptions) are suited for the data at hand.

Recognizing deep, entrenched research practices, the American Statistical Association has issued guide-
lines and proposed potential reforms16. In our view, this important debate has not penetrated the neu-
roimaging community sufficiently. Given the expense and risk of collecting FMRI data, it is important to
embrace methods that address problems with “significance testing” while simultaneously decreasing informa-
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tional waste. In a nutshell, we believe experimental science and discovery is a highly complex process that
cannot be simplified and reduced to drawing a sharp line with the use of thresholding procedures, regardless
of their numerical stringency and formal mathematical properties.

Problems with boiling down complicated study designs into binary significance statements are further
aggravated by the empirical observation that, as discussed, effects across the brain tend to follow a Gaussian
distribution (Fig. 3B). Consistent with this notion, one study reported that over 95% of the brain was engaged
in a simple visual stimulation plus attention task when large participant samples were considered17. More
generally, many domains of research appear to be characterized by a very large number of “small effects”,
as opposed to few, “large effects”, including genetics18,19 and most likely brain research itself. Thus, a data
analysis framework, such as null hypothesis significance testing, that seeks to binarize results only using
statistical evidence (while ignoring separate effect estimates and uncertainties) is potentially problematic.
We conjecture that this could represent the case in neuroimaging, where effects are present across large
numbers of spatial units (voxels or brain regions) at varying strengths.

We propose that a more productive approach is to refocus research objectives away from trying to
uncover “real” effects. Instead, more emphasis can be placed on discussing effects with stronger evidence,
comparing large against small ones, or effects with smaller uncertainty against ones with larger uncertainty
(Fig. 4, right). Accordingly, methodological research goals should concentrate on developing an efficient
experimental design and improving statistical modeling. More broadly, we advocate for approaches that
are more accepting of the statistical uncertainty associated with data analysis, that is, more cognizant of
inherent variability in data. In particular, investigators should not treat results that survive a particular
threshold as “real” with the rest as “non-effects”, and thus should not describe effects that survive as “facts”.
In this context, even the typical language of “activated voxels/regions” comes with substantial perils; we
encourage further discussion about better and more nuanced ways of summarizing research findings.

3.1 Neglect of effect magnitude and uncertainty measures

Statistical significance combines two underlying pieces of information: the effect estimate and its uncer-
tainty (consider the t-statistic, which is the ratio of an effect estimate to its standard error). However,
because statistical significance is used as a filtering mechanism, investigators typically do not emphasize the
“uncertainty” component, even though the underlying machinery is of course based on probability theory.
As a result, in practice a statistically significant result tends to be treated as “real, with zero uncertainty”.
In addition, a nonsignificant result is often interpreted as showing the absence of an effect, as opposed to
representing the lack of sufficient evidence to overturn the null hypothesis, despite repeated warnings against
such conclusions in statistical textbooks and training. While these two issues are interpretational problems,
they occur so often with the standard null hypothesis significance testing paradigm that they have almost
become part of the paradigm itself, making it easy to fall into these conceptual traps.

Some of the above issues can be illustrated by considering the NARPS study. Given the findings from
the 70 independent teams, NARPS performed two types of meta analysis: one with binarized team reports
(logistic regression), and another solely based on statistical values. In the binarized case, the result of
each individual study was considered either present (value of 1) or absent (value of 0). NARPS interpreted
their meta-analytic findings as indicating substantial variability in study results across different analytical
pipelines. A well-known problem with the dichotomization approach is that it treats p-values of 0.049 and
0.051, for example, as categorically distinct. On the one hand, the difference between a statistically significant
result may not significantly different from a statistically insignificant one (Fig. 4, left). On the other hand,
possibly less appreciated is the fact that the approach neglects differences between the two results that are
deemed significant (i.e., in both cases p < 0.05), because they have quantitatively different uncertainties—
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Figure 4: Implications of dichotomization in conventional statistical practice. (Left) What is the difference between
a statistically significant result and one that does not cross threshold? Between the two hypothetical effects that
follow Gaussian distributions (µA = 0.2, σA = 0.1 (blue); µB = 0.4, σB = 0.3 (red)), only effect A would be
considered statistically significant. However, note that the difference between the two effects is not statistically
significant (p = 0.26, one-sided), and effect B is mostly larger than A with a probability of 0.74. (Right) How
much information is lost due to the focus on binary statistical decisions? The two hypothetical effects (with normal
distributions: µA = 0.2, σA = 0.1 (blue); µC = 0.4, σC = 0.2 (orange)) have the same t- and p-values, and would be
deemed indistinguishable in terms of statistical evidence alone. However effect C is mostly larger than effect A with
a probability of 0.81. This comparison illustrates the information loss when the sole focus is on statistic or p value,
which is further illustrated between the second and third blocks in Fig. 2.

one can think of one having a much wider uncertainty interval than the other, although both exclude
zero (Fig. 4, right). Thus, they are treated as providing the same amount of statistical evidence despite
potential nontrivial differences in both effect magnitude and uncertainty. These examples illustrate the
extent of information loss due to the emphasis on statistical evidence while deemphasizing effect magnitude
as routinely practiced in neuroimaging.

