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Abstract
The function of mammalian cells is largely influenced by their tissue microenvironment. Advances in

spatial transcriptomics open the way for studying these important determinants of cellular function by

enabling a transcriptome-wide evaluation of gene expression in situ. A critical limitation of the current

technologies, however, is that their resolution is limited to niches (spots) of sizes well beyond that of a

single cell, thus providing measurements for cell aggregates which may mask critical interactions

between neighboring cells of different types. While joint analysis with single-cell RNA-sequencing

(scRNA-seq) can be leveraged to alleviate this problem, current analyses are limited to a discrete view of

cell type proportion inside every spot. This limitation becomes critical in the common case where, even

within a cell type, there is a continuum of cell states that cannot be clearly demarcated but reflects

important differences in the way cells function and interact with their surroundings. To address this, we

developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI), a

probabilistic method for multi-resolution analysis for spatial transcriptomics that explicitly models

continuous variation within cell types. Using simulations, we demonstrate that DestVI is capable of

providing higher resolution compared to the existing methods and that it can estimate gene expression

by every cell type inside every spot. We then introduce an automated pipeline that uses DestVI for

analysis of single tissue slices and comparison between tissues. We apply this pipeline to study the

immune crosstalk within lymph nodes to infection and explore the spatial organization of a mouse tumor

model. In both cases, we demonstrate that DestVI can provide a high resolution and accurate spatial

characterization of the cellular organization of these tissues, and that it is capable of identifying

important cell-type-specific changes in gene expression - between different tissue regions or between

conditions. DestVI is available as an open-source software package in the scvi-tools codebase

(https://scvi-tools.org).
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Introduction
Spatial transcriptomics opens up new opportunities to define the organization of cellular niches and

crosstalk that modulate cellular function [1]. In particular, this emerging technology helped study the

organization of complex tissues such as the mouse brain [2] and the human heart [3]. The research of

human pathologies, such as the structure of tumors, is also an important avenue for spatial

transcriptomics [4,5] since the tumor microenvironment consists of a rich milieu of cell types and states

that are organized in different anatomical niches.

The landscape of experimental assays for performing spatial transcriptomics analyses of tissue sections is

diverse, although all assays are data-rich and require automated and quantitative computational

analyses. For example, methods based on fluorescence imaging (MERFISH [6], osmFISH [2,6], seqFISH

[7]) have near single-transcript resolution. However, these methods rely on cell-segmentation algorithms

[8,9]. Additionally, these studies are dependent on pre-selected marker genes and are not genome-wide

and hence require imputation of the missing gene to avoid overlooking critical information [10–12]. On

the other hand, pseudo-bulk spatial transcriptomic measurements (Slide-Seq [13,14], 10x Visium [15])

are appealing technologies as they provide measurements of the whole transcriptome, although the

spatial resolution, in current versions, is limited to cell aggregates (10 microns for Slide-Seq and 55

microns for 10x Visium). Depending on the density of the tissue, a single bead spot of 10x Visium may

have a large number of cells, emphasizing the need for deconvolution of spots to obtain a better

resolution view of their cellular content.

To overcome this limitation of current leading genome-wide spatial transcriptomics experimental

protocols, these datasets are often matched with a single cell RNA-sequencing (scRNA-seq) dataset from

3

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

https://paperpile.com/c/WAe7SQ/gAmz
https://paperpile.com/c/WAe7SQ/uzST
https://paperpile.com/c/WAe7SQ/QIWM
https://paperpile.com/c/WAe7SQ/SJBu+ueGp
https://paperpile.com/c/WAe7SQ/hrGk
https://paperpile.com/c/WAe7SQ/uzST+hrGk
https://paperpile.com/c/WAe7SQ/z0Ui
https://paperpile.com/c/WAe7SQ/s97y+jYul
https://paperpile.com/c/WAe7SQ/RAei+MgyX+FWqX
https://paperpile.com/c/WAe7SQ/mkEg+X4C5
https://paperpile.com/c/WAe7SQ/PWyW
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


the same tissue. The convention for analyzing such pairs of datasets (as implemented by all existing

pipelines, including NMFReg [14], RCTD [16], SPOTLight [17], Stereoscope [18], DSTG [19], and

cell2location [20]) is to apply a two-step process. First, a dictionary of cell types is inferred from the

scRNA-seq data; then, the proportion of each cell type within each spot is estimated using a linear

model. This approach has had promising results, in particular when analyzing brain tissue sections in

which the diversity of cellular composition is well captured by a discrete view of cell types [21].

However, the aforementioned methods are more challenging to apply in settings where there is no clear

way to stratify cells into discrete types or subtypes. This is especially important when cells that belong to

the same overall type (e.g., T helper cells) may carry different functions and span a continuum of states

(e.g., following different inflammatory signals) [22]. As a way to resolve this fundamental conundrum of

single-cell data analysis, current algorithms leave the user with the choice of setting the granularity in

which the data is to be analyzed (i.e., number of clusters per broad cell type). However, there are some

inherent trade-offs: deeper clustering of the scRNA-seq data provides more granular transcriptomic

resolution but makes the deconvolution problem more difficult, and the results potentially less accurate.

In this manuscript, we propose a conceptually different framework. Instead of limiting the analysis to a

discrete view of cell types, we propose to also model the variation within each cell type via continuous

latent variables. Towards this end, we introduce DEconvolution of Spatial Transcriptomics profiles using

Variational Inference (DestVI), a Bayesian model for multi-resolution deconvolution of cell types in

spatial transcriptomics data. Much like existing deconvolution methods, DestVI takes as input a

scRNA-seq dataset, with annotations and a spatial transcriptomics dataset. Unlike other methods, DestVI

learns cell-type-specific profiles and continuous sub-cell-type variations using a conditional deep

generative model [23] and recovers the cell-type frequency as well as a cell-type-specific snapshot of the
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average transcriptional state at every spot. We also propose a post-hoc analysis pipeline, based on

auto-correlation and a spatially-aware version of PCA, to highlight the main axes of spatial variation and

help guide the downstream analysis. Our pipeline also helps extract molecular signatures that

characterize a given tissue slice or different areas inside the same tissue using cell-type-specific

differential expression.

We used simulations to benchmark DestVI against discrete deconvolution approaches applied to

different levels of cell state granularity (i.e., number of clusters per cell type) and show that DestVI

significantly outperforms every baseline in terms of imputation of cell-type-specific gene expression. We

then showcase the broad usability of DestVI in two very different biological models using 10x Visium

measurements. First, we applied DestVI to study the murine lymph node, which is a considerably

structured and well-studied secondary lymphoid organ. We report the spatial organization of cell types

in this organ at steady-state and study the effects of stimulation with pathogens [24]. DestVI accurately

identifies the effects on the spatial and transcriptional organization of monocytes that are activated

upon immunization and form immune response niches. We then proceeded to apply DestVI to a mouse

tumor model. In this more complex tissue, DestVI delineates the spatial coordinates of main immune

cells within the tumor microenvironment (TME). Furthermore, we mapped the sub-populations of

macrophages onto the tumor and recovered spatial patterns of hypoxia activation within the tumor core

[25]. DestVI is implemented in the scvi-tools package [26], and readily available along with accompanying

tutorials.
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Results

Multi-resolution deconvolution of cell states in spatial transcriptomics data

using DestVI

DestVI uses two different latent variable models (LVMs) [27] for delineating cell-type proportions as well

as cell-type-specific continuous sub-states. The input for DestVI is a pair of transcriptomics datasets: a

query spatial transcriptomics data as well as a reference scRNA-seq data from the same tissue (Figure 1).

DestVI assumes that each cell in the reference dataset is annotated with a discrete cell-type label (Online

Methods). The output of DestVI consists of two components: first, the expected proportion of cell types

for every spot, and second, a continuous estimation of cell-state for every cell type in every spot, which

represents an average state for cells of this type in the spot (Figure 1A). This spot-level information may

then be used for downstream analysis and formulation of biological hypotheses (described later in this

section).

To model the reference scRNA-seq data, the first LVM (scLVM; Figure 1B) of DestVI posits that for each

gene and cell the number of observed transcript, , follows a negative binomial distribution, which𝑔 𝑛 𝑥
𝑛𝑔

has been shown to represent the properties of RNA count data [28]. The distribution is parameterized as

( , ), with mean and where is a gene specific parameter determining the mean-variance𝑟
𝑛𝑔

𝑝
𝑔

𝑝
𝑔
𝑟

𝑛𝑔

(1−𝑝
𝑔
) 𝑝

𝑔

relationship at every spot. Parameter of the negative binomial depends on the type assigned𝑟
𝑛𝑔

=  𝑙
𝑛
ρ

𝑛𝑔

to the cell ( ), its overall number of detected molecules ( ), and a low-dimensional latent vector𝑐
𝑛

𝑙
𝑛

γ
𝑛

(here 5 dimensions) which captures the variability within its respective cell type. A neural network 𝑓
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maps and to the vector . The gene-specific parameter is optimized using variational Bayesianγ
𝑛 

𝑐
𝑛

ρ
𝑛

𝑝
𝑔

inference (Online Methods). scLVM is closely related to scVI, our previous work in scRNA-seq modeling

strategies [29], although here we aim at capturing transcriptional variation that is cell-type specific. To fit

scLVM, DestVI relies on amortized variational inference with deep neural networks [30]. After this

procedure, we obtain for every cell a distribution that quantifies the cell state, as well as a𝑞
ϕ

(γ
𝑛
| 𝑐

𝑛
,  𝑥

𝑛
)

measure of its uncertainty (Online Methods).

To model the spatial transcriptomics data, the second LVM (stLVM, Figure 1C) of DestVI posits that for

each gene and each spot the number of observed transcripts also follows a negative binomial𝑔 𝑠 𝑥
𝑠𝑔

distribution (as in [18], [20]). The rate parameter of the distribution depends on latent factors that𝑟
𝑠𝑔

capture technical variation ( - the overall number of molecules detected in the spot and - a𝑙
𝑠

α
𝑔

multiplicative factor to correct for gene-specific bias between spatial and scRNA-seq measurements) and

biological variation, decomposed over cell types. The latter factors come at two levels: is a scalarβ
𝑠
𝑐

proportional to the relative part of cells of type inside the spot, and is a low-dimensional vector that𝑐 γ
𝑠
𝑐

estimates the average state of these cells. To ensure this correspondence, stLVM uses the same decoder

neural network trained by scLVM - a step that can be interpreted as transfer learning of cell state

decoding - from scRNA-seq data to the spatial data. To facilitate the decoupling between the factors that

are included in the stLVM model and to further facilitate consistency with the scRNA-seq measurements,

we utilize an empirical prior for . This prior is based on the values of inferred for the scRNA-seq dataγ
𝑠
𝑐 γ𝑐

from cell type [31]. To fit stLVM, DestVI relies on an amortized maximum a posteriori (MAP) inference𝑐

scheme, in which the parameters for the cell-type proportions are kept as free, but the values are tiedγ
𝑠
𝑐
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with a neural network (Online Methods). Finally, in our implementation, the actual cell-type proportions

are obtained by normalizing (to sum to one).π
𝑠
𝑐 β

𝑠
𝑐
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Figure 1: Schematic representation of the spatial transcriptomics analysis pipeline with DestVI.

(A) A spatial transcriptomics analysis workflow relies on two data modalities, producing unpaired

transcriptomic measurements, in the form of count matrices. The spatial transcriptomics (ST) data
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measures the gene expression in a given spot , and its location . However, each spot may contain𝑦
𝑠

𝑠 λ
𝑠

multiple cells. The single cell RNA-sequencing data measures the gene expression in a cell , but the𝑥
𝑛

𝑛

spatial information is lost because of tissue dissociation. After annotation, we may associate each cell

with a cell type . These matrices are the input to DestVI, composed of two latent variable models: the𝑐
𝑛

single-cell latent variable model (scLVM) and the spatial transcriptomics latent variable model (stLVM).

DestVI outputs a joint representation of the single-cell data, and the spatial data by estimating the

proportion of every cell type in every spot, and projecting the expression of each spot onto

cell-type-specific latent spaces. These inferred values may be used for performing downstream analysis

such as cell-type-specific differential expression and comparative analyses of conditions. (B) Schematic of

the scLVM. RNA counts and cell type information from the single cell RNA-sequencing data are jointly

transformed by an encoder neural network into the parameters of the approximate posterior of , aγ
𝑛

low-dimensional representation of cell-type-specific cell state. Next, a decoder neural network maps

samples from the approximate posterior of along with the cell type information to the parametersγ
𝑛

𝑐
𝑛

of a negative binomial distribution for every gene. Note that we use the superscript notation to𝑓𝑔

denote the -th output of the network, that is the -th entry of the vector . (C) Schematic of the𝑔 𝑔 ρ
𝑛𝑔

ρ
𝑛

stLVM. RNA counts from the spatial transcriptomics data are transformed by an encoder neural network

into the parameters of the cell-type-specific embeddings . Free parameters encode the abundanceγ
𝑠
𝑐 β

𝑠
𝑐

of cell type in spot , and may be normalized into cell-type proportions (Online Methods). Next, the𝑐 𝑠 π
𝑠
𝑐

decoder from the scLVM model maps cell-type-specific embeddings to estimates of cell-type-specificγ
𝑠
𝑐

gene expression. These parameters are averaged across all cell types, weighted by the abundance

parameters , to approximate the gene expression of the spot with a negative binomial distribution.β
𝑠
𝑐
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After training, the decoder may be used to perform cell-type-specific imputation of gene expression

across all spots.

