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Library-free BoxCarDIA solves the missing value problem in label-

free quantitative proteomics 

Devang Mehta1, Sabine Scandola1 and R. Glen Uhrig1 # 

Abstract 1 

The last decade has seen significant advances in the application of quantitative mass 2 
spectrometry-based proteomics technologies to tackle important questions in plant 3 
biology. The current standard for quantitative proteomics in plants is the use of data-4 
dependent acquisition (DDA) analysis with or without the use of chemical labels. 5 
However, the DDA approach preferentially measures higher abundant proteins, and 6 
often requires data imputation due to quantification inconsistency between samples. 7 
In this study we systematically benchmarked a recently developed library-free data-8 
independent acquisition (directDIA) method against a state-of-the-art DDA label-free 9 
quantitative proteomics workflow for plants. We next developed a novel acquisition 10 
approach combining MS1-level BoxCar acquisition with MS2-level directDIA analysis that 11 
we call BoxCarDIA. DirectDIA achieves a 33% increase in protein quantification over 12 
traditional DDA, and BoxCarDIA a further 8%, without any changes in instrumentation, 13 
offline fractionation, or increases in mass-spectrometer acquisition time. BoxCarDIA, 14 
especially, offers wholly reproducible quantification of proteins between replicate 15 
injections, thereby addressing the long-standing missing-value problem in label-free 16 
quantitative proteomics. Further, we find that the gains in dynamic range sampling by 17 
directDIA and BoxCarDIA translate to deeper quantification of key, low abundant, 18 
functional protein classes (e.g., protein kinases and transcription factors) that are 19 
underrepresented in data acquired using DDA. We applied these methods to perform a 20 
quantitative proteomic comparison of dark and light grown Arabidopsis cell cultures, 21 
providing a critical resource for future plant interactome studies. Our results establish 22 
BoxCarDIA as the new method of choice in quantitative proteomics using Orbitrap-type 23 
mass-spectrometers, particularly for proteomes with large dynamic range such as that 24 
of plants.  25 

Introduction 26 

The last decade has seen significant advances in the application of 27 
quantitative mass spectrometry-based proteomics technologies to tackle 28 
important questions in plant biology. This has included the use of both 29 
label-based and label-free quantitative liquid-chromatography mass 30 
spectrometry (LC-MS) strategies in model1,2 and non-model plants3. While 31 
chemical labelling-based workflows (e.g. iTRAQ and TMT) are generally 32 
considered to possess high quantitative accuracy, they nonetheless suffer 33 
from ratio distortion and sample interference issues4,5, while being less 34 
cost-effective and offering less throughput than label-free approaches. 35 
Consequently, label free quantification (LFQ) has been widely used in 36 

1 Department of Biological 

Sciences, University of 

Alberta, Edmonton T6G 2E9, 

Alberta, Canada 

 

 
#Correspondence 

Dr R. Glen Uhrig 

ruhrig@ualberta.ca 

  

 

Keywords  

Arabidopsis thaliana, cell 

culture, proteome, quantitative 

proteomics, data dependent 

acquisition, data independent 

acquisition, BoxCar, mass 

spectrometry 

 

 

Funding 

This work was funded by the 

National Science and 

Engineering Research Council 

of Canada (NSERC) and the 

Canadian Foundation for 

Innovation (CFI). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2020.11.07.372276doi: bioRxiv preprint 

mailto:ruhrig@ualberta.ca
https://doi.org/10.1101/2020.11.07.372276


BoxCar, data-independent and -dependent acquisition analysis of Arabidopsis proteomes Mehta et al., 2021 

 

 

2 

 

comparative quantitative experiments profiling the native6 and post-37 
translationally modified (PTM-ome)7,8 proteomes of plants. However, LFQ 38 
shotgun proteomics studies in plants have so far, almost universally, used 39 
data-dependent acquisition (DDA) for tandem MS (MS/MS) analysis.  40 

In a typical DDA workflow, elution groups of digested peptide ions 41 
(precursor ions) are first analysed at the MS1 level using a high-resolution 42 
mass analyser (such as modern Orbitrap devices). Subsequently, selected 43 
precursor ions are isolated and fragmented, generating MS2 spectra that 44 
deduce the sequence of the precursor peptide (Figure 1 a). For each MS1 scan 45 
usually around 10-12 MS2 scans are performed after which the instrument 46 
cycles to the next MS1 scan and the cycle repeats. While this “TopN” 47 
selection approach enables identification of precursors spanning the entire 48 
mass range, the fragmentation of semi-stochastically selected precursor 49 
ions (generally, more intense ions) limits the reproducibility of individual 50 
DDA runs, results in missing values between replicate runs, and biases 51 
quantitation toward more abundant peptides9. This is particularly 52 
disadvantageous for label-free workflows and samples with a high dynamic 53 
range proteomes, such as human plasma and photosynthetic tissue.  54 

In order to address these limitations, several data-independent acquisition 55 
(DIA) workflows have been pioneered, famously exemplified by Sequential 56 
Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)10,11. In DIA 57 

Figure 1: Data acquisition schemes in liquid chromatography mass-spectrometry proteomics.  