To further appreciate the above issues, consider the hypothetical scenario illustrated in Fig. 5. The
example could refer to a series of studies that investigated a specific experimental paradigm in the past (e.g.,
activation in the amygdala due to fearful and neutral faces), or to the case considered by NARPS in which
different teams investigated the same dataset. In the scenario, 3 out of 11 results survive the conventional
threshold cutoff (Fig. 5A); one may claim poor reproducibility and “sizeable variation” across individual
results, and question the statistical evidence provided by the suprathreshold studies. This situation only
worsens if one considers applying multiple testing adjustments to the statistical threshold due to having 11
parallel inferences: with adjustment, none of the studies would survive.

Instead of a logistic regression based on binarized assessments, an integrative meta analysis can be
performed by combining the full results: both the effect estimate and uncertainty from each study. Let
us assume that the effect estimates, ŷi (i = 1, 2, ..., 11), are normally distributed ŷi ∼ N (θi, σ̂

2
i ), with

mean θi and variance σ̂2i . In addition, assume that the effects themselves, θi, follow a Gaussian distribution
θi ∼ N (µ, τ2), with mean µ and variance τ2. The latter distribution specifies a prior and provides some
information to the process, but only minimally: it assumes that the effects θi tend to have a bell-shaped,
not uniform, distribution, with some values more likely than others. Under this modeling perspectivea, we
obtain a posterior distribution of the overall mean µ (Fig. 5B) with an average effect µ̂ = 0.61 and a 95%

uncertainty interval of [0.34, 0.85]. When this posterior uncertainty interval is reviewed together with the
aSee https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/tutorials/meta/basic_bml.html for the example data and short R

code used to perform this example meta analysis.
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(A) Individual studies:
effect estimates and uncertainty

Study ŷi σ̂i 95% interval
1 0.62 0.23 (0.15, 1.09)*
2 0.76 0.54 (-0.36, 1.88)
3 0.23 0.46 (-0.72, 1.18)
4 0.49 0.38 (-0.29, 1.27)
5 092 0.29 (0.34, 1.50)*
6 0.62 0.44 (-0.30, 1.54)
7 0.51 0.51 (-0.49, 1.51)
8 0.79 0.22 (0.35, 1.23)*
9 0.82 0.46 (-0.11, 1.75)
10 -0.14 0.70 (-1.36, 1.08)
11 0.27 0.39 (-0.48, 1.02)

(B) Meta analysis:
posterior distribution with

mode and
95% interval

(C) Meta analysis (mode and
95% interval) vs study effect
estimates and 95% intervals

Figure 5: Meta analysis example. (A) Hypothetical results of 11 studies analyzing the same data (or 11 studies of the
same task), with results summarized by the estimate of the effect, ŷi (where i is the study index), and its standard
error, σ̂i. A total of 3/11 effects would be deemed statistically significant (red asterisk) according to standard cutoffs.
From this perspective, one might say there is inconsistency or “considerable variability” of study results. (B) A different
picture emerges if the same studies are combined in a meta analysis: the overall evidence (area under the curve the
right of zero) points to a positive effect. The posterior distribution of the effect based on Bayesian multilevel modeling
provides a richer summary of the results than (A). The shaded blue area indicates the 95% highest density interval
(0.36, 0.83) surrounding the mode 0.63 (dashed blue line). (C) The individual results from (A) are presented (dots
indicate ŷi, horizontal lines show σ̂i, and red asterisks indicate the individually significant studies), along with the
meta analysis distribution information (colors as in B). With the full information present, we can evaluate the study
consistency and overall effect more meaningfully.

estimates and uncertainties of the 11 individual studies (Fig. 5C), we now have a convenient way to check
and evaluate the consistency of the studies; the fact that majority of the individual effect mean values fall
within (or just outside) the meta analysis’s 95% interval indicates a large degree of consistency, rather than
a dichotomized assessment with 3 out of 11 “statistically significant” results.