DestVI outperforms competing methods for imputing cell-type-specific gene

expression on semi-simulated data

Most benchmarking analyses of deconvolution focus on the ability of a given algorithm to recapitulate

the proportion of cell types in every spot. In this setting, it is natural to use a clustered dataset of

scRNA-seq data and generate synthetic “spot” measurements by sampling cells from different clusters

with a given ground truth proportion. However, to fully assess the performance of DestVI to infer

continuous cell states in addition to cell-type proportions, we instead built a more nuanced simulation

framework that also accounts for variability within cell types (Figure 2A, Online Methods). In this

scheme, each spot is defined by a cell-type proportion, as well as the (continuous) state of cells in every

type. To model the continuum of cell states, we construct a linear model for every cell type, with a

negative binomial likelihood. The coefficients of these linear models are learned using PCA on a

cell-type-annotated scRNA-seq dataset. Using PCA ensures that the simulation is based on a probabilistic

model different from the one used in DestVI. We then generate a spatial dataset by sampling, for each

spot, its cell-type proportion and the coefficients of the cell state representations. We ensure spatial

dependency in this data, by sampling those variables from a Gaussian process. The resulting simulator

therefore generates spatial transcriptomics measurements while providing ground truth about

cell-type-specific gene expression patterns (Supplementary Figure 1).

We compared the performance of DestVI to a number of leading benchmark methods. First, we

compared to discrete deconvolution approaches: RCTD [16], SPOTLight [17], Stereoscope [18], and

Seurat [32]. We consider the performance of these methods when trained with different levels of
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sub-clustering (only for algorithms that completed in less than three hours; Figure 2B-C), where the

lowest resolution of clustering corresponds to the original cell types, and every subsequent resolution

further partitions each type into distinct states. Using this range of sub-clustering levels helped explore

the tradeoff between the ability to predict cell-type-specific gene expression (additional sub-clustering

should be better, up to a certain extent) to the ability to accurately infer cell-type proportions,

considering that sub-clustering may interfere with the ability to predict the frequency of the parent

cluster. We also benchmarked against a second set of methods: scVI [29], Harmony [33] and Scanorama

[34], that can be used to match the spatial measurements to the scRNA-seq measurements via a

common embedding. In these approaches, inferences about cell-type proportions or cell-type-specific

gene expression are done using k-nearest neighbors imputation (Online Methods).

To evaluate the accuracy of cell-type proportion estimates, we calculated the Spearman correlation

between the inferred and ground truth proportions, and reported the average over cell types. We only

considered combinations of spot and cell type for which the proportion is sufficiently high (here > 0.4).

We also assessed how well each algorithm captures the variation within cell types, by calculating the

Spearman correlation between the inferred and ground truth cell-type specific gene expression in every

spot (again, reporting the average over all cell types).

Considering the results of cell-type proportion estimation (Figure 2D), we find that the embedding

methods have a generally lower performance compared to other methods, specifically designed for

deconvolution. This has been already reported (e.g., [20]) and is expected, as these embedding methods

(e.g., scVI) do not explicitly consider that spatial spots may include a mixture of cell types. In the

deconvolution methods, we find that the impact of the clustering resolution on accuracy is different for

different algorithms. For example, performance is stable for Stereoscope and SPOTLight (with a slight
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trend up or down) but changes drastically for RCTD and Seurat where both algorithms perform poorly for

more than four clusters per cell type. Finally, we find that DestVI compares favorably to the other

methods, regardless of their sub-clustering resolution during training. Considering the results of

cell-type-specific gene imputation (Figure 2E), we notice that, with the exception of DestVI, the

deconvolution methods have a lower performance compared to the embedding-based ones. Specifically,

for each discrete - deconvolution method there is often one resolution of sub-clustering for which it

yields reasonable imputation results, but the optimal resolution is algorithm specific (four sub-clusters

per cell type for SPOTLight; two sub-clusters per cell type for RCTD and Seurat). Since it is hard in practice

to estimate the number of sub-clusters, especially in this specific context of deconvolution, this makes

the discrete deconvolution approaches less applicable for spatial analysis. DestVI outperforms all

methods with this metric and the same results follow using Pearson correlation as well (Supplementary

Figure 2).

Taken together, these results demonstrate that DestVI provides a compelling alternative to discrete

deconvolution algorithms, especially when there are rich continuous patterns of transcriptional variation

within cell types, as is the case for most biological models. Specifically, we observe that DestVI

demonstrates robust performance in gene expression imputation while still adequately estimating

cell-type proportions (Figure 2F). Of note, our analysis was limited to spots in which the cell type in

question was sufficiently abundant. As expected, we observe that the ability of DestVI to predict

cell-type-specific gene expression decreases in the case of low frequency (Figure 2G). We do observe,

however, much less effect on the accuracy of cell-type proportion estimate (Figure 2H). DestVI can

therefore provide an internal control for which spots can be taken into account when conducting a

cell-type-specific analysis of gene expression or cell state. We leverage this property and propose an
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automated way of estimating a threshold for the minimal cell-type proportion that is required for such

an analysis (Online Methods).

Finally, we also utilized the simulation to benchmark several variants of DestVI (Figure 2I-J). Specifically,

we wanted to verify our design choice for the analysis of spatial data in which we keep the parameters

for the cell-type proportion free but treat the parameters as a function of the input data (i.e.,γ
𝑠

𝑐

amortizing inference using an encoder neural network; Online Methods). Towards this end, we assessed

the performance of several variants of DestVI, using an encoder neural network for the proportions,

parameters , both of them, or none of them. Interestingly, we have noted that using a neural networkγ
𝑠

𝑐

for the proportions yield lower performance for cell-type proportion estimation compared to keeping

free parameters (Figure 2I). Conversely, using a neural network for estimating the embedding variables

yields much higher performance for gene expression imputation (Figure 2J). We attribute this

phenomenon to the fact that there are many embedding variables to infer (dimension of latent space

times number of cell types) per spot, and that using a neural network may regularize the solution as

compared to using free parameters.
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Figure 2: Evaluating the performance on DestVI on simulations.

(A) Schematic view of the semi-simulation framework. We isolated five cell types from a single-cell RNA

sequencing dataset. For each cell type, we learned a descriptive model of transcriptomic changes that

are internal to that specific cell type, using a principal component analysis (PCA). We then generated a

grid, in which each point represents a spot for the spatial transcriptomic simulation. We sampled

spatially-relevant random vectors to encode the proportion of every cell type in every spot , as well asπ
𝑠
𝑐

the cell-type-specific embeddings . Then, we used those parameters, and the learned weights of theγ
𝑠
𝑐

cell-type-specific PCA to generate spatial transcriptomics data (Online Methods). (B-C) Visualization of

the single-cell data, and the cell state labels used for comparison to competing methods. Both scatter
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plots are UMAP embeddings of the single-cell data (32,000 cells). (B) Cells are colored by cell type. (C)

Cells are colored by the sub-cell types, obtained via hierarchical clustering (here five clusters per cell

type). (D-F) Comparison of DestVI to competing algorithms, possibly applied to different clustering

resolutions. We allotted three hours for each simulation analysis. Performance is not reported for cases

that did not terminate by that time (SPOTLight with 8 sub-clusters; Online Methods). (D) Spearman

correlation of estimated cell-type proportions compared to ground truth for all methods. (E) Spearman

correlation of estimated cell-type-specific gene expression compared to ground truth, focusing on

combinations of spot and cell type for which the proportion is sufficiently high (here > 0.4 for the parent

cluster) (F) Scatter plot of both metrics, that show the trade off reached by all methods. (G-H) Follow-up

stress tests for DestVI. (G) Accuracy of imputation, measured via Spearman correlation as a function of

the cell-type proportion in a given spot. (H) Head-to-head comparison of estimated cell-type proportion

against ground truth across all spots and cell types (8,000 combinations of spot and cell type). (I-J)

Ablation studies for the amortization scheme used by DestVI. We report performance metrics for

variants of DestVI where different possible amortization strategies are used for learning the proportions

as well as the cell states in every spot. (I) Spearman correlation of estimated cell-type proportions

compared to ground truth. (J) Spearman correlation of estimated cell-type-specific gene expression

compared to ground truth.

An automated analysis pipeline with DestVI

The resulting model enables several types of downstream analyses for drawing hypotheses on both the

spatial structure of an individual sample as well as the differences amongst pairs of conditions. In the

following, we propose a standard pipeline for analysis of a single sample. In the subsequent sections we

demonstrate how to use this pipeline to gain insight from a simple sample (a single lymph node, or

tumor slice) and help guide comparative analysis between samples (between lymph node slices, or
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distinct areas of a tumor slice). The pipeline consists of two parts. In the first part, we consider the data

from a resolution of cell types. For each cell type we report its proportion in every spot, and then

highlight cell types that tend to occur at specific niches (i.e., not uniformly distributed across the tissue),

using Geary’s C autocorrelation statistic for the inferred proportions [35]. The second part of the pipeline

facilitates a more in-depth view - looking at variability within cell types, thus going beyond the

functionality that is available in current pipelines. We start by selecting, for each type, spots that have

sufficiently high proportion of cells of that type. We propose an automated way of estimating a

cell-type-specific threshold for this procedure, but it may be also manually curated. We consider for each

cell type different values of the threshold (taken on a grid), and calculate - the respective Geary's𝑡 𝐶(𝑡) 

statistics, accounting only for spots with proportion higher than . We then select our threshold to𝐶 𝑡 𝑡*

be the inflection point of the resulting curve (Online Methods). With this constrained view, our𝐶(𝑡)

pipeline proceeds to report the main axes of variation in each cell type, using the spatial data. This

analysis helps highlight and visualize the most dominant transcriptional programs in every cell type, as

well as exploring their dependence on the cells’ locations. To this end, we developed a weighted PCA

scheme that uses the inferred cell states (in the spatial data) and accounts for the inferred cell-type

proportions as well as the spatial layout of the spots (following previous work on robust linear

dimensionality reduction [36]; Online Methods). We also identify genes that are correlated with each

weighted principal component and report enriched gene signatures (using EnrichR [37]) to help with

their interpretation.

Our model also provides a natural way to estimate and evaluate the significance of differences between

conditions, or between niches in the same tissue slice. Specifically, for each cell type we can compare the

extent to which cells of a given type tend to co-localize in specific niches, by comparing the respective

Geary’s C statistics. On the gene level, we can identify cell-type-specific differential expression,
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comparing different conditions or different tissue areas. This analysis draws directly from our

probabilistic representation of the data, which allows for uncertainty quantification and hypotheses

testing (Online Methods).

DestVI identifies a spatially organized lymph node multicellular immune

response following pathogen stimulation

For a first application of DestVI, we aimed to study spatial pattern of antigen-specific Immunity and

profiled murine auricular lymph nodes following 48 hr stimulation by Mycobacterium smegmatis (MS), a

gram-positive bacteria which induces a robust CD4+ T cell response characterized by IFN [24]. Forγ

spatial analysis, we used the Visium platform (10x Genomics) to profile four lymph node sections (two

sections from MS and two sections from control (PBS) injections). A matching single cell RNA-seq data

set was also obtained for these conditions (Figure 3A; Online Methods).

After quality control, we noticed that the number of UMIs per spot in one of the control lymph nodes

was significantly lower than the other sections, and discarded this sample from further analysis

(Supplementary Figure 3). After spot filtering on the remaining lymph nodes; a total of 400, 369 and

323 spots for the MS-1, MS-2 and PBS lymph nodes were used for analysis with DestVI, respectively

(Figure 3B; Online Methods). As a preliminary test for the validity of the information obtained from 10x

Visium, we began with a clustering analysis of the raw data using scanpy (Supplementary Figure 4A). We

noted the high reproducibility of clusters for the MS conditions, as well as marked differences between

the MS- stimulated and control (PBS) tissue sections, characterized by several clusters (Supplementary

Figure 4B). The matching single cell RNA-seq data yielded 14,989 cells after quality filtering (Online

Methods; Supplementary Table 1). We annotated the scRNA-seq data by transferring cell type
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information from a publicly available murine lymph node dataset [38] with scANVI [39] and manually

curating the annotation of rare cell types (Online Methods). We present this information in a

two-dimensional plot of the annotated latent space (Figure 3C, Supplementary Figure 5), as embedded

by scVI [29], and laid out by UMAP [40]. We observe a similar cellular MS specific response including

changes in NK and monocytes abundance and signaling (Supplementary Figure 6).

We applied DestVI in order to explore for each cell type how infection-induced differences in

transcriptional states may be associated with changes of spatial organization. The reports that are

automatically generated by our analysis pipeline are provided in Supplementary Note 1. These reports

helped guide our exploration of the data, and we summarize the resulting main findings in the remainder

of this section. Using the first part of our automated pipeline, we began by exploring the spatial

distribution of cells from each type (Figure 3D-E; Supplementary Figure 7). As expected, the first striking

pattern is the organization of the lymph node sections into the B cell follicles (Cd79a; external area) and

a T cell compartment (CD8; internal area) (Figure 3E; Supplementary Figure 8) [41,42]. Interestingly, we

find that monocytes and NK cells also tend to form spatially coherent niches, with a stronger extent of

co-localization of the monocyte population in the stimulated lymph node compared to the control

(comparing the Geary’s C values of their inferred proportions; Figure 3E; Supplementary Figure 9). This

finding is consistent with our previous work, which showed that after immunization with MS, NK cells are

recruited to the lymph nodes and produce IFN . This signaling axis further promotes the up-regulation ofγ

IFN signaling in monocytes [24]. The spatial data, further identified organized multicellular immuneγ

response niches, located between the B cell follicles as shown in Figure 3E and also referred to as the

interfollicular area (IFA) [43].
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We then explored the inferred spatial organization of cell states within every cell type, a unique feature

of our pipeline compared to other algorithms for spatial analysis (Figure 3F-M). Interestingly, we find

that the main axes of variation in the monocyte population (using our weighted PCA scheme to

co-analyze both modalities) reflect cytokine and chemokine signaling cascades, as well as a robust

interferon response (Supplementary Note 1). The importance of interferon signaling as a source of

variation in the monocyte population is also apparent in the scRNA-seq data (using Hotspot [38];

Supplementary Figures 10-12), and characteristic of molecular differences between MS stimulated

dissociated lymph nodes and control lymph nodes (Supplementary Figure 13). However, through joint

analysis with DestVI, we can now contextualize this variation with the location of the monocytes and

their unique spatial niche in the lymph node. To this end, we first inspected our inferred low-dimensional

representation of cell state and found that it indeed reflects co-variation in the expression of type-II

interferon response genes (here, plotting the cells and spots in dimensions 0 and 2 of the 5- dimensional

vector; colored by the sum of Fcgr1, Cxcl9 and Cxcl10; Figure 3F). Moving to the tissue coordinates, weγ

found a clear localization of inferred monocyte-specific expression of IFN-II genes in the IFA (Figure 3G).