Mass-spectrometry workflows use different acquisition schemes to analyse peptide ions (MS1 analysis) and their 

corresponding fragment ions (MS2 analysis) to derive peptide sequence information. This study compares three main 

acquisition methods. (a.) Conventional data-dependent acquisition (DDA) involves performing a single MS1 analysis 

scan followed by the selection of the most intense peptides for fragmentation an MS2 analysis. (b.) Data-independent 

acquisition (DIA) schemes select windows of MS1-analysed peptide ions for fragmentation together, essentially 

performing MS2 analysis of all MS1-analysed ions rather than on only selected ones. (c.) BoxCarDIA seeks to increase 

the resolution of the MS1 analysis by partitioning it into sequentially analysed sets of boxes, each of which can then 

be analysed using the DIA approach. This permits better profiling at both the MS1 and MS2 level. 
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workflows, specific, often overlapping, m/z windows spanning a defined 58 
mass range are used to sub-select groups of precursors for fragmentation 59 
and MS2 analysis. As a result, complete fragmentation of all precursors in 60 
that window follows MS1 scans resulting in a more reproducible and 61 
complete analysis. A major disadvantage of DIA workflows, however, is that 62 
each MS2 scan contains multiplexed spectra from several precursor ions 63 
making accurate identification of peptides difficult. Traditionally, this has 64 
been addressed through the use of global or project-specific spectral-65 
libraries obtained from a fractionated, high-resolution DDA survey of all 66 
samples—adding to experimental labour and instrumentation analysis 67 
time. More recently, alternative approaches have been developed that avoid 68 
the use of spectral libraries and instead use “pseudo-spectra” derived from 69 
DIA runs that are then searched in a spectrum-centric approach analogous 70 
to conventional DDA searches12–14. Improvements in such library-free DIA 71 
approaches have included the incorporation of high precision indexed 72 
Retention Time (iRT) prediction15 and the use of deep-learning 73 
approaches16–18. DirectDIA (an implementation of a library-free DIA 74 
method; Biognosys AG) and a hybrid (directDIA in combination with 75 
library-based DIA) approach has been recently used to quantify more than 76 
10,000 proteins in human tissue19 and reproducibly identify >10,000 77 
phosphosites across hundreds of human retinal pigment epithelial-1 cell 78 
line samples20.  79 

While DIA addresses the stochasticity of precursor selection for 80 
fragmentation, it does not solve the problem of incomplete MS1 analysis due 81 
to the limited charge capacity of C-traps that lie upstream of Orbitraps. In 82 
effect this means that modern Orbitrap mass-spectrometers only analyse 83 
<1% of available ions at the MS1 level21. In 2018, Meier et al., described a novel 84 
acquisition scheme called BoxCar where multiple overlapping sets of narrow 85 
m/z segments are scanned at the MS1 level followed by conventional DDA-86 
type MS2 analysis21. It is thus reasonable to speculate that combining the 87 
power of BoxCar to produce higher-resolution MS1 data with library-free 88 
DIA-type MS2 analysis (BoxCarDIA) may provide greater quantitative depth 89 
and range for shotgun proteomics.  90 

DirectDIA combines the advantages of DIA for reproducible quantification 91 
of proteins in complex mixtures with high dynamic range, with the ease of 92 
use of earlier DDA methodologies. BoxCarDIA can improve MS1 resolution 93 
and dynamic range, while addressing the limitations of DDA-type precursor 94 
fragmentation. Hence, a systematic comparison of these different 95 
technologies for LFQ proteomics is essential to define best practice in plant 96 
proteomics. In order to execute this analysis, we compared the proteomes of 97 
light- and dark-grown Arabidopsis suspension cells generated with DDA, 98 
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directDIA and BoxCarDIA acquisition schemes. Arabidopsis suspension cells 99 
are a long-established platform for plant biochemistry and have recently 100 
seen a resurgence in popularity due to their utility in facilitating protein 101 
interactomic experimentation using technologies such as tandem affinity 102 
purification-mass spectrometry22–26, nucleic acid crosslinking27, and 103 
proximity labelling (e.g. TurboID)28. Despite this, no existing resource 104 
profiling the basal differences in proteomes of Arabidopsis cells grown in 105 
light or dark exists—and as we will demonstrate here, is a fundamental 106 
requirement to determine the choice of growth conditions to maximize the 107 
utility of protein interactomic experiments and targeted proteomic assays 108 
in this system.  109 

Figure 2: Experimental workflow and summary results.  

Total protein was isolated from light and dark grown Arabidopsis cells under denaturing conditions for use in two 

experiments. In the first experiment, peptides were digested with trypsin, desalted and subjected to LC-MS/MS using 

two different acquisition modes. Ion maps showing a single MS1 scan and subsequent MS2 scans are presented to 

illustrate differences in acquisition schemes. Raw data was analyzed using MaxQuant & Perseus for data-dependent 

acquisition (DDA) analysis and Spectronaut for data-independent acquisition (DIA) analysis using spectral libraries 

created from both acquisitions. Spectronaut was also used for directDIA analysis without the use of spectral libraries. 