The last result leads to a very different conclusion than when the meta analysis was based only on
binarized statistics, because the proposed analysis uses both the effect estimates and uncertainty of each
individual result. Note that the binarized version is highly sensitive to the definition of “significance” used
for the individual studies, as well as to the specific multiple testing adjustment. Clearly, there is considerable
information loss in the processes of binarization and multiple testing adjustment. As an alternative, consider
having access only to a summary statistic (e.g., Student’s t) for each study. A statistic is in essence the ratio
of the estimated effect relative to its variability and reduces the two independent pieces of information into
one. Whereas including statistic values is a step in the right direction, it is an insufficient one. Displaying
both the effect estimate and its variability would provide richer information than a statistic value alone. To
see this, consider the simple meta-analysis model described above, where the overall effect estimate for n
studies, given τ , can be stated as

µ̂ =

n∑
i=1

1

σ̂2i + τ2
ŷi

n∑
i=1

1

σ̂2i + τ2

, (1)

with a standard error
(∑n

i=1
1

σ̂2
i +τ

2

)− 1
2 playing the role of weighting. In other words, the full results of the n

studies are combined through the weighted average of their effects ŷi with the variance σ̂2i of each individual
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study (inversely) contributing to the weight.
The preceding analysis illustrates the value of reporting both effect estimate and uncertainty values in

scientific communication. As FMRI signals do not follow a ratio scale with a true zero, we recommend
reporting percent signal change or another index of magnitude, whenever possible. As seen in this section,
not providing this information amounts to considerable data reduction that limits many kinds of subsequent
types of data analysis20. Reporting effect estimates also helps safeguard against potentially spurious results.
Signal changes in FMRI are relatively small and do not surpass 1-2%, except when simple sensory or motor
conditions are contrasted to low-level baselines. In contrast, statistical values are dimensionless and do not
directly provide information regarding effect magnitude. Indeed, the same statistic value may correspond, for
example, to infinitely many possible pairs of mean and standard error (Fig. 4, right). A small t-statistic value
could represent a small effect with a small standard error or a large effect with a large standard error—two
scenarios with very different meanings. In addition, if, for example, a seemingly reasonable statistical value
(e.g., t-value of 4.3) corresponds to an unphysiological 10% signal change, the conventional “statistic-only”
reporting mechanism does not offer an easy avenue to identify and filter out such a spurious result.

Returning to the NARPS investigation, they performed a second meta analysis solely based on statistic
values. Under this approach without dichotomization, the findings across teams were substantially more
consistent with one another, reaching a conclusion that was different from their first meta analysis based
on individual teams’ dichotomized reporting. These results are not only encouraging for the field of neu-
roimaging, but they also highlight the perils of the dichotomous approach. We conjecture that the meta
analysis results would have been further improved if both effect magnitude and uncertainty information had
been incorporated in their meta analyses. On the other hand, the conclusion bias would have been further
exacerbated when results were binarized with “statistically nonsignificant” ones unreported and hidden.

To conclude this section, let us consider some of the issues discussed in the present and preceding sections.
The common statistical practice in population-level analysis faces several challenges:

1) The principle of insufficient reason, while reasonable in some statistical settings, in the case of FMRI
disregards distributional information concerning effect magnitude across the brain (Fig. 3).

2) Hard thresholding carries with it a fair mount of arbitrariness and information waste.
3) The use of summary statistics alone to report results instead of a combination of effect estimate and

uncertainty has detrimental impacts on meta analysis and study reproducibility (and makes spotting
spurious results less straightforward).

In the next section, we describe how Bayesian multilevel modeling provides a modeling paradigm that can
contribute to addressing the issues above.

3.2 Bayesian multilevel modeling

In this section, we briefly describe Bayesian multilevel modeling. We start with building up the structure
by first considering simple data yij (i = 1, 2, ..., n; j = 1, 2, ..., k) from n subjects that are longitudinally
measured under k time points with a predictor xij , using the form yij = αi + βixij + εij with intercept αi,
slopes βi, and residuals εij . To appreciate the flexibility of the approach, this model is sometimes referred
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to as a “varying-intercept/varying-slope” model akin to those commonly adopted in a multilevel framework:

yij ∼ N (µij , σ
2
ε )

µij = αi + βixij

αi ∼ N (α, σ2α)

βi ∼ N (β, σ2β)

α ∼ N (0, 1)

β ∼ N (0, 1)

σα ∼ HalfCauchy(1)

σβ ∼ HalfCauchy(1) .