Comparing the two conditions, we also found that the amount of expression in those constrained niches

is markedly higher in the MS versus the control LN. In order to more formally identify the differences in

expression of monocytes across the two conditions, we performed differential expression (using the

values imputed by DestVI) and discovered a rich set of differentially expressed IFN-II response genes,

some already used in our signature analysis (e.g., Fcgr1 and Cxcl9), but also other genes (Gpb2,

Serpina3g and Ifi47) (Online Methods, Figure 3H, Supplementary Table 2, Supplementary Figure 12).

This is consistent with previous findings, where under pathogen immunization monocytes or

macrophages carrying antigens migrate to draining lymph nodes through afferent lymphatics to induce

immune responses [44–48]. In order to verify this discovery using alternative spatial measurements, we

performed immunofluorescence staining of LN from naive and MS treated mice,with CD64 (Fcgr1; a
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marker we identified with DestVI), CD11b and Ly6C. In line with the results identified by DestVI, we find a

higher number of inflammatory monocytes in the MS treated LN localized to the IFA and the peripheral

subcapsular sinus (SCS) (Figure 3I, Supplementary Figure 14).

Our results also point out to functional heterogeneity within the B cell compartment, with a strong

enrichment for type I interferon signaling in the first weighted principal component (Supplementary

Note 1). As above, we find that this axis of variation is also captured in the scRNA-seq data

(Supplementary Figures 15-17), and thus proceed to explore its spatial properties. First, we find that it is

indeed captured by the joint latent representation of cells and spots (dimension 0 of the 5-dimensional γ

vector; colored by Ifit1, Ifit3, Ifit3b, Stat1, Usp18 and Isg15; Figure 3J). We then use the B-cell specific

gene expression estimates from DestVI to inspect the spatial organization of this signature (Figure 3K).

Interestingly, the module appears to be expressed across all the lymph nodes, but in lower levels for the

PBS LN compared to the MS LN. This observation is also supported by B-cell specific differentiation

expression analysis between the MS and control tissues (Figure 3L, Supplementary Table 3,

Supplementary Figure 17). In particular, we investigated the B-cell specific differential expression

analysis within the MS samples with focus on comparison of the enriched zone with the rest of the

lymph node slices and noticed a similar strong signature of type I interferon signaling (Supplementary

Table 4, Supplementary Figure 18). These observations were further validated by immunofluorescence

staining for IFIT3, B220 and Ly6C (Online Methods). We identify IFIT3+B220+ cells on the MS sample near

the SCS and IFA (Figure 3M) but not in control samples (Supplementary Figure 19). Applying DestVI to

spatial transcriptomics data, we detected the unexpected finding of spatially-enriched interferon

reaction in B cells.
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In summary, the unique features of our analysis enable robust spatial characterization of cell types and

states within naive and pathogen challenged lymph nodes. DestVI identifies a clear and specialized

immune niche involving IFN signaling of different cell types, including monocytes and B cells activated by

MS of infected mice and localized to the peripheral subcapsular sinus and interfollicular area.
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Figure 3: Application of DestVI to the murine lymph nodes.

(A) Schematics of the experimental pipeline. We performed spatial transcriptomics (10x Visium) and

single-cell RNA sequencing (scRNA-seq, 10x Chromium) on murine lymph nodes following 48 hr

stimulation by Mycobacterium smegmatis (MS) compared with PBS control (two sections from each

condition). (B) Visualization of the spatial transcriptomics data used for DestVI analysis (1,092 spots).

Only three slices out of the four lymph nodes passed the quality check (Online Methods). (C) UMAP

projection of the scRNA-seq data (14,989 cells), embedded by scVI and annotated by scANVI using a

publicly available dataset of murine lymph node cells. (D) Spatial autocorrelation of the cell-type

proportions for every cell type. (E) Spatial distribution of cell-type proportions for B cells, CD8 T cells,

Monocytes and NK cells, as inferred by DestVI. (F) Joint embedding of the monocytes from the

scRNA-seq data (circles; 128 cells) and the spots with high abundance of monocytes from the spatial

transcriptomics data (crosses; 79 spots). Single-cell data is colored by expression of the selected IFN-II

genes identified by Hotspot (Fcgr1, Cxcl9 and Cxcl10; see Supplementary Figures 10-11). (G) Imputation

of monocyte-specific expression of the IFN-II marker genes for the spatial data (log-scale), reported only

on spots with high abundance of monocytes (79 spots across the three slices). (H) Monocyte-specific

differential expression analysis between MS and PBS lymph nodes (2,000 genes). Significance is

calculated with our differential expression procedure (Online Methods). (I) Immunofluorescence

imaging from a MS lymph node, staining for CD11b, CD64 and Ly6C. Scale bar, 50 μm. (J) Joint

embedding of the B cells from the scRNA-seq data (circles, 8,359 cells) and the spots with high

abundance of B cells from the spatial transcriptomics data (crosses, 579 spots). Single-cell data is colored

by expression of the selected IFN-I genes identified by Hotspot (Ifit3, Ifit3b, Stat1, Ifit1, Usp18 and Isg15;

see Supplementary Figures 15-16). (K) Imputation of B cell-specific expression of the IFN-I gene module

on the spatial data (log-scale), reported only on spots with high abundance of B cells (579 spots across

the three slices). (L) B cell-specific differential expression analysis between MS and PBS lymph nodes
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(2,000 genes). Significance is calculated with our differential expression procedure (Online Methods).

(M) Immunofluorescence imaging from a MS lymph node, staining for IFIT3, B220 and Ly6C. Scale bar, 50

μm.

DestVI identifies an hypoxic population of macrophages within the tumor core

We also explored DestVI performance in a complex and less structured tissue. Towards this end, we

spatially profiled a syngeneic mice tumor model (MCA205) using Visium. Fourteen days after

intracutaneous transplantation of MCA205 tumor cells, we have characterized the tumor using

scRNA-seq and Visium (Figure 4A; Supplementary Figure 20; Online Methods). A total of 2,125 spots

(first tumor section) and 1,902 spots (second tumor section) were used for analysis with DestVI following

quality metrics and filtering (Figure 4B). Along with the Visium data, we also collected cells from a

separate tumor for single-cell RNA sequencing. After processing and filtering, this dataset comprised a

total of 8,051 immune cells and tumor cells (Online Methods; Supplementary Table 5).

We annotated the single cell RNA-seq data by labeling clusters of the latent space from scVI [29] based

on marker genes from immune cells (Online Methods). We present this information in a

two-dimensional plot of the annotated latent space (Figure 4C), laid out by UMAP [40]. We then

explored the spatial distribution of these cell types and states using DestVI. After running DestVI, we

applied our post-hoc interpretative pipeline (Online Methods) and reported the whole analysis in

Supplementary Note 2. We first inspected the cell-type proportions of the major immune subsets (CD8 T

cells, monocytes, macrophages, dendritic cells, and NK cells; Figure 4D-E; remaining cell types in

Supplementary Figure 21). We observed that both types of T cells were highly abundant on the

boundary of the tumor. We further verified this observation by staining for T cell specific markers (TCRb)

using immunofluorescence (Figure 4F, larger field of view in Supplementary Figure 22) [49]. We also
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observed that NK cells occupy very specific niches within the tumor and verified this spatial property by

staining for NK1.1 (Figure 4G; a slice at distance 30 microns from Slice-2 and 80 microns from Slice-1;

larger image in Supplementary Figure 23). Direct comparison of the images is difficult because the slice

used for staining is different from the one used in visium, with the visium slice truncated by the visium

capture area (Supplementary Figures 24-25). However, we notice a similar pattern of NK cells in DestVI

and the immunofluorescence staining. Antigen-presenting DCs also exhibited non-uniform spatial

organization, with marked localization at the boundary of the tumor (Figure 4D), a property we further

tested by staining for MHCII (Figure 4H). Finally, we noted that monocytes and macrophages (jointly

labeled as Mon-Mac in the scRNA-seq data; as there was no clear demarcation in latent space) were

present broadly in the tumor, with no specific pattern (Figure 4D), and we verified this by staining for

F4/80 (Figure 4I). Together, these results suggest that DestVI is able to provide a reproducible overview

of the organization of major immune subsets in the tumor.

Since the Mon-Mac population did not have a specific spatial pattern (unlike DCs, NK cells and T cells),

we hypothesized that the spatial coordinates may reflect different cell states within the Mon-Mac

population. Indeed, using DestVI for analysis of spatial patterns within the Mon-Mac population reveals

a stratification of this subset into spatial niches, each with a distinct expression signature

(Supplementary Note 2). We therefore proceeded to an in depth analysis of the Mon-Mac populations.

We started by exploring the scRNA-seq data and, using Hotspot, identified several gene expression

programs that distinguish different states within the Mon-Mac population (each represented by a

different module of co-expressed genes; see Supplementary Figures 26-27). This observed variation in

cell state matched our previous findings in independent biological replicates of the same tumor system

[50]. Three of the detected modules of co-expressed genes pertain to general monocytes markers and
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help distinguish a Monocyte (Ace) gene expression program (defined by Ly6c2, Plac8, Ly6a, Ace, Ear2), a

Mon-DC program characterized by MHC class II genes (H2-Aa, Cd74, H2-Ab1), and a Monocyte (IFN)

program characterized by type I interferon signaling (Ifit1, Ifit2, Ifit3, and Isg15). The remaining two

modules define specific tumor-infiltrating myeloid suppressive cell populations [50]. The first one

corresponds to a Mreg population discovered previously [50], with expression of Trem2, Gpnmb, Mmp12

and Il7r, as well as markers of hypoxia - Hmox1, and Hilpda. The second module corresponds to tumor

associated macrophages (TAM), expressing C1qa, C1qb, C1qc, Ms4a7 and Apoe (Figure 4J).

To inspect the spatial distribution of these subpopulations, we used DestVI to infer the Mon-Mac specific

expression of the corresponding gene modules in our Visium data (Figure 4K; The spatial distribution of

all other modules is displayed in Supplementary Figure 28). Interestingly, we noticed several spatial

patterns. First, the tumor-infiltrating myeloid suppressive cells (Mreg and TAM) were mostly abundant in

the inner layers of the tumor. We hypothesized that the inner-tumor macrophage state detected by

DestVI corresponded to the population of regulatory macrophages (Mreg) which express Trem2 and Arg1

and has been previously observed in human tumors [51] as well as murine models [50]. These Arg1+

myeloid cells are associated with poor antitumor response [52] and have interestingly been observed to

congregate in hypoxic tissue niches (cancerous [53] and non-cancerous [54]). To validate this observation

and localize these unique myeloid cells within the tumor, we have used an Arg1-eYFP transgenic mouse

model (YARG) (Figure 4L). We found that inner-tumor had more Arg1-eYFP positive cells than the

boundary of the tumor. To further validate the inner hypoxia tumor microenvironment, we have stained

CD31 to detect the presence of blood vessels (Figure 4M). As expected, the density of blood vessels

decreases in the inner layers of the tumor, which suggests the deprivation of oxygen induces hypoxia

regulated signaling in macrophages (larger field of view with quantitative metrics in Supplementary

Figure 29). A more striking spatial pattern is the expression of hypoxia genes, underlying the localization
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of the Mreg population (Figure 4K). We have further characterized this myeloid population by searching

for Mon-Mac specific differentially expressed genes between the hypoxia area (Mreg) and the rest of the

tumor slides (Supplementary Figure 30), and identified known markers from including Ctsl and Il7r [50]

(Figure 4N, Supplementary Table 6).

In summary, DestVI correctly maps cell types of immune cells onto the spot coordinates and identifies a

clear and specialized niche involving metabolic changes in response to hypoxia within the macrophage

population.
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Figure 4: Application of DestVI to a MCA205 tumor sample.

(A) Schematics of the experimental pipeline. We performed spatial transcriptomics (10x Visium) and

single-cell RNA sequencing (scRNA-seq, single-cell MARS-seq protocol) on a MCA205 tumor which

contains heterogeneous immune cell populations 14 days after intracutaneous transplantation into the

wild-type mouse (two sections). (B) Visualization of the spatial transcriptomics data for two tumor slides,

after quality control (4,027 spots). (C) UMAP projection of the scRNA-seq data (8,051 cells), embedded by
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scVI and manually annotated. (D) Spatial autocorrelation of the cell-type proportions for every cell type,

computed using Hotspot. (E) Spatial distribution of cell-type proportions for DCs, monocytes and

macrophages (Mon-Mac), CD8 T cells and NK cells. Zones emphasized with black dashed lines on the

lower-right-hand corner plot designates high-density of NK cells discovered by DestVI. (F-I)

Immunofluorescence imaging from the tumor using antibodies for (F) TCRb. Scale bar, 100 μm. (G)

NK1.1. Scale bar, 1000 μm. (H) MHC II. Scale bar 200 μm. (I) F4/80. Scale bar 200 μm. White dashed

lines in panels F-I indicate the tumor boundary. (J) Visualization of three gene expression modules on the

Mon-Mac cells from the scRNA-seq data (4,400 cells), on the embedding from scVI (identified using

Hotspot; see Supplementary Figures 25-26). These gene modules are named according to our previous

myeloid single-cell analysis of the MCA205 tumor [50]. (K) Imputation of gene expression for those

modules on the spatial dataset (log-scale), reported only on spots with high abundance of Mon-Mac

(3,906 spots across the two slices). (L) Immunofluorescence imaging from the tumor using a Arg1-YFP

transgenic mouse. Scale bar, 150 μm. (M) Immunofluorescence imaging from the tumor using antibodies

for CD31, showing the abundance of blood vessels in the tumor (quantitative metrics in Supplementary

Figure 30). Scale bar, 400 μm. (N) Mon-Mac cell-specific differential expression analysis between the

Mreg enriched zone and the rest of the tumor slices (2,886 genes). Significance is calculated with our

differential expression procedure (Online Methods).

