Supplemental Figures

Supplemental Figure Legends

Supplement Figure S1. MIDY mutant V(B18)A retains some ability to produce and release human insulin in β-cells. Recombinant myc-tagged human proinsulin WT or MIDY mutants were transiently expressed in Min6 (mouse) β-cells. At 24 h after transfection, the bathing medium was changed to fresh medium that was then collected for 24 h without additional stimulation, before cell lysis and analysis of both lysates (yellow bars) and media (blue bars) by human-specific insulin ELISA. Mean + s.d. from $\mathrm{n}=3$ independent experiments; * $p<0.05$ for secreted human insulin derived from proinsulin-V(B18)A compared to that from other MIDY mutants.

Supplement Figure S2. MIDY mutant proinsulins are predisposed to form disulfide-linked complexes. Min6 (mouse) β-cells cells were transiently with human WT or MIDY mutant proinsulins and resolved by nonreducing and reducing SDS-PAGE, as in Fig. 5. Disulfide-linked dimer + trimer bands detected by immunoblotting of the nonreducing gels with anti-Myc or anti-human proinsulin were divided by the total proinsulin band intensity detected by immunoblotting on the reducing gels, and the predisposition to form disulfide-linked complexes was compared to that of WT proinsulin (first bar); error bars (s.d.) and significant p-values are indicated on the figure.

Supplement Figure S3. ER stress response measurement in β-cells expressing MIDY mutants. INS832/13 β-cells were co-transfected with myc-tagged human WT or MIDY mutant proinsulins plus BiPfirefly luciferase and CMV-renilla luciferase. At 48 h post-transfection, luciferase activities in transfected cells were measured as described in Methods (mean \pm s.d.). As shown, all MIDY mutants showed a trend to increased ER stress, but only L(A16)P achieved statistical significance (p-value indicated on the figure) compared to WT proinsulin.

Supplement Figure S4. Oxidation of newly-synthesized proinsulin and lose-A6/A11 proinsulin. INS832/13 β-cells were transfected to express myc-tagged human WT or MIDY mutant proinsulins (P), as well as WT or MIDY versions of lose-A6/A11 proinsulins (L). Pulse-labeling (without chase) and sample processing was performed as described in Figs. 4A and 6C, and the fastest-migrating (oxidized) forms were quantified (mean \pm s.d.) from at least 3 independent experiments. In the lose-A6/A11 background, the MIDY mutants $\mathrm{H}(\mathrm{B} 5) \mathrm{D}$ and $\mathrm{E}(\mathrm{A} 4) \mathrm{K}$ both exhibited significantly improved oxidative folding (p-values indicated on the figure). The third MIDY mutant whose secretion is increased in the lose-A6/A11 background, $\mathrm{R}($ Cpep+2)C, already showed native-like disulfide bond formation even in the WT proinsulin background.

Supplement Figure S5. Live cell imaging of INS832/13 cells transiently expressing fluorescent WT or MIDY proinsulins (and their derived fluorescent protein products). The NIS Elements software "volume view" was used to create a 3D-tilt model to highlight the intracellular distribution of fluorescent protein. Top eight panels: WT or MIDY versions of hPro-CpepSfGFP (bearing superfolder-GFP embedded within the C-peptide). Only the WT construct displays a punctate fluorescence pattern typical of secretory granules in live β-cells (red box). Bottom eight panels: the same WT and MIDY hProCpepSfGFP constructs in the lose-A6/A11 background. In addition to WT, in this background E(A4)K, $H(B 5) D$ and $R(C p e p+2) C$ all show a punctate fluorescence pattern typical of secretory granules in live β cells (red boxes). The other constructs continued to show a fluorescence pattern typical of ER retention. The $\mathrm{V}(\mathrm{B} 18) \mathrm{A}$ substitution was an exception showing a partial granule-like pattern, especially in the loseA6/A11 background (yellow box). White scale bar $=10 \mu \mathrm{~m}$.

Supplement Figure S6. Oxidation and secretion of newly-synthesized lose-A6/A11 proinsulin bearing $G(B 8 V)$ and $G(B 8) S$ MIDY substitutions. 293T cells transfected to express the indicated constructs were pulse-labeled with ${ }^{35}$ S-labeled amino acids, and both cell lysates and media were immunoprecipitated with guinea pig polyclonal anti-insulin at the indicated chase times. The samples were analyzed by Tris-tricine-urea-SDS-PAGE under nonreducing and reducing conditions, followed by autoradiography.

Supplement Figure S7. Structural environments of mutation sites in T-state insulin monomer (coordinatesfrom Protein Databank entry 4INS; 2-Zn molecule-2). A) The imidazole side chain of H(B5) (blue dashed circle) packs within an inter-chain crevice near both the internal Cys(A6)-Cys(A11) disulfide bridge (these positions circled in the image) [and near $\operatorname{Cys}(\mathrm{A} 7$) and $\operatorname{Ser}(\mathrm{A} 9)$ with which it forms bifurcating hydrogen bonds (dashed yellow lines)]. B) Packing of the side chain of $\mathrm{Y}(\mathrm{B} 26)$ within a shallow solvent-exposed inter-chain crevice lined by the side chains of $\mathrm{F}(\mathrm{B} 24), \mathrm{P}(\mathrm{B} 28), \mathrm{G}(\mathrm{A} 1)$ and $\mathrm{I}(\mathrm{A} 2)$. C) Internal side chain of $L(A 16)$ is shown in relation to insulin's three α-helices (ribbons, and a partially transparent protein surface). Core packing of L(A16) involves Cys(A6)-Cys(A11) (shown as yellow balls) and the side chains of $\mathrm{L}(\mathrm{B} 11), \mathrm{L}(\mathrm{B} 15), \mathrm{I}(\mathrm{A} 2), \mathrm{L}(\mathrm{A} 13)$, and $\mathrm{Y}(\mathrm{A} 19)$; Cys(A20)-Cys(B19) (not shown) is also nearby. D) Packing of the side chain of $\mathrm{V}(\mathrm{B} 18)$ within a deep solvent-exposed interchain crevice lined by $\mathrm{A}(\mathrm{B} 14)$ and $\mathrm{L}(\mathrm{A} 13)$ at its lip and in its depths by the core side chains of $\mathrm{L}(\mathrm{A} 16)$ and $\mathrm{Cys}(\mathrm{A} 20)$.

Myc-tagged hProinsulin: WT V(B18)A Y(B26)C R(Cpep+2)C E(A4)K L(A16)P

Haataja, Arunagiri et al., Supplemental Fig. S2

human proinsulin

Haataja, Arunagiri et al., Supplemental Fig. S4

Haataja, Arunagiri et al., Supplemental Fig. S6