(2)

What makes the model “multilevel” is that it involves the hierarchical levels of subject i and time j. The
notation αi indicates that each subject i has a unique intercept; likewise, the notation βi indicates that
each subject i is given a unique slope. The first line specifies the likelihood or the distributional assumption
for the data yi. The expression for µi specifies a linear relationship with a single predictor, x (adding
more predictors is straightforward). The third and fourth lines are priors: the varying intercepts follow
a Gaussian distribution with a grand intercept α with standard deviation σα; likewise, the varying slopes
follow a Gaussian distribution with a grand slope β with standard deviation σβ . Importantly, the parameters
of the prior distributions are learned from the data. Finally, the last four lines specify so-called hyperpriors,
which can be conveniently weakly informative distributions for the means and variances specified in the
priors. Note that the hyperpriors defining the standard deviations are positive only.

The above Bayesian multilevel modeling framework can be applied quite generally to any hierarchical
structure. For example, meta analysis is typically formulated under the conventional framework through
random-effects modeling. However, it can also be conceptualized as a Bayesian multilevel model as exem-
plified in Fig. 5. Even though the two approaches would often reach similar conclusions except for some
degenerative casesb, the posterior distribution from Bayesian modeling provides richer information than an
effect estimate combined with a standard error. As illustrated in Fig. 5, we do not assume a uniform prior
by adopting the principle of insufficient reason, nor do we adjust for multiple testing for individual studies as
in the massively univariate approach. Rather, we regularize or apply partial pooling on the studies through
weighting as shown in the formulation (1).

The Bayesian formulation (2) allows the modeler to flexibly estimate intercepts and slopes as a function
of the hierarchical level of interest. Due to the partial pooling of the estimates across hierarchical levels,
the Bayesian model tends to generate estimates that are more conservative and closer to the average effect
within a given hierarchy than if each specific effect were estimated individually. The information is effectively
calibrated across spatial units, and the effect estimates tend to be stabilized even when the data are noisy at
a given hierarchy level. Because of this conservative nature, the multilevel model aims to control for errors
of incorrect magnitude and sign. Furthermore, adjustment for multiplicity is not needed22, especially since
all the inferences are drawn from a single, overall posterior distribution of an integrative model.

In the past years, we have investigated how the framework can be effectively employed to analyze FMRI
data at the region level8,23, as well as for matrix-based analysis including time series correlations or white-
matter properties25. Although at present the framework is computationally prohibitive at the whole-brain
voxel level, we have also employed the technique at the voxel level within brain sectors, such as the insula.
First, we present a region-level example. In a Bayesian analysis, the outcome is the posterior distribution

bFor example, a zero variance estimate (τ2 = 0) may arise under the conventional framework, especially when the number
of studies is small. Such an implausible boundary estimate would not occur under the Bayesian formulation21.
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(A) Region-based BML (B) Model comparison
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effect

Data
BML

−0.5 0.0 0.5 1.0
effect

Data
MUA/GLM

Figure 6: Bayesian multilevel (BML) modeling at the region level. (A) Population-level analysis applied to an FMRI
study with 124 subjects23. Colors represent values of P+: the posterior probability that the effect is greater than
0. The analysis revealed that over one third of the regions exhibited considerable statistical evidence in favor of a
positive effect. In contrast, with the conventional massively univariate analysis, only two regions survived multiple
testing adjustment24. (B) BML performance can be assessed and compared to the conventional approach. Posterior
predictive checks graphically compare model predictions against raw data. The BML model generated a better fit to
the data compared to the general linear model (GLM) employed in the massively univariate analysis (MUA).

that characterize the probability of observing an effect value in a range given the data. Fig. 6A illustrates the
results of a recent application at the level of regions23. For each region, there is a full posterior distribution
that conveys the effect uncertainty, and here we are interested in how much of the area under the curve is
to the right/left of zero (green line; the color of the distribution reflects that area). This posterior can be
reported in full without dichotomization, as shown here. For example, the posterior probability that the
effect was greater than zero in the left superior frontal gyrus (L SFG) was 0.92, which may be noteworthy
in the research context in question. In particular, model fits can be qualitatively assessed by plotting model
predictions against the raw data through posterior predictive checks (Fig. 6B) and quantitatively compared
to alternative models using information criteria through leave-one-out cross-validation. By comparison, the
model fit using the massively univariate approach was considerably poorer (Fig. 6B).

The Bayesian multilevel approach can also be applied to voxel-level data within spatially delimited
sectors. For instance, in a recent experiment, two separate groups of participants received mild electrical
shocks26. In the controllable group, participants could control the termination of shocks by pressing a button;
in the uncontrollable group, button pressing had no bearing on shock duration. The two groups were yoked
so that they were matched in terms of the shocks experienced. As in the standard FMRI approach, at
the voxel level the effects (commonly denoted as β coefficients) of each participant were estimated based
on a time series regression model. In the standard approach, one would proceed with voxelwise inferential
tests (say, a t-test comparing the two groups) followed by a threshold adjustment based on spatial extent to
control for multiple testing.