Discussion

We introduce DestVI, a multi-resolution approach to deconvolution of spatial transcriptomics profiles

using an auxiliary single-cell RNA sequencing dataset. Via simulations, we show that classical

deconvolution approaches that are based on clustering the scRNA-seq data may be difficult to apply and
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miss important information in the case of marked variation within cell types. DestVI circumvents this

problem by learning cell-type-specific latent variables on the scRNA-seq data, using a deep generative

model, and mapping those latent variables onto the spatial data. Coupled to the automated pipeline we

developed, DestVI is capable of interpretable analyses to compare the within-cell-type gene expression

levels across different conditions, or different niches of the same tissue slice.

An important feature of our work is the ability to perform cell-type-specific differential expression in the

spatial data. Notably, because we do not perform fully-Bayesian inference for the spatial latent variable

model (MAP inference is used), we only obtain point estimates of the cell-type-specific cell states . Asγ
𝑠

𝑐

a result, we must use a frequentist test for the differential expression. A more principled approach, and

a subject for future work, is to apply variational inference and exploit the uncertainty for Bayesian

differential expression [55,56].

Although deconvolution of spatial transcriptomics data has recently received considerable attention,

none of the methods benchmarked in this manuscript (including DestVI) make explicit use of the spatial

coordinates during inference (e.g., inference of cell type proportions in a given spot should be influenced

by its nearby spot). A plethora of computational techniques, based on black-box inference techniques

[57,58] for Gaussian processes [59] is likely to make this possible. However, the level of technical

development to achieve this may not be reasonable, because the parameters studied in this work

(cell-type abundance) may not be spatially smooth (e.g., neighboring spots may be very different) for

some tissues, such as the tumor. Consequently, we developed a simpler modification of DestVI that takes

into account enforces smoothness of the cell-type abundance parameters over the spatial coordinates

with a spatially-aware penalization based on a quadratic cost (the scaling factor can be set via
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cross-validation, holding out parts of the transcriptome). This promotes neighboring spots to have

similar cell-type abundance, and improves the results on the simulations (Supplementary Note 3).

Spatial transcriptomics is a promising approach for unravelling cell-cell interactions [60] and other forms

of cellular communication and function in a tissue [61]. We expect that approaches such as DestVI will

provide the necessary level of resolution and help further our understanding of the local signaling

environments and how they impact cell functions and spatial cues, such as interaction between specific

cellular subsets, chemical gradients and metabolic cross talk.
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Online Methods

Model of single-cell RNA sequencing data

Assumption and model for the single-cell data (scLVM)

Let designate a cell in the scRNA-seq dataset. We assume that each cell is annotated with cell-type𝑛

label , but those labels are broad enough such that the introduction of continuous covariates into𝑐
𝑛

γ
𝑛

the model helps explain additional variance in gene expression (i.e., within-cell-type variation). For

example, represents a discrete cell type (e.g., B cells or CD8 T cells) while is a continuous vector𝑐
𝑛

γ
𝑛

summarizing a sub-cell state of interest (e.g., B cell activation, CD8 T cell exhaustion).

In the following, we assume that is observed (e.g., obtained via clustering) and that , however, is𝑐
𝑛

γ
𝑛

unobserved and treated as a latent variable. We posit the following generative model for our data:

γ
𝑛
 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝐼( ) 

𝑥
𝑛𝑔

 ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑙
𝑛
𝑓𝑔 𝑐

𝑛
, γ

𝑛( ), 𝑝
𝑔( ),

where is the library size of cell , is a two-layers neural network and is a -dimensional vector.𝑙
𝑛

𝑛 𝑓 𝑝 𝐺 𝑓

takes as input the concatenation of the one-hot encoding of , as well as the scalar , and outputs a𝑐
𝑛

γ 𝐺

-dimensional vector. has an softplus non-linearity at its output to ensure positivity.𝑓

This generative model has significant overlap with our previous proposed method single-cell Variational

Inference (scVI [29]), which is also a conditional deep generative model. On top of the conceptual

difference that scVI conditions on the batch identifier, whereas scLVM conditions on the cell-type
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information, there are several technical points in which these two models differ. First, we use the

standard parametrization for the negative binomial distribution: the number of successful(𝑟,  𝑝) 

independent and identical Bernoulli trials before failures are achieved, in which is the probability of𝑟 𝑝

failure of each Bernoulli trial. This is in contrast with scVI that relies on the mean-dispersion

parameterization for the negative binomial distribution, and is necessary to make the definition of the

spot gene expression level as the sum of contributions from individual cells correct (as emphasized in

[18]). Furthermore, changes were required to the neural network architecture for the transfer learning to

work adequately. Indeed, we found that using a decoder with randomness such as dropout [62] or with

running parameters as in batch normalization [63] did not work, so we replaced those with layer

normalization [64].

Variational inference

We use auto-encoding variational Bayes [30] to optimize the marginal conditional likelihood

. We use a mean-field Gaussian variational distribution , parameterized by𝑙𝑜𝑔 𝑝
θ

𝑥
𝑛
∣𝑙

𝑛
, 𝑐

𝑛( ) 𝑞
ϕ

γ
𝑛
∣𝑥

𝑛
, 𝑐

𝑛( )
a two-layer neural network . This neural network takes as input the concatenation of the gene𝑔

expression vector as well as the one-hot encoding of the cell-type label, and outputs the mean and𝑥
𝑛

the variance of the variational distribution for . We optimize the evidence lower bound:γ
𝑛

𝑙𝑜𝑔 𝑝
θ

𝑥
𝑛
∣𝑙

𝑛
, 𝑐

𝑛( ) ≥ 𝐸
𝑞

ϕ
γ

𝑛
∣𝑥

𝑛
,𝑐

𝑛( )𝑙𝑜𝑔 𝑝
θ

𝑥
𝑛
, γ

𝑛
∣𝑙

𝑛
, 𝑐

𝑛( ) − 𝐾𝐿 𝑞
ϕ

γ
𝑛
∣𝑥

𝑛
, 𝑐

𝑛( ); 𝑝
θ

γ
𝑛( )( ),  

where denotes the prior likelihood for . For this, we subsample the observations in𝑝
θ

γ
𝑛( ) γ

𝑛

mini-batches and we sample from the variational distribution using the reparameterization trick .

Additionally, we reweight cells by their inverse cell-type proportion (capped with a minimal proportion of
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5%). We have found this to be an effective method for learning a better representation of the lowly

abundant cell types (e.g., monocytes in the lymph node).

Model of spatial transcriptomics data

Assumption for the spatial data

In the spatial data, we assume that the gene expression of each spot is the combination of multiple cells,

each potentially being from different cell types. A standard modeling assumption is that a spot has for𝑠

expression the sum of individual cells [16,18]. Similarly, let us assume each spot has cells, and𝑥
𝑠

𝐶 𝑠( )

that each cell in spot is generated from latent variables . We then have a distribution of𝑛 𝑠 𝑐
𝑛𝑠

, γ
𝑛𝑠( )

gene expression:

𝑥
𝑛𝑠𝑔

 ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑙
𝑠
α

𝑔
𝑓𝑔 𝑐

𝑛𝑠
, γ

𝑛𝑠( ), 𝑝
𝑔( ),  

with is a spot specific scaling factor and is a correction term for the difference in experimental𝑙
𝑠

α
𝑔

assays. From the standard property of the rate-shape parameterization of the negative binomial

distribution, the distribution of the total gene expression in spot and gene is:𝑥
𝑠𝑔

𝑠 𝑔

𝑥
𝑠𝑔

 ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑙
𝑠
α

𝑔
𝑛=1

𝐶 𝑠( )

∑ 𝑓𝑔 𝑐
𝑛𝑠

, γ
𝑛𝑠( ), 𝑝

𝑔( ).  

We now assume that all the cells from a given cell type in a given spot must all be generated from the𝑐 𝑠

same covariate . Instead of determining the cell identity of all individual cells in the spot, we focus onγ
𝑠
𝑐

determining the density into broad cell types, as well as the archetype of the sub-cell state, which is a

simpler problem. More concretely, we assume that there cannot be both significantly different cell states

of the same cell types within a radius of 50 microns (i.e., a spot).
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Generative model

These points in mind, we parameterize the sum in the previous equation to be over cell types. We obtain

the following generative process:

𝑥
𝑠𝑔

 ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑙
𝑠
α

𝑔
𝑐=1

𝐶

∑ β
𝑠𝑐

𝑓𝑔 𝑐, γ
𝑠
𝑐( ), 𝑝

𝑔( ),  

where and denote respectively the decoder network and the rate parameter of the negative𝑓 𝑝

binomial, transferred from scLVM. The gene-specific multiplicative factor explicitly controls forα

discrepancies between the technologies. Parameters are positive, and designate the abundance ofβ
𝑠𝑐

every cell type in every spot. These parameters may be normalized per spot to return an estimate of the

cell-type proportion. In our implementation, we also add a constant term that serves as an unknown

cell-type, as in [18] .

An important technical component of DestVI is the empirical prior we use for the per-spot per cell type

latent variable. Indeed, the model is susceptible to factor technology discrepancies into the latentγ
𝑠
𝑐

space instead of the multiplicative factor if an informative prior is not used and we noticed thisγ𝑐 α

pathological behavior with an isotropic normal prior. Consequently, we designed an empirical prior

based on the single-cell data, for each cell type :𝑐

γ
𝑠
𝑐 ∼ 1

𝐾
𝑘=1

𝐾

∑ 𝑞
ϕ

γ𝑐∣𝑢
𝑘𝑐

, 𝑐( ),  

where designates a set of cells from cell type in the scRNA-seq dataset, and designates the{𝑢
𝑘𝑐

}
𝑘=1
𝐾 𝑐 𝑞

Φ

variational distribution from the single-cell latent variable model. In another context, this prior over isγ𝑐

referred to as a variational aggregated mixture of posteriors (VampPrior, [31]). However, the objective
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here is simply to use the points as a more informative prior for deconvolution, the VampPrior{𝑢
𝑘𝑐

}
𝑘=1
𝐾

method seeks to  learn a multi-modal, more complex prior in order to better fit the data.

MAP inference

We infer point estimates for random variables and for parameters using a penalized likelihoodγ𝑐 α, β

method. In addition to vanilla MAP inference, we introduced two key ideas that stabilized the

performance of DestVI. First, we added to the likelihood a variance penalty for the parameter ,α

calculated across all the genes. This strategy was applied previously by ZINB-WaVE to regularize

estimates of dispersion parameters in their likelihood-based matrix factorization of single-cell data [65].

Second, compared to a standard deconvolution model that has exactly parameters per spot, stLVM has𝐶

parameters and latent variables per spot, where denotes the dimension of the latent space𝐶 𝑑𝐶 𝑑

learned by scLVM. In order to avoid overfitting, we therefore proposed to use a neural network to

parameterize the latent variables as a function of the input data (as in auto-encoding variational Bayes).

Namely, we proposed several variants of the algorithm in which either both, part of or none of andβ γ𝑐

may be parameterized by neural networks. Intuitively, the use of a neural network for inference of γ𝑐

may be helpful whenever there are shared transcriptomics profiles across cell types (such as

inflammatory signals). These points in mind, the objective function to train this generative model is

simply composed of (i) the negative binomial likelihood (ii) the likelihood of the empirical prior and (iii)

the variance penalization for .α

Simulations and data generative process
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The benchmarking of spatial deconvolution methods often relies on using a single-cell RNA sequencing

dataset with cell-type annotation, and aggregating multiple cells into a pseudo-bulk using a ground truth

proportion. The algorithms are then evaluated on the prediction of the cell-type proportions [18]. This

approach is not entirely adequate to our setting, as we would like to assess imputation of

cell-type-specific variations of the transcriptome that are lost when combining together random cells of

a given cluster. Instead, we used a real dataset of scRNA-sequencing data to simulate paired spatial and

single-cell transcriptomics data. This helps properly benchmark our method against existing

deconvolution methods.

Learning cell-type-specific transcriptomic modules from single-cell data

We simulated cell-type-specific transcriptional modules based on the lymph node scRNA-seq dataset of

this manuscript. Out of all the cells, we kept five cell types: B cells, CD4 T cells, CD8 T cells, migratory DCs

and Tregs. Those cell types were selected because they were the most abundant in the dataset.