A second experiment involved analyzing independent digests of the same protein extracts followed by the same 

general analysis pipeline, in order to directly compare directDIA and library-free BoxCarDIA acquisition modes. Counts 

of FDR-filtered (0.01) peptide spectrum matches (PSMs)/precursors, peptides, and protein groups for each analysis 

type are shown. Percentage values for increases in protein group quantifications are shown alongside each analysis.  
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Results & Discussion 110 

Library-free DIA approaches outperform DDA in quantitative depth 111 

We performed total protein extraction under denaturing conditions from 112 
Arabidopsis (cv. Ler) suspension cells grown for five days in either constant 113 
light or dark. Trypsin digestion of the extracted proteome was performed 114 
using an automated sample preparation protocol, with 1ug of digested 115 
peptide subsequently analysed using an Orbitrap Fusion Lumos mass 116 
spectrometer operated in either DDA, DIA, or BoxCarDIA acquisition modes 117 
over 120-minute gradients. Two separate experiments were performed 118 
using independent digests of the extracted Arabidopsis proteins. The first to 119 
compare DDA and directDIA, and the second to compare directDIA with 120 
BoxCarDIA. Eight injections (4 light & 4 dark) per analysis were carried out. 121 
DDA data processing was performed using MaxQuant, while DIA data 122 
processing was performed using Spectronaut v14 (Biognosys AG.). For DIA 123 
analysis, both hybrid (library+directDIA) and directDIA analysis was 124 
performed. The hybrid analysis was performed by first creating a spectral 125 
library from DDA raw files using the Pulsar search engine implemented in 126 
Spectronaut, followed by a peptide centric DIA analysis with DIA raw output 127 
files. DirectDIA and BoxCarDIA analysis was performed directly on raw DIA 128 
files as implemented in Spectronaut. For BoxCarDIA analysis, the crucial box 129 
size parameter was specified using a custom script (see Methods) that 130 
designs boxes with equal number of peptide ions using spectral data from a 131 
prior directDIA run. The entire workflow is depicted in Figure 2. Both hybrid 132 
DIA and directDIA analysis substantially outperformed DDA analysis with an 133 
average of 65,351; 57,503; and 42,489 peptide-spectrum matches 134 
(precursors) quantified across all 8 samples for each analysis, respectively. 135 
Hybrid DIA and directDIA also displayed similar gains over DDA in terms of 136 
quantified peptides and protein groups (Figure 2). While hybrid DIA analysis 137 
performed marginally better than directDIA, further analysis was 138 
performed with the results of only directDIA and DDA analyses in order to 139 
compare methods that use an equivalent amount of input data, comparable 140 
instrumentation time and relatively comparable data analysis workflows. 141 
We also found improvements in quantifying precursors, peptides, and 142 
protein groups using BoxCarDIA as compared to directDIA. Overall, our 143 
results suggest that library-free BoxCarDIA can increase quantitative depth 144 
by as much as 40% over conventional DDA methods with no increase in 145 
analysis time or change in instrumentation.  146 

Next, we undertook a series of data analyses to compare the completeness, 147 
quality, and distribution of protein group-level quantification of the DDA 148 
and directDIA analyses. In order to compare quantification results across 149 
the different analysis types, raw intensity values for each sample were log2 150 
transformed, median-normalized (per sample), and then averaged for each 151 
condition to produce a normalized protein abundance value. For DDA 152 
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analysis, the number of proteins quantified was determined by first filtering 153 
for proteins with valid quantification values in at least 3 of 4 replicates in 154 
either condition (light or dark) and then imputing missing values using 155 
MaxQuant with standard parameters29,30. For directDIA and BoxCarDIA 156 
analyses, quantified proteins were defined as those passing standard Q-157 
value filtering in Spectronaut. In total, DDA analysis resulted in the 158 
quantification of 4,837 proteins (both conditions) and directDIA analysis 159 
quantified 6,526 proteins (light) and 6,454 proteins (dark) (Supplementary 160 
Tables 1-3). Upon comparing the quantified proteins between both 161 
methods, we found that 4,599 proteins were quantified by both techniques, 162 
1,934 were quantified only by directDIA and 235 proteins were exclusively 163 
DDA-quantified, for light-grown cells (Figure 3a). A correlation plot of 164 
normalized quantification values for the 4,599 common proteins showed a 165 
moderate correlation between DDA and directDIA quantification 166 
(Spearman’s R = 0.773) (Figure 3a). Examining the frequency distribution of 167 
proteins quantified in light-grown cells, by both methods, revealed that the 168 
DDA results were substantially skewed towards higher abundant proteins 169 
compared to directDIA (Figure 3b). In order to investigate the overlap of 170 
quantified proteins between directDIA and DDA at extreme protein 171 
abundances, we sub-selected the 2%, 5%, 95% and 98% percentile of the 172 

Figure 3: Comparison of protein quantification results using DDA and direct DIA analysis for (a.-c.) light grown 

and (d.-f.) dark grown Arabidopsis cells. 

(a.) & (d.) Venn diagram of protein groups quantified with direct DIA and DDA and scatter plot of protein groups 

quantified by both methods. rs: Spearman’s correlation coefficient. (b.) & (e.) Frequency distribution of normalized 

protein abundances for DDA and direct DIA analysis and corresponding violin plots with median and quartile lines 

marked. (c.) & (f.) Upset plots depicting intersections in protein groups quantified by DDA and direct DIA at either 

extremes of the abundance distribution. 
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combined quantification distribution and constructed UpSet plots31 for these 173 
datasets. This analysis revealed that directDIA quantifies hundreds of more 174 
proteins at the lower extremes but is only marginally less effective than DDA 175 
at the upper extremes of the protein abundance distribution (Figure 3c). 176 
These results were similarly replicated for dark-grown cells, suggesting 177 
that this is a universal feature of the two acquisition methods, irrespective 178 
of sample treatment or type (Figure 3 d-f). In order to assess if this 179 
difference in quantification ability is specific to plant cells (that have a high 180 
dynamic range of protein levels), we further analysed a commercial HeLa 181 
cell digest standard using the same mass spectrometry and chromatography 182 
settings, with quadruplicate injections per analysis type. Analysing the HeLa 183 
quantification results (Supplementary Tables 4 & 5) showed a similarly 184 
uniform quantification across a wide range by directDIA and a slightly 185 
better, but still skewed, performance by DDA compared to Arabidopsis cells 186 
(Figure S1 a & b). Comparing the quantification values for HeLa proteins 187 
acquired by directDIA and DDA showed a stronger correlation than for 188 
Arabidopsis (Spearman’s R=0.886). Indeed, correlations between 189 
quantification values for lower abundant proteins (defined here as proteins 190 
below the median quant value), were much lower than for the overall dataset 191 

Figure 4: Comparison of protein quantification results using directDIA and BoxCarDIA analysis for (a.-c.) light 

grown and (d.-f.) dark grown Arabidopsis cells. 