In contrast, the multilevel approach specifies a single model, which combines all data according to natural
hierarchical levels of the data. In this particular study, one natural level was that of the participant pair
given the yoking of the experimental design. In addition, we focused on voxels within the insula, a cortical
sector important for threat-related processing. However, the insula is a large and heterogeneous territory,
with notable subdivisions that previously had been described functionally and anatomically. Accordingly,
we subdivided the insula in each hemisphere into around 10 subregions, each of which with approximately
100 voxels. Thus, the subregions comprised another level of the hierarchy. At the most basic level of the
hierarchical structure, the unit was the voxel itself.
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Figure 7: Bayesian multilevel voxelwise results. The right part of the figure illustrates posterior distributions of voxels
from three subregions of the insula (voxels selected to illustrate some of the range of statistical evidence). Colors
represent values of P+: the posterior probability that one condition (uncontrollable group) is greater than the other
(controllable group). Values closer to 1 indicate stronger evidence that uncontrollable is greater than controllable,
while values closer to 0 indicate the opposite (values computed based on the posterior distributions of the difference
of the two conditions correspond to the tail areas of the posteriors).

The following model was employed for the voxel-level data,

∆p,r,v ∼ N (µp,r,v, σ
2
ε )

µp,r,v = α+ βp + γr + θv,

where the difference ∆ in FMRI responses to shock between a participant pair p in a voxel v belonging to
region r is assumed to originate from a Gaussian distribution centered on µp,r,v with variance σ2ε . The second
line specifies the response difference as a linear combination of an overall effect α, a contribution βp from
participant pair p, a contribution γr from region r, and a contribution θv from voxel v. Importantly, the
participant pairs, regions, and voxels are assumed to come from their respective (hypothetical) populations
modeled by priors as in model (2) (further specifications omitted here for brevity). In this sense, they all
play a role equivalent to “random effects” in conventional linear mixed-effects models. Finally, for simplicity
here we omitted several covariates that were included in the original analysis, including those related to
individual differences in trait and state anxiety. Those covariates can be captured by slope parameters as in
model (2), where it is possible to model them in terms of varying slopes (thus slopes can vary across regions,
for example). This Bayesian machinery allows us to estimate the contributions of participant pairs, regions,
and voxels based on the data, the likelihood, and the prior distributions. In the present study, our goal was
to understand voxelwise effects (Fig. 7).

To recapitulate, we note that the Bayesian approach can be adopted to achieve six important goals.

1) Handling multiplicity. The Bayesian approach offers a potential avenue to addressing the problem
of multiple testing that is so central to neuroimaging statistics. Because a single model is employed
with information shared and regularized through partial pooling, all inferences are drawn from a single
overall posterior distribution. Thus, information is more efficiently shared across multiple levels; no
multiple testing adjustment is not needed22, avoiding excessive penalty due to information waste. We
note that some statisticians have suggested other forms of adjustment based on decision theory2,27,28.

2) No penalty against small regions. Under massively univariate analysis, spatial extent is traded off
against voxel-level statistical evidence in the process of adjusting for multiple testing. Thus, small
regions are inherently placed in a disadvantageous position even if they have similar effect strength as

13

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.09.443246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.09.443246


larger ones. In contrast, under the Bayesian framework, each spatial unit is a priori assumed to be
exchangeable from any other units. In other words, all units are a priori treated on an equal footing
under one common prior distribution and are a posteri assessed on their own effect strength. As a
result, small regions are not disadvantaged because of their anatomical size8.

3) Insensitivity to data space. Under the single integrative framework, the information is shared and
calibrated. In other words, partial pooling plays a self-adaptive role of regularization, similar to the
situation with the conventional methods such as ridge regression and LASSO. Thus, the impact on the
same spatial unit is relatively negligible even when the total amount of data changes8.

4) Model quality control. Model accuracy and adequacy can be assessed through posterior predictive
checks and cross-validations. More generally, the Bayesian approach welcomes an integrated view of
the modeling workflow with an iterative process of model development and refinement29.

5) Enhanced intepretability. The Bayesian approach enhances interpretability of analytical results. The
posterior probability indicates the strength of the evidence associated with each effect estimate, con-
ditioned on the data, model and priors. In the conventional null hypothesis framework, uncertainty
is expressed in terms of standard error or confidence interval. Unfortunately, while mathematically
precise, this information is very difficult to interpret in practice and easily misunderstood30. Notably,
a confidence interval is “flat” in the sense that it does not carry distributional information; parameter
values in the middle of a confidence interval are not necessarily more or less likely than those close
to the end points of the interval, for example (e.g., Fig. 5A,C). In contrast, the posterior distribution
provides quantitative information about the probability of ranges of values, such as the parameter
being positive, negative, or within a particular range. Naturally, parameter values surrounding the
peak of the posterior distribution are more likely than those at the extremes (Fig. 5B).