For each cell type, we learned patterns of transcriptomic variation within each cell type using a sparse

PCA model, on log-normalized data [66]. We favored sparse PCA over classical PCA because for some cell

types, the number of cells was much lower than the number of genes (e.g., around cells for𝑁 = 300

the regulatory T cells and genes). The counts were normalized using scanpy [67] with a𝐺 = 2, 000

target count of 10,000 UMIs and the sparse PCA model was fit using sklearn [68], using four components

and a Lagrange multiplier of 5 for the penalty. The output of this procedure is a cell-type-specific∥. ∥
1

embedding for every cell , a mean expression profile for every cell type , and a dictionary of withinγ
𝑛

µ
𝑐

cell-type transcriptomic variation .𝑊
𝑐

The parameters and may be explicitly used to build a simulation process for generating single-cellµ
𝑐

𝑊
𝑐

data , given its cell type and embedding :𝑥 𝑐 γ

37

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

https://paperpile.com/c/WAe7SQ/12ki
https://paperpile.com/c/WAe7SQ/rbBj
https://paperpile.com/c/WAe7SQ/GPp7
https://paperpile.com/c/WAe7SQ/e9rm
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


𝑥∣γ, 𝑐 ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑒𝑥𝑝{µ
𝑐

+ 𝑊
𝑐
⊤γ} − 1, θ( ),  

where we used the mean-dispersion parameterization for the negative binomial distribution. The

dispersion parameter for every gene is estimated from the data using scVI [29].θ
𝑔

𝑔

Generating spatial maps of transcriptome

To build the spatial transcriptomics data, we first constructed a regular grid of dimension . Each40 × 40

spot (i.e., point on the grid) is associated with spatial coordinates . For the cell-type proportions ,𝑠 𝑡
𝑠

π
𝑠

we built a covariance matrix based on the spatial coordinates:𝐾

𝐾[ ]
𝑠𝑠′

= 𝑒𝑥𝑝 −
∥𝑡

𝑠
−𝑡

𝑠′
∥

2

2

λσ2

⎰
⎱

⎱
⎰,  

where denotes the median distance between all pairs of points in the grid. The parameter controlsσ λ

the level of spatial smoothness of the stochastic process and is fixed to . This kernel matrix may be0. 1 𝐾

used to sample independent draws from a Gaussian process:𝑐

ϕ𝑐 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝐾( ),  

and interpret them as an energy to derive cell-type proportions at every spot:

π
𝑠
𝑐 =

𝑒𝑥𝑝{
ϕ

𝑠
𝑐

𝑇 }

𝑐′
∑𝑒𝑥𝑝{

ϕ
𝑠
𝑐′

𝑇 }
,  

where is a temperature parameter, set to . Large would correspond to all proportions to be equal to𝑇 1 𝑇

20%, while small would tend to make the proportions binary. Regarding the embedding variables for𝑇

every cell type , we treat them as independent draw from the same kernel.γ
𝑠
𝑐 4𝐶

For every spot , we sample a fixed number of cells . For every single-cell, we decide on its cell-type𝑠 𝐾 𝑐

based on a draw from the categorical distribution parameterized by the proportions . We then use theπ
𝑠
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previously introduced simulation model to generate the transcriptome of that cell (of cell type and𝑐

embedding ). In our simulation, the scRNA-seq dataset has cells per spot. Finally, for everyγ
𝑠
𝑐 𝐾 = 20

spot, we average the mean parameter of the negative binomial distribution across all cells and sample𝐾

from the same observation model.

Comparison to competing methods

Our major claim is that DestVI is able to infer cell-type proportions but also to detect within cell-type

transcriptomic variations in the spatial transcriptomics data. Although cell-type proportion estimation

methods are reasonably simple to benchmark based on simulations, there is more ambiguity with

respect to the second task. We provide a robust evaluation of the performance of algorithms at

identifying continuous cell states within each cell type, based on cell-type-specific gene expression

imputation.

We therefore provided a slight modification of every algorithm so that it may be used to impute gene

expression at a given cell type and a given spot . For example, DestVI directly performs this task by𝑐 𝑠

accessing the inferred variable and decoding as , which serves as an unnormalized geneγ
𝑠
𝑐 𝑓 𝑐, γ

𝑠
𝑐( )

expression. For algorithms based on embeddings and nearest-neighbors imputation (scVI, Harmony,

Scanorama), we impute by calculating the average gene expression of the -nearest neighbors of the𝑘

embedding of the spot restricted to the single-cell data of cell type only. Similarly, we estimate the𝑠 𝑐

proportion using the empirical proportion of cell types for the -nearest neighbors of the embeddings of𝑘

the spot restricted to all the single-cell data. Finally, we also evaluate the performance of discrete𝑠

deconvolution algorithms (Stereoscope, Seurat, RCTD and SPOTLight) for within cell-type gene

expression. For this, we re-cluster the single-cell data for each cell type at several depths, using

hierarchical clustering (2, 4 and 8 clusters per cell type). Then, we run the discrete deconvolution
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methods on the re-clustered data. We also calculate the mean gene expression for every cluster based

on the single-cell data. Finally, we impute gene expression for cell type at spot by averaging the gene𝑐 𝑠

expression of every cluster in cell type , weighted by the conditional proportions of every cluster at the𝑐

spot. Given these modifications, we evaluated the imputation based on correlation metrics (e.g.,

spearman correlation) across an oracle list of genes for each cell type. The list of genes for each cell type

is given by the indices of the non-zero coefficients of the matrix , learned via sparse PCA. We have𝑊
𝑐

found that this selection of genes helps make the evaluation more robust.

Interestingly, SPOTLight did not terminate after three hours for the most granular clustering (8 clusters

per cell type).

Automated pipeline for data exploration

Although DestVI may be used in a biologically informed setting, when practitioners are seeking for

spatial relevance of specific transcriptomic modules in a given cell type (e.g., interferon type I response

in B cells), we also designed a more agnostic pipeline to quickly explore, interpret and visualize the

results of DestVI.

Spatially localized cell types

In this first step we simply calculate the auto-correlation index as reported by Hotspot [69] on the

cell-type proportion for each individual cell type.

Selecting informative thresholds for cell-type proportions
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We wanted to select the threshold based on the spatial information. Therefore, we chose a characteristic

point of the auto-correlation curve, as a function of the thresholding. More precisely, for every cell type

, we apply the hard-thresholding operator to the proportion vector at different levels (noted𝑐 𝑇 β𝑐 𝑡
𝑖

). We take to be the empirical percentiles of the proportion across all spots. For each𝑇 β𝑐, 𝑡
𝑖( ) 𝑡

𝑖

thresholded vector , we then calculate the auto-correlation metric from Hotspot [69] for all of𝑇 β𝑐, 𝑡
𝑖( )

those thresholded proportions. The result is a curve, that may be interpolated using splines using the

scipy.interpolate function from SciPy [70]. We then analytically differentiate the spline and look for an

inflection point (null second derivative).

Finding main axes of variation in the combined data

Interpreting the cell-type-specific latent dimensions of DestVI may be challenging. We therefore present

here a visualization technique that aims at summarizing the inferences. The major question we would

like to solve here is the following: within a single cell type, which directions of vary spatially? In otherγ

words, we wish to find within cell-type and spatially-varying transcriptomic programs.

General matrix factorization methods (such as NMF, PCA or CCA) could be applied to find those

important components. However, they present several crucial limitations: (i) the samples are not

reweighted by the cell-type proportion. This is especially important because is inferred at every spot,γ
𝑐

even when is null, (ii) we are only interested in variations that are relevant with respect to the spatialβ𝑐

coordinates .λ

To identify those, we focus on identifying the directions of that vary the most (as in PCA), but whileγ

enforcing some agreement with respect to the spatial location, and by taking into account the cell-type
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proportions. More precisely, let be a fixed cell type. We define first spatial PC of the space, noted𝑐 γ𝑐

, as the argument of the solution to the variational problem:𝑢 ∈ 𝑅𝑑

 
𝑢∈𝑅𝑑
max     

𝑖,𝑗
∑ β

𝑖
𝑐β

𝑗
𝑐𝑒

−
∥λ

𝑖
−λ

𝑗
∥2

2σ2

𝑢⊤γ
𝑖
𝑐 − 𝑢⊤γ

𝑗
𝑐( )2

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∥𝑢∥
2

= 1,

This problem, whether we are interested in a single or in several PCs, is tractable, as it may be

formulated as an eigenvalue problem. We present this formulation below, providing a more succinct

presentation than in [36]. We then explain in further details how this weighted PCA is related to a

classical PCA. Interestingly, the previous optimization problem could be extended to find pairs of

cell-type-specific transcriptional programs that are spatially co-activated (via a weighted CCA), but we

leave this to future work.

Principal Component Analysis (PCA)

Let denote a dataset, in which each datapoint . The problem of finding the first𝑥
1
, ..., 𝑥

𝑛( ) 𝑥 ∈ 𝑅𝑑

principal component may be formulated as finding the direction of maximal variance in the data:𝑢
𝑃𝐶

 
𝑢∈𝑅𝑑
max   𝑉𝑎𝑟 𝑢⊤𝑥( ) = 𝑢⊤Σ

𝑋
𝑢 = 1

𝑛
𝑖=1

𝑛

∑ 𝑢⊤𝑥
𝑖( )2

− 𝑢⊤ 1
𝑛

𝑖=1

𝑛

∑ 𝑥
𝑖

⎡⎢⎢⎣

⎤⎥⎥⎦
 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∥𝑢∥
2

= 1,

Laplacian-weighted PCA

We wish to incorporate sample-to-sample weights into this objective function, so that we can

accordingly reweights pairs of observations according to a non-negative, symmetric dissimilarity matrix
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. From this matrix, we form the Laplacian matrix . A Laplacian matrix is a PSD matrix with𝑑
𝑖,𝑗

𝐿𝑑 ∈ 𝑀
𝑛,𝑛

𝑅( )

zero-sum rows and columns. Then, relying on the the identity , in which and2𝑉𝑎𝑟 𝑥( ) = 𝐸 𝑥
1

− 𝑥
2( )2⎡⎢⎣

⎤⎥⎦ 𝑥
1

are iid copies of , we define the first weighted principal component as the solution of the𝑥
2

𝑥 𝑢
𝑃𝐶
𝐿

following optimization problem:

 
𝑢∈𝑅𝑑
max  1

2𝑛2
1≤𝑖<𝑗≤𝑛

∑ 𝑑
𝑖,𝑗

𝑢⊤𝑥
𝑖

− 𝑢⊤𝑥
𝑗( )2

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∥𝑢∥
2

= 1,  

We now argue that this optimization problem is no different than the original PCA formulation, and can

be solved via eigenvalue decomposition. This is because the objective function from the weighted

optimization problem is still the evaluation of a quadratic form:

1

2𝑛2
1≤𝑖<𝑗≤𝑛

∑ 𝑑
𝑖,𝑗

𝑢⊤𝑥
𝑖

− 𝑢⊤𝑥
𝑗( )2

 = 𝑢⊤ 1

2𝑛2
1≤𝑖<𝑗≤𝑛

∑ 𝑑
𝑖,𝑗

𝑥
𝑖

− 𝑥
𝑗( ) 𝑥

𝑖
− 𝑥

𝑗( )⊤⎡⎢⎢⎣

⎤⎥⎥⎦
𝑢  

1

2𝑛2
1≤𝑖<𝑗≤𝑛

∑ 𝑑
𝑖,𝑗

𝑢⊤𝑥
𝑖

− 𝑢⊤𝑥
𝑗( )2

= 1

𝑛2 𝑢⊤

1≤𝑖,𝑗≤𝑛
∑ 𝐿

𝑖,𝑗
𝑥

𝑖
𝑥

𝑗
⊤⎡⎢⎢⎣

⎤⎥⎥⎦
𝑢 

1

2𝑛2
1≤𝑖<𝑗≤𝑛

∑ 𝑑
𝑖,𝑗

𝑢⊤𝑥
𝑖

− 𝑢⊤𝑥
𝑗( )2

= 1

𝑛2 𝑢⊤𝑋⊤𝐿𝑑𝑋𝑢

Consequently, we can find the Laplacian weighted principal components via eigenvalue decomposition of

the matrix . When the random variable is centered, and the dissimilarity matrix is trivial, we𝑋⊤𝐿𝑋 𝑥

obtain . More importantly, it seems we can rotate the data and solve PCA on it.𝑋⊤𝐿𝑋 = Σ
𝑋

𝑋′ = 𝐿
1
2 𝑋

Interpretation of the weighted PCA

For interpreting the spatially-weighted PCA for every cell type, we first project the cell-type-specific cell

state of the spatial data as well as the scRNA-seq data onto the two weighted principal components. We
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then use a two-dimensional colormap to assign a color to the spots in the spatial data, according to the

position of the (2D) projection of the cell-type-specific cell state. This is helpful to prioritize which cell

type may have spatially consistent variations in cell states. To relate this to the functions of each axis of

the PCs, we filter genes that are the most correlated with each PC (Pearson correlation) and we ran gene

set enrichment analysis using EnrichR [36,37] for the top 50 genes.

A post-hoc recipe for differential expression with DestVI

Performing differential expression with a probabilistic model is always challenging, but is crucial for

making robust scientific discoveries. In our previous work, we used a purely Bayesian approach to

differential expression [55,56]. Because we apply MAP inference (and not fully-Bayesian inference) to

DestVI, we instead developed a hybrid approach to differential expression, where we sample from the

adequate generative distribution and then derive a p-value with a frequentist test. More precisely, for

two bags of spots and , and a cell type , we operate as follows.𝑥
𝑎( )

𝑎∈𝐴
𝑥

𝑏( )
𝑏∈𝐵

𝑐

Characterizing cell-type-specific gene expression

We query the parameters of the generative distribution for that spot, but only for the contribution from

cell type . We do this by embedding all the spots, and keeping only the latent variable for the cell type𝑐

of interest and then querying the decoder network for this particular and cell type . Thisγ
𝑠
𝑐 𝑓 γ

𝑠
𝑐, 𝑐( ) γ

𝑠
𝑐 𝑐

vector, along with , fully characterize the transcriptome of a fictitious cell of type in spot :𝑝
𝑔

𝑥
𝑠𝑐

𝑐 𝑠

𝑥
𝑠𝑐

∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑙
^
𝑓 γ

𝑠
𝑐, 𝑐( ), 𝑝

𝑔( ),  

where is a fixed scalar equal to the average library size in the single-cell data.𝑙
^
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Simulating cell-type-specific gene expression

Then, we sample multiple times per spot from the mean of the Poisson distribution underlying the

negative binomial:

𝑤
𝑠𝑐

∼ 𝐺𝑎𝑚𝑚𝑎 𝑙
^
𝑓 γ

𝑠
𝑐, 𝑐( ), 𝑝

𝑔( ).  