(a.) & (d.) Venn diagram of protein groups quantified with BoxCarDIA and directDIA, and scatter plot of protein groups 

quantified by both methods. rs: Spearman’s correlation coefficient. (b.) & (e.) Frequency distribution of normalized 

protein abundances for directDIA and BoxCarDIA analysis and corresponding violin plots with median and quartile 

lines marked. (c.) & (f.) Upset plots depicting intersections in protein groups quantified by directDIA and BoxCarDIA 

at either extreme of the abundance distribution. 
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in both species, and yet slightly stronger in the case of HeLa proteins (Figure 192 
S1 c-e). 193 

We next performed similar comparative analyses for an independent 194 
experiment comparing directDIA and BoxCarDIA approaches (Figure 4). In 195 
this experiment, BoxCarDIA resulted in the quantification of 5,806 (light) 196 
and 5,791 (dark) proteins compared to 5,377 (light) and 5,354 (dark) using 197 
directDIA (Supplementary Tables 6 & 7). The relative abundance of proteins 198 
quantified in both analyses correlated to a large degree (Spearman’s r ~ 199 
0.92; Figure 4 a & d), much more than the correlation between directDIA and 200 
DDA analyses (Figure 3 a & d). The frequency distributions of normalised 201 
abundances of proteins quantified by both directDIA and BoxCarDIA showed 202 
that BoxCarDIA is better able to quantify both high- and low-abundant 203 
proteins, for both light and dark grown cells (Figure 4 b & e). This is clearly 204 
evident upon UpSet plot visualization of the overlap between the two 205 
techniques at the extremes of the protein abundance distributions (Figure 4 206 
c & f).  207 

BoxCarDIA and directDIA result in more reproducible quantification 208 

of peptides and protein groups 209 

In order to deduce the underlying factors limiting the ability of DDA to 210 
quantify low abundant proteins, we next investigated quantification 211 
distributions for both DDA and directDIA derived data after various data-212 
filtering steps (Figure S2; Supplementary Tables 8-17). We found that DDA 213 
was indeed able to identify a similar number of proteins as directDIA for 214 
both Arabidopsis cells and HeLa digests. Predictably these numbers dropped 215 
dramatically upon filtering proteins for only those with valid quantification 216 
values across 3 of 4 replicates, with only mild gains realized due to 217 
imputation of missing values. In contrast, even upon filtering for valid 218 
values across 4 of 4 replicates, directDIA resulted in the quantification of 219 
more than 5,400 proteins compared to 3,600 complete quantifications for 220 
DDA. Strikingly, quantification distributions remained unchanged 221 
regardless of various types of data-filtering for directDIA but were greatly 222 
skewed towards high abundance upon filtering for valid values in 3 of 4 223 
replicates in DDA outputs (Figure S2). This suggests that the poor 224 
quantification of low abundant proteins is related to the presence of missing 225 
values in DDA analysis.  226 

This hypothesis was reinforced when we distributed the protein 227 
quantification data for directDIA and DDA based on the number of replicates 228 
with valid quantification values for each protein (Figure S3). Here we found 229 
that the overwhelming majority (>95%) of proteins quantified by directDIA 230 
had valid values in at least 3 of 4 biological replicates for Arabidopsis cells 231 
grown in the light or dark (Figure S3). In contrast, only 68% and 74% of 232 
proteins were accurately quantified by DDA in 4 of 4 replicates of light and 233 
dark grown Arabidopsis cells, respectively. When these distributions were 234 
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further plotted against the normalized protein quantification values, it 235 
became clear that proteins found in a lower number of replicates trended 236 
lower in abundance in DDA, while this trend did not hold true for directDIA 237 
(Figure S3). However, the presence of missing values between biological 238 
replicates in both methods may yet be explained by real variation between 239 
samples.  240 

To account for this, we performed an additional series of experiments by 241 
pooling our eight Arabidopsis digests and performing four replicate 242 
injections using DDA, directDIA, and BoxCarDIA, respectively. Using 243 
replicates that should have the exact protein content allowed us to measure 244 
the reproducibility of each data acquisition approach (Figure 5). This 245 
analysis found that 99.94% of peptides quantified using BoxCarDIA were 246 
found in all four Arabidopsis technical replicates, with the remaining 0.06% 247 
found in three of four replicates. DirectDIA resulted in slightly less 248 
reproducible results, however, only 58.2% of peptides quantified using DDA 249 
were found in all four injections. Further, a striking 12% of peptides were 250 
quantified by DDA in only one of four technical replicates (Figure 5 b). These 251 
differences in quantitative completeness at the peptide-level translate to 252 
even greater differences at the level of protein groups (Figure 5 e-h). Here, 253 
we found that nearly a third of proteins groups quantified using DDA were 254 
found in only one of four technical replicates, whereas all proteins were 255 
quantified in all four replicates by BoxCarDIA. These results were also 256 
replicated using a HeLa cell digest, reinforcing their validity (Figure S4). 257 

Figure 5: BoxCarDIA can quantify peptides and protein groups consistently between independent technical 

replicate injections.  