6) Error controllability. Instead of the false positive and false negative errors associated with the con-
ventional null hypothesis framework, the Bayesian multilevel framework can be used to control two
different errors: type M (over- or under-estimation of effect magnitude) and type S (incorrect sign)31.

3.3 Neuroimaging without p-value thresholds?

Let us consider the issue of probability thresholding, regardless of the modeling framework, in further detail.
Dichotomization is essential to statistically-based decision making. As noted above, it provides a way to filter
a lot of information and to present results in a highly digestible form: binary ON/OFF output. For example,
based on the available data, should a certain vaccine be administered to prevent Covid-19? In such cases,
a binary decision must be adopted, and decision theory, which incorporates the costs of both false positives
and false negatives, can be used. Here, we entertain a seemingly radical proposal: What would be lost in
neuroimaging if hard thresholds were abandoned? It could be argued that this would lead to an explosion
of unsubstantiated findings that would flood the literature. We believe this is unlikely to occur. Scientists
are interested in finding the probability of seeing the effect conditioned on the data at hand, rather than
the p-value (probability of seeing the data or more extreme scenarios conditioned on the null effect). The
absence of a hard threshold does not entail that “anything goes”, and encourages substituting a mechanical
rule by careful justification of the noteworthiness of the findings in a larger context.

Consider the controllability study discussed above. In additional analyses at the level of brain regions,
we found very strong evidence (P+ = 0.99) for a controllability effect in the bed nucleus of the stria
terminalis, a structure that plays an important role in the processing of threat. This region and the central
nucleus of the amygdala are frequently conceptualized as part of a functional system called the “extended
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amygdala”. Accordingly, we found it important to emphasize that there was also some evidence (P+ =

0.90) for a controllability effect in the left central amygdala. Although the central amygdala did not meet
typical statistical cut-offs, we believe that the finding is noteworthy in the larger context of threat-related
processing. This is particularly the case because reporting the central amygdala effect can be informative
when integrating it with other studies to perform meta analysis, as discussed in Section 3.1. Note that by
providing the information about the central amygdala, readers are free to interpret the findings in whatever
way they prefer; they may agree with our interpretation (that there is some evidence for an effect in this
region), or consider the evidence “just too weak”. This is not a problem in our view; rather, it is a feature
of the approach we advocate for.

A more flexible approach both in terms of statistical modeling and in terms of result reporting is po-
tentially beneficial. At the heart of the scientific enterprise is rigor. In experimental research, typically this
translates into testing patterns in data in terms of null hypotheses and a p-value of 0.05. On the surface,
the precise cutoff provides an objective standard that reviewers and journal editors can abide by. On the
other hand, the use of a strict threshold comes with its own consequences. In most research areas, including
neuroimaging, data are notoriously variable and not readily accommodated by simple models32. In this
context, is it really essential to treat a cluster size of, say, 54 voxels as qualitatively different from one with
50 voxels? As models by definition have limitations, we believe that dichotomization, as illustrated by the
example in Fig. 5, is unproductive.

In light of these considerations, we propose a more “holistic” approach that integrates both quantitative
and qualitative dimensions. A recent investigation through Bayesian multilevel modeling indicates that full
result reporting including visualization can effectively replace dichotomous thinking33. For results based on
the conventional framework, we suggest a general highlight but not hide approach. Instead of applying a
threshold that excludes results that do not cross it, one can show all (or most) results while highlighting
or differentiating different levels of statistical evidence34 (Fig. 1F). Similarly, tables can include regions
with a broad spectrum of statistical evidence, together with both their effect magnitudes and uncertainties.
Overall, probability values, including the conventional p-value based on null-hypothesis testing, play a role
as a piece of information, rather than serving a gate-keeping function. In addition, we encourage a mindset
of “accepting uncertainty and embracing variation” 35 in the results of any particular study.

3.4 Modeling trial-by-trial variability

In this section, we further illustrate the potential of using the Bayesian multilevel approach to build inte-
grative analysis frameworks. In FMRI experiments, the interest is usually on various comparisons at the
condition level. As condition-level effects exhibit considerable variability, researchers rely on multiple trial
repetitions of a given condition to estimate the response via a process that essentially amounts to averaging.
In this manner, trial-by-trial variability is often treated as noise under the assumption that a “true” response
exists, and deviations from it constitute random variability originating from the measurement itself or from
neuronal/hemodynamic sources.