There are several considerations for sampling this way. First, as we underlined in our previous work for

calculating gene correlations in totalVI, using the mean of the generative distribution provides all forms

of biases. Second, sampling from the full negative binomial distribution introduces Poisson noise, and

reduces sensitivity of the method. Sampling from the Gamma distribution is an intermediate, although

post-hoc, solution. This step plays the role of denoising and is especially important when there are very

few spots in the bags or , because we can generate more data points.𝐴 𝐵

Hypothesis testing

For every cell in every bag, we can generate between and independent samples of the random10 100

variables and apply a two-sample Kolmogorov–Smirnov test, and we correct for multiple testing𝑤
𝑠𝑐

using the Benjamini-Hochberg procedure [71]. Additionally, we tag genes as differentially expressed if

two conditions are met: (i) the null hypothesis is rejected, after control of the FDR at level 0.05, and (ii)

the log-fold change (LFC) is greater than a data-driven threshold, in absolute value. To calculate this

threshold, we assume that a significant amount of LFCs will concentrate around zero (which correspond

to the genes that are equally expressed), while DE genes will concentrate around other modes. Based on

this assumption, we fit a three-components Gaussian Mixture Model (GMM) to the LFC, and keep the
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mean of the mode with largest absolute value, whose associated distributions should contain

differentially expressed genes.
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Experimental conditions and sample preparation

Mice
C57BL/6J mice were purchased from Harlan and housed in the Weizmann Institute of Science animal

facility, under specific pathogen-free conditions. YARG mice (B6.129S4-Arg1tm1Lky/J, Jax015857) are

bought from Jax Laboratory. For consistency, female mice, 6-8 weeks of age, were used for all

experiments. All mice were provided with normal chow and water ad libitum, and housed under a strict

12-hour light-dark cycle. All experimental protocols were approved by the Institutional Animal Care and

Use Committee (IACUC).

Preparation of antigens

Inactivated Mycobacterium Smegmatis (MS) was prepared as previously reported in [24]. Simply M.

smegmatis was grown in Luria-Bertani broth overnight at 37°C. Bacteria were washed thrice in PBS

containing 0.05% Tween 80 and heat-killed at 75°C for 1 hour, then aliquoted into a useful size and

stored at -80°C.

Immunizations

Mice were anesthetized and M. smegmatis was administered by intradermal injection into the ear pinna.

PBS was injected into the ear pinna of control animals. The pathogen immunization dose is 4M CFU,

according to our previous study [24]. The auricular lymph nodes were harvested 48 hours after

immunization.

47

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

https://paperpile.com/c/WAe7SQ/4uxb
https://paperpile.com/c/WAe7SQ/4uxb
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


Tumor model

MCA205 fibrosarcoma cell lines were kindly provided by Sergio Quezada group at UCL cancer institute,

London, UK. Cells were cultured in DMEM (41965-039) medium supplemented with 10%

heat-inactivated FBS, 1mM sodium pyruvate, 2mM l-glutamine, 1% penicillin-streptomycin (Thermo

Fisher Scientific). Cells were cultured in 100 mm tissue culture plates in an incubator with humidified air

and 5% CO2 at 37°C. For establishment of solid tumors, 8 weeks, female mice were injected

intradermally with 5 × 105 MCA205 tumor cells suspended in 100 µL PBS on their right flank. On day 14,

tumor volume was measured using a caliper and prepared according to Visium spatial protocols of tissue

preparation guide (CG000240).

RNA-sequencing and data processing

Single-cell RNA-Sequencing for the lymph node

To prepare single cell suspensions for scRNA-seq using 10x Genomics system, auricular LNs were

digested in IMDM containing 100 µg/mL Liberase TL and 100 µg/mL DNase I (both from Roche,

Germany) for 20 minutes at 37°C. Last 5 minutes of incubation, EDTA was added at a final concentration

of 10 mM. Cells were collected, filtered through a 70 µm cell strainer, washed with PBS + 0.04% BSA for a

final concentration of 1000 cells/µL.

Cellular suspension was immediately loaded onto Next GEM Chip G targeting ~5000 cells and then ran

on a Chromium controller instrument (10x Genomics) to generate GEM emulsion. Single cell 3’ RNA-seq

libraries were generated according to the manufacturer’s protocol using the v3.1 Next GEM dual index

workflow. Final libraries were quantified using NEBNext Library Quant Kit for Illumina (NEB) and high

sensitivity D1000 TaepStation (Agilent). Libraries were pooled and sequenced on an SP 100 cycles
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reagent kit on a NovaSeq6000 instrument (Illumina), aiming for ~ 50,000 reads per cell. Reads from raw

FASTQ files were processed with Cell Ranger 4.0 and mapped to the mouse mm10–2020 reference (10x

Genomics). No read depth normalization was applied when aggregating datasets.

Lymph node scRNA-seq data processing

Using Scanpy [67], we filtered out cells with less than 200 UMIs and genes expressed in less than 3 cells,

as well as cells with more than 20% mitochondrial genes. We estimated doublet scores for all barcodes

using Scrublet [72]. Because we did not expect any novel cell types in the data, we seeked to

automatically annotate our samples based on publicly available murine lymph node scRNA-seq [38]. We

therefore harmonized all the samples from both datasets using scVI [29], and transferred labels using

scANVI [39]. For both algorithms, we filtered genes to match the highly variable genes from the dataset

of [38]. After manual examination of the expression of marker genes (Supplementary Table 4 of [38]) and

its adequation with the automated labels, we noticed some mislabeling inaccuracies on the rare cell

types of the myeloid cluster. Consequently, we clustered the myeloid compartment with Louvain and

curated the annotation, based not only on the automated annotation, but also the gene expression of

the key marker genes. Finally, we also removed a cluster of doublets, as predicted by Scrublet. We

recapitulate the number of cells for each cell type in Supplementary Table 1.

Single-cell RNA-Sequencing for the tumor

To prepare tumor infiltrating leukocytes single cell suspensions, the tumors underwent mechanical

(gentle-MACSTM C tube, Miltenyi Biotec Inc., San Diego, CA) and enzymatic digestion (0.1mg/ml DNase

type I (Roche), and 1mg/ml Collagenase IV (Worthington) in RPMI-1640) for 10 minutes at 37°C and

repeat one more time. Cells then filtered through 100 µm cell strainer, washed with an ice cold sorting

buffer, centrifuged (5 min, 4°C, 350g), and stained with fluorophores conjugated anti-mouse CD45
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antibodies on ice 30 minutes avoid light. After staining, cells were washed and resuspended in a cold

washing buffer (0.5% BSA and 2 mM EDTA in PBS), filtered through a 70 µm cell strainer. Before sorting,

cells were stained with propidium iodide to exclude dead/dying cells. Cell sorting was performed using a

BD FACSAria Fusion flow cytometer (BD Biosciences), gating for CD45+ cells after exclusion of dead cells

and doublets (Supplementary Figure 20). Single cells were sorted into 384-well plates and single cell

RNA-seq libraries were generated using a modified version of the single cell MARS-seq protocol [73] [74].

In brief, mRNA from cells sorted into cell capture plates were barcoded, converted into cDNA and pooled

using an automated pipeline. The pooled cDNA are then amplified and Illumina libraries are being

generated. Final libraries were quantified using Qubit and high sensitivity D1000 TapeStation (Agilent).

Libraries were pooled and sequenced an SP 100 cycles reagent kit on a NovaSeq6000 instrument

(Illumina). Sequences were mapped to the mouse (mm10). Demultiplexing and filtering was performed

as previously described [74], with the following adaptations: Mapping of reads was performed using

HISAT (version 0.1.6); reads with multiple mapping positions were excluded. Reads were associated with

genes if they were mapped to an exon, using the ensembl gene annotation database (embl release 90).

Exons of different genes that shared a genomic position on the same strand were considered as a single

gene with a concatenated gene symbol. The level of spurious unique molecular identifiers (UMIs) in the

data were estimated by using statistics on empty MARS-seq wells, and excluded rare cases with

estimated noise > 5% (median estimated noise over all experiments was 2%).

Tumor scRNA-seq data processing

Using Scanpy [67], we filtered out cells with less than 200 UMIs and genes expressed in less than 10 cells.

We selected 4,000 highly variable genes using scanpy and reduced dimensionality of the data using scVI

[29]. We applied leiden clustering and annotated the data based on marker genes (CD4 and Icos for CD4

T cells, Cd8a and Cd8b1 for CD8 T cells, Gzma and Prf1 for NK cells, C1qa and Ly6a for macrophages /
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monocytes, S100a8 for Neutrophils, H2-Ab1, H2-Eb1 and H2-Aa for DCs and Cd63 and Col3a1 for tumor

cells. We recapitulate the number of cells for each cell type in Supplementary Table 5.

Visium data generation

Auricular LNs and the MCA205 tumor were prepared according to Visium spatial protocols of tissue

preparation guide (10x genomics). Firstly, freshly obtained tissue samples were snap frozen in liquid

nitrogen, then embedded in chilled Optimal Cutting Temperature compound (OCT; Tissue-Tek) and

frozen on dry ice, then stored at -80°C in a sealed container for later use. For Visium samples

preparation, OCT-embedded tissue blocks were cut to 10 µm thick using a LEICA CM1950 machine and

mounted on the Visium spatial gene expression slide. For gene expression samples, tissues were

permeabilized for 18 minutes, based on tissue optimization time course experiments. Brightfield

histology images were taken using a 10X objective (Plan APO, NA 0.25) on Leica DMI8 wide-field inverted

microscope according to Visium spatial gene expression imaging guidelines (CG000241). Raw images

were stitched together using Leica application suite X (LAS X) software and exported as TIFF/PNG files

with low- and high-resolution settings.

Libraries were prepared according to the Visium spatial gene expression user guide (10x genomics). Final

libraries were quantified using NEBNext Library Quant Kit for Illumina (NEB) and high sensitivity D1000

TapeStation (Agilent). The number of reads required for sequencing was calculated taking into account

the percentage of the tissue within each capture area (calculated using imageJ). Libraries were pooled

according to the desired number of reads and sequenced on an SP 200 cycles reagent kit on a

NovaSeq6000 instrument (Illumina).
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Visium raw data processing

Raw FASTQ files and histology images were processed by sample with the Space Ranger software v1.2.1.

For the lymph node, we calculated the quality control metrics using Scanpy [67] and noticed that one of

the PBS samples was of low quality, as indicated by the number of UMIs per spot. We also filtered out

spots with less than 4,000 UMIs and genes expressed in less than 10 spots. The number of spots after

filtering was 1,092 across the remaining three lymph nodes. For the tumor data, we filtered out spots

with more than 2% mitochondrial gene expression, spots with less than 10,000 UMIs and genes

expressed in less than 10 spots.

Immunofluorescence

Tissues embedded in OCT for Visium were sliced to 10 μm thick sections using a LEICA CM1950 machine

and mounted on SuperFrost Plus slides (Thermo Scientific). For visualization, sections were firstly fixed

by 4% Formaldehyde solution in PBS diluted from 16% Formaldehyde (Thermo Scientific) 10 minutes at

room temperature. Then sections were washed by PBS three times and blocked with a blocking buffer

solution (5% donkey serum, 2% BSA, 0.2% Triton X-100) for 2 h at room temperature, and incubated with

primary antibody at 4°C overnight. If secondary antibody is necessary, after three times PBST (0.02%

Triton X-100) washes corresponding secondary antibody was incubated at room temperature 1 hour.

After three times PBST washed, DAPI (4',6-Diamidino-2-Phenylindole, Dilactate, Biolegend) reagent was

added for 10 min to detect cell nuclei. Sections were mounted with SlowFade Gold Antifade Mountant

(Invitrogen, S36937) and sealed with cover-slips. Microscopic analysis was performed using a

laser-scanning confocal microscope (Zeiss, LSM880). Images were acquired and processed with the same

threshold settings using Imaris software (Bitplane). The primary antibodies used were: CD45 APC (1:100,

30-F11, eBioscience, 17-0451-82), CD11b Biotin (1:100, M1/70, Biolegend, 101204), CD11b PE (1:100,

M1/70, eBioscience, 12-0112-83), CD64 PE (1:100, X54-5/7.1, Biolegend, 139303), Ly6C FITC (1:100,
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HK1.4, Biolegend, 128005), B220 (1:100, RA3-6B2, Biolegend, 103208), CD3 Biotin (1:100, 17A2,

Biolegend, 100243), TCRb PE (1:100, H57-597, Biolegend, 109207), MHCII I-A/I-E FITC (1:100,

M5/114.15.2, Biolegend, 107606), F4/80 APC (1:100, BM8, eBioscience, 17-4801-82), NK1.1 PE(1:100,

PK136, eBioscience, 12-5941-63), CD31 APC (1:100, MEC13.3, Biolegend, 102509), IFIT3 polyclonal

antibody (1:500, Proteintech, 15201-1-AP). Secondary antibody used were: Streptavidin APC (1:400,

Biolegend, 405207), Goat anti-Rabbit IgG-heavy and light chain Antibody DyLight® 650 Conjugated

(1:800, Bethyl, A120-101D5).

Data Availability

The raw data discussed in this manuscript have been deposited in the National Center for Biotechnology

Information’s Gene Expression Omnibus and are accessible through accession number GSE173778

(murine lymph node and tumor; spatial transcriptomics and scRNA-seq data). Processed data are

available on our reproducibility repository (https://github.com/romain-lopez/DestVI-reproducibility).