(a.) Histograms of BoxCarDIA, directDIA, or DDA peptide identifications across replicate injections of Arabidopsis cell 

culture digests. (b-d.) Normalized abundances of peptides binned by the number of replicates containing each 

protein for DDA, directDIA and BoxCarDIA. Bars represent median and interquartile range. (e-h) Same as above for 

protein group identifications. 
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Like in our analysis of biological replicates, lower abundant proteins tended 258 
to be less reproducibly measured across technical replicates in both 259 
Arabidopsis and HeLa digests.   260 

Overall, these results reinforce the fact that DDA acquisition results in 261 
inconsistent quantification between injections, and that this may in fact 262 
obscure real biological variance between samples, especially with regards to 263 
lower abundant proteins. Our results also show that the gains in quantitative 264 
depth and range provided by better sampling of the ion beam at the MS1 level 265 
in BoxCarDIA also translate to a complete data matrix, eliminating the long-266 
standing missing-value problem in label-free quantitative proteomics. 267 

Figure 6: BoxCarDIA and directDIA result in better quantification of low abundant classes of proteins.  

(a.) All proteins quantified by directDIA analysis of Arabidopsis light and dark cell cultures ranked by abundance with 

the respective high, medium, and low abundant Gene Ontology categories overlayed by mean abundance of 

component proteins. (b.) Percentage of identified proteins in each functional protein group measured by DDA and 

directDIA analysis, and (c.) by directDIA and BoxCarDIA analysis of Arabidopsis light and dark cell cultures. (** p-

value<0.01, *** p-value<0.001, **** p-value <0.0001; Šìdàk’s multiple comparisons test) 
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Low abundant protein groups are better represented in BoxCarDIA 268 

and directDIA analyses 269 

We next investigated how the better quantitation of lower abundant 270 
proteins by directDIA and BoxCarDIA might affect the detection and 271 
quantification of biologically functional protein groups in Arabidopsis. We 272 
first took advantage of a recently published deep proteome analysis of 273 
Arabidopsis tissues32 to plot the abundance distributions of all quantified 274 
proteins grouped by Gene Ontology categories (Figure S5). This allowed us 275 
to identify important protein classes with high (glycolysis, translation), 276 
medium (proteolysis, carbohydrate metabolism), and low (protein 277 
phosphorylation, transcription factors) abundance. We next plotted all 278 
proteins detected in our directDIA analysis ranked by abundance, overlayed 279 
with the mean abundance of proteins in each of the high, medium, and low 280 
abundant classes to verify the classification in our dataset (Figure 6a). We 281 
then compared the representation of these groups of proteins within the 282 
DDA, directDIA, and BoxCarDIA Arabidopsis datasets.  Our results show that 283 
DDA analysis has a significant over-representation of proteins belonging to 284 
high-abundant classes (glycolysis and translation) and a significant 285 
underrepresentation of low-abundant proteins involved in protein 286 
phosphorylation and transcription (Figure 6b). Similarly, BoxCarDIA 287 
improves upon directDIA with a significantly enhanced representation of 288 
low abundant protein classes (Figure 6c). This analysis demonstrates that 289 
the better quantification of low abundant proteins by directDIA and 290 
BoxCarDIA has consequences on the ability of proteomics studies to 291 
measure functionally important regulatory proteins like kinases, 292 
phosphatases and transcription factors.  293 

A third of all quantified proteins are differentially abundant in light 294 

vs. dark grown Arabidopsis cells 295 

Having systematically investigated the advantages and limitations of 296 
BoxCarDIA, directDIA and DDA acquisition for LFQ proteomics, we next 297 
performed a differential abundance analysis comparing the proteomes of 298 
light- and dark-grown cell cultures quantified in our initial directDIA and 299 
DDA experiment. We found 2,089 proteins changing significantly in their 300 
abundance (Absolute Log2FC > 0.58; q-value <0.05) in our first directDIA 301 
analysis and 1,116 proteins changing significantly (Absolute Log2FC > 0.58; 302 
q-value <0.05) in DDA analysis. Of these, 710 proteins were found to change 303 
significantly in both analyses (Figure 7a). In our second experiment, we 304 
found 1,639 and 1,920 proteins changing significantly in abundance 305 
between light and dark grown cells in our directDIA and BoxCarDIA 306 
analyses, respectively (Figure 7b).  307 

The Log2 Fold-Change values of proteins changing in both directDIA and 308 
DDA experiments were found to correlate to a high degree (Spearman’s 309 
R=0.9003), with proteins that were up-regulated in light- vs. dark-grown 310 
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cells in directDIA analysis also up-regulated in DDA, and vice-versa (Figure 311 
7c). A similar correlation was found between the Log2 Fold-Change values of 312 
proteins changing in both directDIA and BoxCarDIA analysis (Figure 7d). 313 

The complete dataset of 3,463 proteins changing significantly in abundance 314 
in light- vs dark-grown Arabidopsis cells is a valuable resource for future 315 
biochemical studies aiming to use these cell culture systems for protein 316 
interactomics experiments and other targeted proteomics analyses 317 
(Supplementary Table 20). To visualize the data, we further created a 318 
functional association network of these proteins by probing previously 319 
characterized databases and experiments compiled by StringDB33. This 320 

Figure 7: Differential protein abundance analysis for light- and dark-grown Arabidopsis cells. 