However, neglecting trial-by-trial variability means that trial-level effects are considered as “fixed” in
the fixed vs. random effects terminology, as opposed to participants, which are treated as random and
sampled from a hypothetical population. Technically, this means that researchers cannot generalize beyond
the stimuli employed in the experiment (say, the 20 faces used from a given dataset), as recognized several
decades ago36,37. By modeling trials as instantiations of an idealized condition, a study can generalize the
results to trials beyond the confine of those employed in the experiment38,39. Consider a segment of a simple
experiment presenting five faces. In the standard approach, the time series is modeled with a single regressor
that takes into account all face instances (Fig. 8a-b). The fit, which tries to capture the mean response, does
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a reasonable job at explaining signal fluctuations. However, the fit is clearly poor in several places (Fig. 8c).
Whereas traditional models in neuroimaging ignore this variability across trials, we propose to explicitly
account for it in the underlying statistical model38,39.

Figure 8: Time series modeling and
trial-based analysis. Consider an exper-
iment with five face stimuli. (a) Hypo-
thetical times series. (b) The conven-
tional modeling approach assumes that
all stimuli produce the same response,
so one regressor is employed. (c)
Condition-level effect (e.g., in percent
signal change) is estimated through the
regressor fit (green). (d-e) Trial-based
modeling employs a separate regressor
per stimulus, improving the fit (dashed
blue). (f-g) Technically, the condition-
level modeling allows inferences to be
made at the level of the specific stimu-
lus set utilized, whereas the trial-based
approach allows generalization to a face
category.
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(B) Prospect effects: condition-level-modeling
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Figure 9: Trial-level versus condition-level modeling. Posterior distributions for the effect of reward (vs. control) cues
for each region of interest. Although the two approaches provided comparable results, trial-level modeling (A) showed
stronger evidence for left and right amygdala than the condition-level counterpart (B).

The Bayesian multilevel framework can directly be used to account for trial-level effects. Specifically,
at the subject level, we construct regressors for individual trials as in Fig. 8d. In a recent study, we
explored a series of population-level models of trial-by-trial variability for FMRI data39. Indeed, we observed
considerable trial-by-trial variability and notable inferential differences when trials were explicitly modeled.
For example, as the experiment included a task involving negative or neutral faces, we were interested in
amygdala responses, but our interest extended to a trial phase only containing cues indicating whether the
trial was rewarded or not (in reward trials, participants received extra cash for correct and timely responses).
Fig. 9 shows that trial-level modeling provided considerably stronger evidence for an effect of reward in the
amygdala compared to condition-level modeling.

Trial-level modeling also improves the estimation of test-retest reliability (i.e., the degree of agreement or
consistency between measurements carried out under the same conditions). Recent reports have suggested
that the test-retest reliability for psychometric40 and neuroimaging41 data is rather low when evaluated via
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the conventional intraclass correlation coefficient. The low reliability of effects with robust population-level
effects (e.g., Stroop and Flanker tasks) was particularly worrisome in the context of individual-differences
research. In a recent study, we developed a multilevel modeling framework that takes into account the
hierarchy of the data structure down to the trial level, which provides a formulation of test-retest reliability
that is disentangled from trial-level variability42. As a result, the trial-level modeling approach revealed the
attenuation when the conventional intraclass correlation coefficient is adopted, and improved the accuracy
of reliability estimation in assessing individual differences.

4 Conclusions

Neuroimaging research is challenging, not least because data analysis includes several interdependent steps
of processing and modeling. Data from tens of thousands of spatial units are acquired as a function of
time for one or multiple subject groups and for several experimental conditions with trials repeated many
times per condition, typically across multiple data acquisition runs. Given the challenges any one research
team would face to analyze this type of data, developers have designed software packages that enormously
lower the barrier to entry to investigators. Indeed, statistical development for FMRI analysis has proceeded
vigorously since the early 1990s. Among the greatest challenges has been the issue of multiple testing.
The dream of “whole-brain noninvasive” imaging came at a severe cost inferentially. Since the beginning,
experimenters have been admonished that without “strict enough” procedures, the “false positive” rate would
be prohibitively high. Accordingly, considerable research has been devoted to developing statistical methods.