Software Availability

The code to reproduce the results in this manuscript is available on the Github repository

https://github.com/romain-lopez/DestVI-reproducibility and has been deposited to Zenodo

https://doi.org/10.5281/zenodo.4685952. The reference implementation of DestVI, along with

accompanying tutorials is available via the scvi-tools codebase at https://scvi-tools.org/.

Author Contributions

R.L, B.L, H.K-S, I.A and N.Y designed the study and the experiments. B.L performed the experimental

procedures. H.K-S, M.K and D.P prepared Visium and scRNA-seq libraries. A.J processed single-cell RNA

53

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

https://github.com/romain-lopez/DestVI-reproducibility
https://github.com/romain-lopez/DestVI-reproducibility
https://doi.org/10.5281/zenodo.4685952
https://scvi-tools.org/
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


sequencing of the tumor data. B.L and Y.A contributed to microscopy analysis. E.D. assisted with

RNA-sequencing data processing and data upload. R.L conceived the statistical model with input from

B.L, H.K-S and M.I.J. R.L implemented the DestVI software and applied the software to analyze the data,

with input from A.W. P.B proposed the spatially-aware extension of DestVI. I.A and N.Y supervised the

work.

Acknowledgements

We would like to acknowledge Adam Gayoso and Galen Xing for their help integrating DestVI in the

scvi-tools codebase. Thanks to Zoë Steier for providing guidance on the annotation of the lymph node

single-cell data. We thank Efrat Davidson for the artwork. We are grateful for insightful conversations

with Assaf Weiner, Aviv Regev, Dana Pe'er, Quaid Morris, Alexis Battle, Elior Rahmani and Matthew

Jones.

Funding: NY and RL were supported by the Chan Zuckerberg Biohub. I.A. is an Eden and Steven Romick

Professorial Chair, supported by Merck KGaA, Darmstadt, Germany, the Chan Zuckerberg Initiative, the

Howard Hughes Medical Institute International Scholar award, the European Research Council

Consolidator Grant 724471-HemTree2.0, an SCA award of the Wolfson Foundation and Family Charitable

Trust, the Thompson Family Foundation, a Melanoma Research Alliance Established Investigator Award

(509044), the Israel Science Foundation (703/15), the Ernest and Bonnie Beutler Research Program for

Excellence in Genomic Medicine, the Helen and Martin Kimmel award for innovative investigation, the

NeuroMac DFG/Transregional Collaborative Research Center Grant, an International Progressive MS

Alliance/NMSS PA-1604 08459, the ISF Israel Precision Medicine Program (IPMP) 607/20 grant and an

Adelis Foundation grant.

54

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


Competing Interests Statement

N.Y. is an advisor and/or has equity in Cellarity, Celsius Therapeutics, and Rheos Medicine.

References

1. Wagner A, Regev A, Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat
Biotechnol. 2016;34: 1145–1160.

2. Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA, Svensson CI, et al. Spatial organization
of the somatosensory cortex revealed by osmFISH. Nat Methods. 2018;15.
doi:10.1038/s41592-018-0175-z

3. Asp M, Salmén F, Ståhl PL, Vickovic S, Felldin U, Löfling M, et al. Spatial detection of fetal marker
genes expressed at low level in adult human heart tissue. Sci Rep. 2017;7: 12941.

4. Hunter MV, Moncada R, Weiss JM, Yanai I, White RM. Spatial transcriptomics reveals the
architecture of the tumor/microenvironment interface. Cold Spring Harbor Laboratory. 2020. p.
2020.11.05.368753. doi:10.1101/2020.11.05.368753

5. Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, et al. Multimodal Analysis of
Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Cell. 2020;182:
1661–1662.

6. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly
multiplexed RNA profiling in single cells. Science. 2015;348: aaa6090.

7. Eng CL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, et al. Transcriptome-scale super-resolved
imaging in tissues by RNA seqFISH. Nature. 2019;568. doi:10.1038/s41586-019-1049-y

8. Petukhov V, Soldatov RA, Khodosevich K, Kharchenko PV. Bayesian segmentation of spatially
resolved transcriptomics data. Cold Spring Harbor Laboratory. 2020. p. 2020.10.05.326777.
doi:10.1101/2020.10.05.326777

9. Littman R, Hemminger Z, Foreman R, Arneson D, Zhang G, Gómez-Pinilla F, et al. JSTA: joint cell
segmentation and cell type annotation for spatial transcriptomics. Cold Spring Harbor Laboratory.
2020. p. 2020.09.18.304147. doi:10.1101/2020.09.18.304147

10. Biancalani T, Scalia G, Buffoni L, Avasthi R, Lu Z, Sanger A, et al. Deep learning and alignment of
spatially-resolved whole transcriptomes of single cells in the mouse brain with Tangram. Cold Spring

55

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

http://paperpile.com/b/WAe7SQ/gAmz
http://paperpile.com/b/WAe7SQ/gAmz
http://paperpile.com/b/WAe7SQ/uzST
http://paperpile.com/b/WAe7SQ/uzST
http://paperpile.com/b/WAe7SQ/uzST
http://dx.doi.org/10.1038/s41592-018-0175-z
http://paperpile.com/b/WAe7SQ/QIWM
http://paperpile.com/b/WAe7SQ/QIWM
http://paperpile.com/b/WAe7SQ/SJBu
http://paperpile.com/b/WAe7SQ/SJBu
http://paperpile.com/b/WAe7SQ/SJBu
http://dx.doi.org/10.1101/2020.11.05.368753
http://paperpile.com/b/WAe7SQ/ueGp
http://paperpile.com/b/WAe7SQ/ueGp
http://paperpile.com/b/WAe7SQ/ueGp
http://paperpile.com/b/WAe7SQ/hrGk
http://paperpile.com/b/WAe7SQ/hrGk
http://paperpile.com/b/WAe7SQ/z0Ui
http://paperpile.com/b/WAe7SQ/z0Ui
http://dx.doi.org/10.1038/s41586-019-1049-y
http://paperpile.com/b/WAe7SQ/s97y
http://paperpile.com/b/WAe7SQ/s97y
http://paperpile.com/b/WAe7SQ/s97y
http://dx.doi.org/10.1101/2020.10.05.326777
http://paperpile.com/b/WAe7SQ/jYul
http://paperpile.com/b/WAe7SQ/jYul
http://paperpile.com/b/WAe7SQ/jYul
http://dx.doi.org/10.1101/2020.09.18.304147
http://paperpile.com/b/WAe7SQ/RAei
http://paperpile.com/b/WAe7SQ/RAei
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


Harbor Laboratory. 2020. p. 2020.08.29.272831. doi:10.1101/2020.08.29.272831

11. Abdelaal T, Mourragui S, Mahfouz A, Reinders MJT. SpaGE: Spatial Gene Enhancement using
scRNA-seq. Nucleic Acids Res. 2020;48: e107.

12. Lopez R, Nazaret A, Langevin M, Samaran J, Regier J, Jordan MI, et al. A joint model of unpaired data
from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements.
arXiv [cs.LG]. 2019. Available: http://arxiv.org/abs/1905.02269

13. Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Di Bella DJ, et al. Highly sensitive spatial
transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol. 2020.
doi:10.1038/s41587-020-0739-1

14. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. Slide-seq: A scalable
technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363:
1463–1467.

15. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis
of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353: 78–82.

16. Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, et al. Robust decomposition of cell type
mixtures in spatial transcriptomics. Cold Spring Harbor Laboratory. 2020. p. 2020.05.07.082750.
doi:10.1101/2020.05.07.082750

17. Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. SPOTlight: seeded NMF regression to deconvolute
spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 2021.
doi:10.1093/nar/gkab043

18. Andersson A, Bergenstråhle J, Asp M, Bergenstråhle L, Jurek A, Fernández Navarro J, et al. Single-cell
and spatial transcriptomics enables probabilistic inference of cell type topography. Commun Biol.
2020;3: 565.

19. Song Q, Su J. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial
intelligence. Brief Bioinform. 2021. doi:10.1093/bib/bbaa414

20. Kleshchevnikov V, Shmatko A, Dann E, Aivazidis A, King HW, Li T, et al. Comprehensive mapping of
tissue cell architecture via integrated single cell and spatial transcriptomics. Cold Spring Harbor
Laboratory. 2020. p. 2020.11.15.378125. doi:10.1101/2020.11.15.378125

21. Ortiz C, Navarro JF, Jurek A, Märtin A, Lundeberg J, Meletis K. Molecular atlas of the adult mouse
brain. Science Advances. 2020;6: eabb3446.

22. Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand
challenges in single-cell data science. Genome Biol. 2020;21: 1–35.

23. Lopez R, Gayoso A, Yosef N. Enhancing scientific discoveries in molecular biology with deep
generative models. Mol Syst Biol. 2020;16: e9198.

24. Ronnie Blecher-Gonen. Single-Cell Analysis of Diverse Pathogen Responses Defines a Molecular
Roadmap for Generating Antigen-Specific Immunity. Cell Systems. 2019;8: 109–121.e6.

56

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

http://paperpile.com/b/WAe7SQ/RAei
http://dx.doi.org/10.1101/2020.08.29.272831
http://paperpile.com/b/WAe7SQ/MgyX
http://paperpile.com/b/WAe7SQ/MgyX
http://paperpile.com/b/WAe7SQ/FWqX
http://paperpile.com/b/WAe7SQ/FWqX
http://paperpile.com/b/WAe7SQ/FWqX
http://arxiv.org/abs/1905.02269
http://paperpile.com/b/WAe7SQ/mkEg
http://paperpile.com/b/WAe7SQ/mkEg
http://paperpile.com/b/WAe7SQ/mkEg
http://dx.doi.org/10.1038/s41587-020-0739-1
http://paperpile.com/b/WAe7SQ/X4C5
http://paperpile.com/b/WAe7SQ/X4C5
http://paperpile.com/b/WAe7SQ/X4C5
http://paperpile.com/b/WAe7SQ/PWyW
http://paperpile.com/b/WAe7SQ/PWyW
http://paperpile.com/b/WAe7SQ/GOSz
http://paperpile.com/b/WAe7SQ/GOSz
http://paperpile.com/b/WAe7SQ/GOSz
http://dx.doi.org/10.1101/2020.05.07.082750
http://paperpile.com/b/WAe7SQ/OWrj
http://paperpile.com/b/WAe7SQ/OWrj
http://paperpile.com/b/WAe7SQ/OWrj
http://dx.doi.org/10.1093/nar/gkab043
http://paperpile.com/b/WAe7SQ/12ki
http://paperpile.com/b/WAe7SQ/12ki
http://paperpile.com/b/WAe7SQ/12ki
http://paperpile.com/b/WAe7SQ/qHMK
http://paperpile.com/b/WAe7SQ/qHMK
http://dx.doi.org/10.1093/bib/bbaa414
http://paperpile.com/b/WAe7SQ/413k
http://paperpile.com/b/WAe7SQ/413k
http://paperpile.com/b/WAe7SQ/413k
http://dx.doi.org/10.1101/2020.11.15.378125
http://paperpile.com/b/WAe7SQ/FsFx
http://paperpile.com/b/WAe7SQ/FsFx
http://paperpile.com/b/WAe7SQ/wJ0z
http://paperpile.com/b/WAe7SQ/wJ0z
http://paperpile.com/b/WAe7SQ/TlMm
http://paperpile.com/b/WAe7SQ/TlMm
http://paperpile.com/b/WAe7SQ/4uxb
http://paperpile.com/b/WAe7SQ/4uxb
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


25. Kumar S, Sharife H, Kreisel T, Mogilevsky M, Bar-Lev L, Grunewald M, et al. Intra-Tumoral Metabolic
Zonation and Resultant Phenotypic Diversification Are Dictated by Blood Vessel Proximity. Cell
Metab. 2019;30: 201–211.e6.

26. Gayoso A, Lopez R, Xing G, Boyeau P, Wu K, Jayasuriya M, et al. scvi-tools: a library for deep
probabilistic analysis of single-cell omics data. bioRxiv. 2021. p. 2021.04.28.441833.
doi:10.1101/2021.04.28.441833

27. Blei DM. Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models. Annual
Review of Statistics and Its Application. 2014. pp. 203–232.
doi:10.1146/annurev-statistics-022513-115657

28. Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat
Methods. 2014;11: 637–640.

29. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell
transcriptomics. Nat Methods. 2018;15: 1053–1058.

30. Kingma DP, Welling M. Auto-Encoding Variational Bayes. arXiv [stat.ML]. 2013. Available:
http://arxiv.org/abs/1312.6114v10

31. Tomczak JM, Welling M. VAE with a VampPrior. arXiv [cs.LG]. 2017. Available:
http://arxiv.org/abs/1705.07120

32. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive
Integration of Single-Cell Data. Cell. 2019;177: 1888–1902.e21.

33. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate
integration of single-cell data with Harmony. Nat Methods. 2019;16: 1289–1296.

34. Hie B, Bryson B, Berger B. Efficient integration of heterogeneous single-cell transcriptomes using
Scanorama. Nat Biotechnol. 2019;37: 685–691.

35. Geary RC. The Contiguity Ratio and Statistical Mapping. The Incorporated Statistician. 1954. p. 115.
doi:10.2307/2986645

36. Koren Y, Carmel L. Robust linear dimensionality reduction. IEEE Transactions on Visualization and
Computer Graphics. 2004. pp. 459–470. doi:10.1109/tvcg.2004.17

37. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative
HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14: 128.

38. Gayoso A, Steier Z, Lopez R, Regier J, Nazor KL, Streets A, et al. Joint probabilistic modeling of
single-cell multi-omic data with totalVI. Nat Methods. 2021;18: 272–282.

39. Xu C, Lopez R, Mehlman E, Regier J, Jordan MI, Yosef N. Probabilistic harmonization and annotation
of single-cell transcriptomics data with deep generative models. Mol Syst Biol. 2021;17: e9620.