(a.) Venn diagram of protein groups with significantly changing protein abundances (q<0.05; Abs Log2FC>1.5) as 

measured by direct DIA and DDA. (b.) Venn diagram of protein groups with significantly changing protein abundances 

(q<0.05; Abs Log2FC>1.5) as measured by direct DIA and BoxCarDIA. (c.) Scatter plot of significant changes in protein 

abundance changes based on DDA and directDIA analysis. (d.) Scatter plot of significant changes in protein 

abundance changes based on directDIA and BoxCarDIA analysis. (e.) Association network of significantly changing 

proteins detected across all experiments. Network was constructed based on StringDB database and experiment 

datasets with a probability cut-off of 0.9. Only nodes with >3 edges are depicted. Clusters were manually annotated 

based on GO-terms and KEGG/Reactome pathway membership. Node sizes and color are scaled based on the median 

Log2FC (Light/Dark) from all analyses. 
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network validates our analysis, showing that clusters of proteins involved in 321 
photosynthesis, carbon-fixation, starch metabolism and amino-acid 322 
metabolism have increased abundance in light- vs. dark-grown cells, as 323 
expected (Figure 7e). Interestingly, clusters representing RNA processing, 324 
ER-Golgi transport, ribosome biogenesis, and nuclear translation are all 325 
downregulated, while chloroplast translation is upregulated, in light- vs. 326 
dark-grown cells (Figure 7e). These findings clearly highlight that the 327 
choice of cell culture growth condition is critical in order to avoid erroneous 328 
false positive and negative findings in protein interactomic 329 
experimentation.  330 

Conclusions 331 

Until recently, DDA LC-MS (using both label-based and label-free 332 
approaches) has been the primary method of choice for proteomics studies 333 
in plants, due to the disadvantages of conventional DIA analysis, such as the 334 
requirement for project-specific spectral libraries. Here, we conclusively 335 
demonstrate that the newly developed library-free DIA proteomics 336 
approaches are vastly superior for plant proteomics as compared to 337 
currently used DDA methodologies. In particular, we find that our novel 338 
library-free BoxCarDIA method substantially improves upon gains provided 339 
by directDIA, and in doing so, solves the missing value problem in label-free 340 
proteomics. The advantages offered by BoxCarDIA includes: a greater 341 
number of protein identifications, greater dynamic range, and more robust 342 
protein quantification than DDA, with no change in instrumentation or 343 
increase in instrument analysis time. Our results, even using an advanced 344 
Tribrid Orbitrap-linear ion trap device, show that DDA acquisition is 345 
particularly inconsistent in its quantification of low-abundant proteins 346 
across samples. Similar results have been reported when comparing the 347 
abilities of directDIA and DDA to profile the phosphoproteome (a protein 348 
fraction with high dynamic range) of human tissue and cells 20. Our finding 349 
that more than 20% of identified proteins in a DDA experiment are detected 350 
in only 1 of 4 replicate injections of the same digest, and that these poorly 351 
quantified proteins tend to reside in the lower quartile of protein abundance, 352 
suggests an inherent drawback in DDA that has likely limited previous 353 
studies using this approach.  354 

The data analyses undertaken here provide a useful template for 355 
benchmarking future quantitative mass spectrometry proteomics 356 
technologies from an end-user perspective. While our BoxCarDIA results 357 
demonstrate that segmented MS1 analysis through the use of BoxCar 358 
windows results in a variety of gains, there are likely further improvements 359 
in BoxCarDIA that may be realised through the use of better signal 360 
processing methods in order to reduce cycle times34,35. Our results argue 361 
persuasively for the widespread adoption of library-free BoxCarDIA for 362 
quantitative LFQ proteomics in plants. The demonstrated benefits in 363 
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reproducibility and dynamic range of BoxCarDIA will be especially powerful 364 
for plant biology studies moving forward. In particular, proteomic analysis 365 
of multiple treatments (e.g., plant nutrition or herbicide studies), genotypes 366 
(e.g., breeding and selection trials), or timepoints (e.g., chronobiology 367 
studies), where comprehensive quantitative proteomic data are critical for 368 
maximizing our systems-level understanding of plants.  369 

Methods 370 

Arabidopsis cell culture 371 

Heterotrophic Arabidopsis thaliana, cv. Ler suspension cells were obtained 372 
from the Arabidopsis Biological Resource Center (ABRC) and maintained in 373 
standard Murashige-Skoog media basal salt mixture (M524; PhytoTech 374 
Laboratories) at 21 °C as previously described36 under constant light (100 375 
µmol m-2s-1) or constant dark. For the generation of experimental samples, 376 
10 mL aliquots of each cell suspension (7 days old) were used to inoculate 8 377 
separate 500 mL flasks that each contained 100 mL of fresh media. 378 
Experimental samples were grown for an additional 5 days prior to 379 
harvesting. Cells were harvested by vacuum filtration and stored at –80 oC. 380 

Sample Preparation 381 

Quick-frozen cells were ground to a fine powder under liquid N2 using a 382 
mortar and pestle. Ground samples were aliquoted into 400 mg fractions. 383 
Aliquoted samples were then extracted at a 1:2 (w/v) ratio with a solution of 384 
50 mM HEPES-KOH pH 8.0, 50 mM NaCl, and 4% (w/v) SDS. Samples were 385 
then vortexed and placed in a 95oC table-top shaking incubator (Eppendorf) 386 
at 1100 RPM for 15 mins, followed by an additional 15 mins shaking at room 387 
temperature. All samples were then spun at 20,000 x g for 5 min to clarify 388 
extractions, with the supernatant retained in fresh 1.5 mL Eppendorf tubes. 389 
Sample protein concentrations were measured by bicinchoninic acid (BCA) 390 
assay (23225; ThermoScientific). Samples were then reduced with 10 mM 391 
dithiothreitol (DTT) at 95oC for 5 mins, cooled, then alkylated with 30 mM 392 
iodoacetamide (IA) for 30 min in the dark without shaking at room 393 
temperature. Subsequently, 10 mM DTT was added to each sample, followed 394 
by a quick vortex, and incubation for 10 min at room temperature without 395 
shaking.   396 