Here, we have addressed a few issues within conventional neuroimaging analysis pipelines: in the process
of breaking down raw data and turning it into understandable results, we do not focus on boiling everything
down to a small number of ON locations (in a sea of OFF background) at a given statistical significance
level. We have shown the many ways that this can be considered an “overdigestible” result: a lot of useful
information has been sacrificed (results at subthreshold locations that might still be informative, and separate
effect estimates with uncertainty measures) for not much gain. Additionally, we have demonstrated that the
conventional approach is inefficient and wastes data, even before getting to questions of dichotomization:
the initial uniform distribution is far from approximating any realistic brain effect, and the p-values provide
information about how unlikely the current data or more extreme observations would be if a null effect were
true, rather than the probability of research hypothesis being true given the data present.

Instead, we have proposed a small but important improvement to standard neuroimaging pipelines with
an approach that aims to make more efficient use of the initial data, and that also has positive side effects
for scientific inquiries. A schematic of this approach is shown in Fig. 10, in direct comparison with the
traditional approach in terms of information loss and digestibility. Firstly, the Bayesian multilevel modeling
approach replaces the massively univariate analysis and the principle of insufficient reason with a single
integrated model and removes any later need for multiple testing adjustment. One benefit of this approach
is now obtaining an overall posterior distribution for all model parameters, which provides a great deal
of useful information about the estimate uncertainty as well as the overall model fit. This procedure also
employs partial pooling across spatial units, so that the effect estimates are regularized to avoid potential
overfitting. If one wanted to, it would be possible to carry on with further collapsing this information
into purely statistical form and then dichotomizing, but as noted above, we believe that wastes further
information unnecessarily, reduces quality control checks and makes accurate meta analyses difficult.

Our assessment and recommendation regarding modeling and result communication are summarized in
Fig. 10. As of 2021, investigators have at their disposal a vast array of tools for the statistical analysis
of FMRI data. The majority of them maintain a traditional focus on the conventional way of thinking of
inferences in terms of “true” and “false” effects. In the present paper, we discussed several problems with
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Figure 10: Comparison of FMRI information extraction for conventional and proposed Bayesian multilevel (BML)
approaches (cf. Fig. 2). (A) The two approaches run parallel, but in the “proposed” first step BML puts data into
a single model (removing the need for multiple testing adjustment later), and the information is partially pooled
and shared across space. (B) The proposed multilevel framework produces an intermediate output of posterior
distributions (lacking in the conventional approach); these carry rich information about parameter and model fitting.
The information pooling also produces effect estimates that retain more information and avoid potential overfitting.
This information advantage over the conventional method carries on to later stages. Thus, while the “digestibility”
of results increases similarly at each stage, the drop-off in information content is slower in the proposed approach.
The dotted part of the proposed steps reflects that we strongly suggest not including the steps that many traditional
approaches at present perform, due to the wasteful information loss incurred.

applying standard null hypothesis significance testing to FMRI data. We favor a view of neuroimaging effects
in terms of a continuum of statistical evidence, with a large number of small effects dominating, instead
of islands of strong/true effects that should be discerned from false positives. We propose that Bayesian
multilevel modeling has considerable potential in complementing, if not improving, statistical practices in
the field, one that emphasizes effect estimation rather than statistical dichotomization, with the goal of
“seeing the forest for the trees” and improving the quality and reproducibility of research in the field.

In neuroimaging, research groups acquire different sized data sets with different subjects and paradigms
varying to some degree. With various preprocessing and modeling approaches available in the community,
some extent of result variation is expected and unavoidable. All these factors contribute to an expected
variability in reported results, and it need not be considered inherently problematic. To accurately combine
multiple studies and determine the levels of variability present, one would need to make a model using their
unthresholded results, and preferable both their effect estimates and uncertainty information. Otherwise,
small outcome differences can appear to be much larger, when passed through the dichotomization sieve.
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Thus, it is the result presentation (e.g. highlight but not hide, show effect magnitude instead of statistical
evidence only, revealing model details, etc.) that would conduce to the convergence of a specific research
hypothesis across teams. We believe that the abandoning of result dichotomization is one small step toward
reducing variability due to artificial thresholding. We agree with NARPS’s suggestion of encouraging original
statistical results being submitted to a public site. However, more improvements would be needed. For
example, such public results at present are still restricted to statistical evidence without the availability of
effect magnitude information. Furthermore, proper presentations in publications remain a crucial interface
for direct scientific communication and exchange. Therefore, in repositories such as NeuroVault43 where
researchers are able to upload their study results for community sharing, we recommend that researchers
upload their effect estimate and uncertainty data, in addition to (or instead of) just statistical datasets. For
future analyses (quite generally), one may consider the following three aspects: 1) avoid hard thresholding;
2) report both effect estimates and their uncertainties; 3) incorporate the data hierarchy into modeling.
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