40. McInnes L, Healy J, Saul N, Großberger L. UMAP: Uniform Manifold Approximation and Projection.
Journal of Open Source Software. 2018. p. 861. doi:10.21105/joss.00861

57

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

http://paperpile.com/b/WAe7SQ/5SJn
http://paperpile.com/b/WAe7SQ/5SJn
http://paperpile.com/b/WAe7SQ/5SJn
http://paperpile.com/b/WAe7SQ/FD0O
http://paperpile.com/b/WAe7SQ/FD0O
http://paperpile.com/b/WAe7SQ/FD0O
http://dx.doi.org/10.1101/2021.04.28.441833
http://paperpile.com/b/WAe7SQ/O5wr
http://paperpile.com/b/WAe7SQ/O5wr
http://paperpile.com/b/WAe7SQ/O5wr
http://dx.doi.org/10.1146/annurev-statistics-022513-115657
http://paperpile.com/b/WAe7SQ/JfPi
http://paperpile.com/b/WAe7SQ/JfPi
http://paperpile.com/b/WAe7SQ/T5mu
http://paperpile.com/b/WAe7SQ/T5mu
http://paperpile.com/b/WAe7SQ/iQ1A
http://arxiv.org/abs/1312.6114v10
http://paperpile.com/b/WAe7SQ/F9sy
http://arxiv.org/abs/1705.07120
http://paperpile.com/b/WAe7SQ/pCl9
http://paperpile.com/b/WAe7SQ/pCl9
http://paperpile.com/b/WAe7SQ/xwNy
http://paperpile.com/b/WAe7SQ/xwNy
http://paperpile.com/b/WAe7SQ/rqlJ
http://paperpile.com/b/WAe7SQ/rqlJ
http://paperpile.com/b/WAe7SQ/1npv
http://paperpile.com/b/WAe7SQ/1npv
http://dx.doi.org/10.2307/2986645
http://paperpile.com/b/WAe7SQ/hCEK
http://paperpile.com/b/WAe7SQ/hCEK
http://dx.doi.org/10.1109/tvcg.2004.17
http://paperpile.com/b/WAe7SQ/cAhl
http://paperpile.com/b/WAe7SQ/cAhl
http://paperpile.com/b/WAe7SQ/I9DF
http://paperpile.com/b/WAe7SQ/I9DF
http://paperpile.com/b/WAe7SQ/2OBU
http://paperpile.com/b/WAe7SQ/2OBU
http://paperpile.com/b/WAe7SQ/Zkzi
http://paperpile.com/b/WAe7SQ/Zkzi
http://dx.doi.org/10.21105/joss.00861
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


41. Garraud O, Borhis G, Badr G, Degrelle S, Pozzetto B, Cognasse F, et al. Revisiting the B-cell
compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and
beyond. BMC Immunol. 2012;13: 63.

42. Hampton HR, Chtanova T. The lymph node neutrophil. Semin Immunol. 2016;28: 129–136.

43. Kastenmüller W, Torabi-Parizi P, Subramanian N, Lämmermann T, Germain RN. A spatially-organized
multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell.
2012;150: 1235–1248.

44. Reynoso GV, Weisberg AS, Shannon JP, McManus DT, Shores L, Americo JL, et al. Lymph node
conduits transport virions for rapid T cell activation. Nat Immunol. 2019;20: 602–612.

45. Leal JM, Huang JY, Kohli K, Stoltzfus C, Lyons-Cohen MR, Olin BE, et al. Innate cell
microenvironments in lymph nodes shape the generation of T cell responses during type I
inflammation. Sci Immunol. 2021;6. doi:10.1126/sciimmunol.abb9435

46. Moran I, Grootveld AK, Nguyen A, Phan TG. Subcapsular Sinus Macrophages: The Seat of Innate and
Adaptive Memory in Murine Lymph Nodes. Trends Immunol. 2019;40: 35–48.

47. Coombes JL, Han S-J, van Rooijen N, Raulet DH, Robey EA. Infection-induced regulation of natural
killer cells by macrophages and collagen at the lymph node subcapsular sinus. Cell Rep. 2012;2:
124–135.

48. Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, et al. Minimal differentiation
of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes.
Immunity. 2013;39: 599–610.

49. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, et al. Immunological
mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med. 2015;7:
277ra30.

50. Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D, Jaitin DA, et al. Coupled scRNA-Seq and
Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer. Cell. 2020;182:
872–885.e19.

51. Massi D, Marconi C, Franchi A, Bianchini F, Paglierani M, Ketabchi S, et al. Arginine metabolism in
tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and
experimental tumors. Hum Pathol. 2007;38: 1516–1525.

52. Chang CI, Liao JC, Kuo L. Macrophage arginase promotes tumor cell growth and suppresses nitric
oxide-mediated tumor cytotoxicity. Cancer Res. 2001;61: 1100–1106.

53. Carmona-Fontaine C, Deforet M, Akkari L, Thompson CB, Joyce JA, Xavier JB. Metabolic origins of
spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:
2934–2939.

54. Duque-Correa MA, Kühl AA, Rodriguez PC, Zedler U, Schommer-Leitner S, Rao M, et al. Macrophage
arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl
Acad Sci U S A. 2014;111: E4024–E4032.

58

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

http://paperpile.com/b/WAe7SQ/m0Ml
http://paperpile.com/b/WAe7SQ/m0Ml
http://paperpile.com/b/WAe7SQ/m0Ml
http://paperpile.com/b/WAe7SQ/IiWz
http://paperpile.com/b/WAe7SQ/HL75
http://paperpile.com/b/WAe7SQ/HL75
http://paperpile.com/b/WAe7SQ/HL75
http://paperpile.com/b/WAe7SQ/5Kuo
http://paperpile.com/b/WAe7SQ/5Kuo
http://paperpile.com/b/WAe7SQ/tSxg
http://paperpile.com/b/WAe7SQ/tSxg
http://paperpile.com/b/WAe7SQ/tSxg
http://dx.doi.org/10.1126/sciimmunol.abb9435
http://paperpile.com/b/WAe7SQ/cocX
http://paperpile.com/b/WAe7SQ/cocX
http://paperpile.com/b/WAe7SQ/TN83
http://paperpile.com/b/WAe7SQ/TN83
http://paperpile.com/b/WAe7SQ/TN83
http://paperpile.com/b/WAe7SQ/YrnF
http://paperpile.com/b/WAe7SQ/YrnF
http://paperpile.com/b/WAe7SQ/YrnF
http://paperpile.com/b/WAe7SQ/ycNV
http://paperpile.com/b/WAe7SQ/ycNV
http://paperpile.com/b/WAe7SQ/ycNV
http://paperpile.com/b/WAe7SQ/CvcR
http://paperpile.com/b/WAe7SQ/CvcR
http://paperpile.com/b/WAe7SQ/CvcR
http://paperpile.com/b/WAe7SQ/fn0P
http://paperpile.com/b/WAe7SQ/fn0P
http://paperpile.com/b/WAe7SQ/fn0P
http://paperpile.com/b/WAe7SQ/TZvT
http://paperpile.com/b/WAe7SQ/TZvT
http://paperpile.com/b/WAe7SQ/q2KD
http://paperpile.com/b/WAe7SQ/q2KD
http://paperpile.com/b/WAe7SQ/q2KD
http://paperpile.com/b/WAe7SQ/Y39n
http://paperpile.com/b/WAe7SQ/Y39n
http://paperpile.com/b/WAe7SQ/Y39n
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


55. Lopez R, Boyeau P, Yosef N, Jordan MI, Regier J. Decision-Making with Auto-Encoding Variational
Bayes. 2020. Available: http://arxiv.org/abs/2002.07217

56. Boyeau P, Lopez R, Regier J, Gayoso A, Jordan MI, Yosef N. Deep Generative Models for Detecting
Differential Expression in Single Cells. bioRxiv. 2019. p. 794289. doi:10.1101/794289

57. Jazbec M, Ashman M, Fortuin V, Pearce M, Mandt S, Rätsch G. Scalable Gaussian Process Variational
Autoencoders. arXiv [stat.ML]. 2020. Available: http://arxiv.org/abs/2010.13472

58. Bonilla EV, Krauth K, Dezfouli A. Generic Inference in Latent Gaussian Process Models. J Mach Learn
Res. 2019;20: 1–63.

59. Rasmussen CE. Gaussian Processes for Machine Learning. 2006.

60. Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell interactions and
communication from gene expression. Nat Rev Genet. 2021;22: 71–88.

61. Yosef N, Regev A. Writ large: Genomic dissection of the effect of cellular environment on immune
response. Science. 2016;354: 64–68.

62. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. J Mach Learn Res. 2014;15: 1929–1958.

63. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. arXiv [cs.LG]. 2015. Available: http://arxiv.org/abs/1502.03167

64. Ba JL, Kiros JR, Hinton GE. Layer Normalization. arXiv [stat.ML]. 2016. Available:
http://arxiv.org/abs/1607.06450

65. Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. A general and flexible method for signal
extraction from single-cell RNA-seq data. Nat Commun. 2018;9: 284.

66. Zou H, Hastie T, Tibshirani R. Sparse Principal Component Analysis. J Comput Graph Stat. 2006;15:
265–286.

67. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome
Biol. 2018;19: 15.

68. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
Learning in Python. J Mach Learn Res. 2011;12: 2825–2830.

69. DeTomaso D, Yosef N. Identifying Informative Gene Modules Across Modalities of Single Cell
Genomics. Cold Spring Harbor Laboratory. 2020. p. 2020.02.06.937805.
doi:10.1101/2020.02.06.937805

70. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17: 261–272.

71. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to
Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995. pp.

59

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

http://paperpile.com/b/WAe7SQ/7CWS
http://paperpile.com/b/WAe7SQ/7CWS
http://arxiv.org/abs/2002.07217
http://paperpile.com/b/WAe7SQ/wudr
http://paperpile.com/b/WAe7SQ/wudr
http://dx.doi.org/10.1101/794289
http://paperpile.com/b/WAe7SQ/nudc
http://paperpile.com/b/WAe7SQ/nudc
http://arxiv.org/abs/2010.13472
http://paperpile.com/b/WAe7SQ/u2Bi
http://paperpile.com/b/WAe7SQ/u2Bi
http://paperpile.com/b/WAe7SQ/IUIL
http://paperpile.com/b/WAe7SQ/zcTm
http://paperpile.com/b/WAe7SQ/zcTm
http://paperpile.com/b/WAe7SQ/xJ9t
http://paperpile.com/b/WAe7SQ/xJ9t
http://paperpile.com/b/WAe7SQ/dG4E
http://paperpile.com/b/WAe7SQ/dG4E
http://paperpile.com/b/WAe7SQ/q3WY
http://paperpile.com/b/WAe7SQ/q3WY
http://arxiv.org/abs/1502.03167
http://paperpile.com/b/WAe7SQ/40E7
http://arxiv.org/abs/1607.06450
http://paperpile.com/b/WAe7SQ/EqI2
http://paperpile.com/b/WAe7SQ/EqI2
http://paperpile.com/b/WAe7SQ/rbBj
http://paperpile.com/b/WAe7SQ/rbBj
http://paperpile.com/b/WAe7SQ/GPp7
http://paperpile.com/b/WAe7SQ/GPp7
http://paperpile.com/b/WAe7SQ/e9rm
http://paperpile.com/b/WAe7SQ/e9rm
http://paperpile.com/b/WAe7SQ/ifwF
http://paperpile.com/b/WAe7SQ/ifwF
http://paperpile.com/b/WAe7SQ/ifwF
http://dx.doi.org/10.1101/2020.02.06.937805
http://paperpile.com/b/WAe7SQ/VRXZ
http://paperpile.com/b/WAe7SQ/VRXZ
http://paperpile.com/b/WAe7SQ/S0WN
http://paperpile.com/b/WAe7SQ/S0WN
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/


289–300. doi:10.1111/j.2517-6161.1995.tb02031.x

72. Wolock SL, Lopez R, Klein AM. Scrublet: Computational Identification of Cell Doublets in Single-Cell
Transcriptomic Data. Cell Syst. 2019;8: 281–291.e9.

73. Keren-Shaul H, Kenigsberg E, Jaitin DA, David E, Paul F, Tanay A, et al. MARS-seq2.0: an experimental
and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat Protoc.
2019;14: 1841–1862.

74. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel
single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:
776–779.

75. Svensson V, Teichmann SA, Stegle O. SpatialDE - Identification of spatially variable genes. bioRxiv.
2017. p. 143321. doi:10.1101/143321

76. Arnol D, Schapiro D, Bodenmiller B, Saez-Rodriguez J, Stegle O. Modeling Cell-Cell Interactions from
Spatial Molecular Data with Spatial Variance Component Analysis. Cell Rep. 2019;29: 202–211.e6.

60

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443517doi: bioRxiv preprint 

http://paperpile.com/b/WAe7SQ/S0WN
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://paperpile.com/b/WAe7SQ/jirP
http://paperpile.com/b/WAe7SQ/jirP
http://paperpile.com/b/WAe7SQ/3CPU
http://paperpile.com/b/WAe7SQ/3CPU
http://paperpile.com/b/WAe7SQ/3CPU
http://paperpile.com/b/WAe7SQ/8WQ6
http://paperpile.com/b/WAe7SQ/8WQ6
http://paperpile.com/b/WAe7SQ/8WQ6
http://paperpile.com/b/WAe7SQ/L2R9
http://paperpile.com/b/WAe7SQ/L2R9
http://dx.doi.org/10.1101/143321
http://paperpile.com/b/WAe7SQ/yNzA
http://paperpile.com/b/WAe7SQ/yNzA
https://doi.org/10.1101/2021.05.10.443517
http://creativecommons.org/licenses/by-nd/4.0/