Total proteome peptide pools were generated using a KingFisher Duo 397 
(ThermoScientific) automated sample preparation device as outlined by 398 
Leutert et al. (2019)37 without deviation. Sample digestion was performed 399 
using sequencing grade trypsin (V5113; Promega), with generated peptide 400 
pools quantified by Nanodrop, acidified with formic acid to a final 401 
concentration of 5% (v/v) and then dried by vacuum centrifugation. 402 
Peptides were then dissolved in 3% ACN/0.1% TFA, desalted using ZipTip 403 
C18 pipette tips (ZTC18S960; Millipore) as previously described7, then dried 404 
and dissolved in 3.0% ACN/0.1% FA prior to MS analysis. 405 
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HeLa proteome analysis was carried out using a HeLa Protein Digest 406 
Standard (88329; Pierce). Four replicate injections of this digest per analysis 407 
type were carried out with the same methods as for Arabidopsis cell samples.  408 

Nanoflow LC-MS/MS analysis 409 

Peptide samples were analysed using a Fusion Lumos Tribrid Orbitrap mass 410 
spectrometer (Thermo Scientific) in data dependent acquisition (DDA) and 411 
data independent acquisition (DIA) modes. Dissolved peptides (1 µg) were 412 
injected using an Easy-nLC 1200 system (LC140; ThermoScientific) and 413 
separated on a 50 cm Easy-Spray PepMap C18 Column (ES803A; 414 
ThermoScientific). The column was equilibrated with 100% solvent A (0.1% 415 
formic acid (FA) in water). Common MS settings between DDA and DIA runs 416 
included a spray voltage of 2.2 kV, funnel RF level of 40 and heated capillary 417 
at 300oC. All data were acquired in profile mode using positive polarity with 418 
peptide match off and isotope exclusion selected. All gradients were run at 419 
300 nL/min with analytical column temperature set to 50oC.  420 

DDA acquisition: Peptides were eluted with a solvent B gradient (0.1% (v/v) 421 
FA in 80% (v/v) ACN): 4% - 41% B (0 – 120 min); 41% - 98% B (120-125 422 
min). DDA acquisition was performed using the Universal Method 423 
(ThermoScientific). Full scan MS1 spectra (350 - 2000 m/z) were acquired 424 
with a resolution of 120,000 at 200m/z with a normalized AGC Target of 425 
125% and a maximum injection time of 50 ms. DDA MS2 were acquired in the 426 
linear ion trap using quadrupole isolation in a window of 2.5 m/z. Selected 427 
ions were HCD fragmented with 35% fragmentation energy, with the ion 428 
trap run in rapid scan mode with an AGC target of 200% and a maximum 429 
injection time of 100 ms. Precursor ions with a charge state of +2 - +7 and a 430 
signal intensity of at least 5.0e3 were selected for fragmentation. All 431 
precursor signals selected for MS/MS were dynamically excluded for 30s.  432 

DIA acquisition: Peptides were eluted using a segmented solvent B gradient 433 
of 0.1% (v/v) FA in 80% (v/v) ACN from 4% - 41% B (0 - 107 min). DIA 434 
acquisition was performed as per Bekker-Jensen et al. (2020)20 and 435 
Biognosys AG. Full scan MS1 spectra (350 - 1400 m/z) were acquired with a 436 
resolution of 120,000 at 200 m/z with a normalized AGC Target of 250% and 437 
a maximum injection time of 45 ms. ACG target value for fragment spectra 438 
was set to 2000%. Twenty-eight 38.5 m/z windows were used with an 439 
overlap of 1 m/z (Supplementary Table 21). Resolution was set to 30,000 440 
using a dynamic maximum injection time and a minimum number of 441 
desired points across each peak set to 6.  442 

BoxCar DIA acquisition was performed using the same gradient settings as 443 
DIA acquisition outlined above. MS1 analysis was performed by using two 444 
multiplexed targeted SIM scans of 10 BoxCar windows each. Detection was 445 
performed at 120,000 and normalized AGC targets of 100% per BoxCar 446 
isolation window. Isolation windows used are described in Supplementary 447 
Table 22. Windows were custom designed using the provided boxcarmaker 448 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2020.11.07.372276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.07.372276


BoxCar, data-independent and -dependent acquisition analysis of Arabidopsis proteomes Mehta et al., 2021 

 

 

16 

 

R script that divides the MS1 spectra list into 20 m/z bins, each with an equal 449 
number of precursors, using the equal_freq function in the funModeling 450 
package (http://pablo14.github.io/funModeling/). Box sizes were scaled 451 
using this script applied to results from one of the directDIA runs.  452 

MS2 acquisition was performed according to the settings described above for 453 
DIA acquisition.  454 

Raw data processing 455 

DDA files were processed using MaxQuant software version 1.6.1429,30. 456 
MS/MS spectra were searched with the Andromeda search engine against a 457 
custom made decoyed (reversed) version of the Arabidopsis protein 458 
database from Araport 1138  concatenated with a collection of 261 known 459 
mass spectrometry contaminants. Trypsin specificity was set to two missed 460 
cleavage and a protein and PSM false discovery rate of 1%; respectively. 461 
Minimal peptide length was set to seven and match between runs option 462 
enabled. Fixed modifications included carbamidomethylation of cysteine 463 
residues, while variable modifications included methionine oxidation. 464 

DIA files were processed with the Spectronaut directDIA experimental 465 
analysis workflow using default settings without N-acetyl variable 466 
modification enabled. Trypsin specificity was set to two missed cleavages 467 
and a protein and PSM false discovery rate of 1%; respectively. Data filtering 468 
was set to qQ-value (0.01) and global normalization with quantification 469 
performed at the MS2 level. For comparing BoxCarDIA and directDIA, the 470 
Spectronaut directDIA workflow was used with factory settings.  471 

For hybrid (library- and library-free) DIA analysis, DDA raw files were first 472 
searched with the Pulsar search engine implemented in Spectronaut 14 to 473 
produce a search archive. Next, the DIA files were searched along with this 474 
search archive to generate a spectral library. The spectral library was then 475 
used for normal DIA analysis in Spectronaut 14. Default settings (without N-476 
acetyl variable modification) were used in all steps. Final optimized 477 
Excalibur method files for DDA, directDIA and BoxCarDIA are provided as 478 
Supplemental Information. 479 

Data analysis 480 

Downstream data analysis for DDA samples was performed using Perseus 481 
version 1.6.14.039. Reverse hits and contaminants were removed, the data 482 
log2-transformed, followed by a data sub-selection criterion of n=3 of 4 483 
replicates in at least one sample. Missing values were replaced using the 484 
normal distribution imputation method with default settings to generate a 485 
list of reliably quantified proteins. Subsequently, significantly changing 486 
differentially abundant proteins were determined and corrected for multiple 487 
comparisons (Bonferroni-corrected p-value < 0.05; q-value). 488 
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DirectDIA and BoxCarDIA data analysis was performed on Spectronaut v.14 489 
using default settings.  490 

Final numbers of PSMs, peptides, and protein groups identified were 491 
obtained from MaxQuant “summary.txt” files and from the result summary 492 
in Spectronaut. 493 

Statistical analysis and plotting were performed using GraphPad Prism 8. 494 
Network analysis was performed on Cytoscape v.3.8.0 using the StringDB 495 
plugin.  496 

Data availability 497 

Raw data have been deposited to the ProteomeExchange Consortium 498 
(http://proteomecentral.proteomexchange.org) via the PRIDE partner 499 
repository with the dataset identifier PXD022448. Source data used to 500 
produce all graphs is provided in the Supplemental Materials.  R scripts and 501 
input data used can be downloaded from:   502 
https://github.com/UhrigLab/BoxCarMaker under a GNU Affero General 503 
Public License 3.0.  504 
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Supplementary Figures 

 

Figure S1: Comparison of protein quantification results using DDA and directDIA analysis.  

(a.) Frequency distribution of normalized protein abundances for DDA and directDIA analysis and corresponding violin 

plots with median and quartile lines marked for HeLa digests. (b.) Upset plots depicting intersections in protein groups 

quantified by DDA and direct DIA at either extreme of the abundance distribution for HeLa digests. (c.-e.) Scatter plots 

of protein groups quantified by DDA and direct DIA for light-grown Arabidopsis cells, dark-grown Arabidopsis cells, and 

HeLa digests. Insets show correlations for protein groups with abundances less than the median.  
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Figure S2: Protein abundance 

distributions by analysis type and data 

filtering settings.  

Violin plots showing normalized protein 

abundance for proteins quantified by direct 

DIA (default setting), identified by DDA, 

quantified by DIA (filtered for protein 

groups present in at least 3 samples in any 

one condition), quantified by DDA (filtered 

for protein groups present in at least 3 

samples in any one condition with missing 

values imputed), quantified by DDA (filtered 

for protein groups present in at least 3 

samples in any one condition with missing 

values left blank), quantified by DIA 

(counting only protein groups found in all 

samples), and quantified by DIA (counting 

only protein groups found in all samples), 

respectively for (a.) light grown Arabidopsis 

cells (b.) dark grown Arabidopsis cells and 

(c.) HeLa cell digestion standards. (n= 

number of protein groups). 
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Figure S3: The DDA missing value problem explains the gap in quantification of low abundant proteins compared 

to direct DIA. (a.) Histograms of direct DIA or DDA protein group identifications across replicate samples for light-grown 

Arabidopsis cells. (b & c) Normalized abundances of proteins binned by the number of replicates containing each protein 

for direct DIA and DDA. Bars represent median and interquartile range. (d.-f.) Same as above for dark-grown cells. 
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Figure S4: BoxCarDIA can quantify peptides and protein groups consistently between independent technical 

replicate injections of HeLa digests.  

(a.) Histograms of BoxCarDIA, directDIA, or DDA peptide identifications across replicate injections of HeLa digests. (b-

d.) Normalized abundances of peptides binned by the number of replicates containing each protein for DDA, directDIA 

and BoxCarDIA. Bars represent median and interquartile range. (e-h) Same as above for protein group identifications. 
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Figure S5: Arabidopsis Gene Ontology 

categories ranked by the abundance of 

their constituent proteins. Data from a 

deep proteome analysis of Arabidopsis 

cells performed by Mergner et al., 2020. 
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